MGCL V10
V10
MGCL V10
|
Defines Tangent Plane Line B-Representation Class. [詳解]
公開メンバ関数 | |
MGSBRepTP () | |
Default Constructor, will be set as no TPs' are specified. [詳解] | |
MGSBRepTP (const MGSBRepTP &) | |
Copy Constructor. [詳解] | |
MGSBRepTP (const MGSurface &srf) | |
Compute TP of four boundaries of a Surface B-Rep. [詳解] | |
~MGSBRepTP () | |
MGSBRepTP & | operator= (const MGSBRepTP &) |
Assignment. [詳解] | |
double | get_perimeters_max_cos (const MGPvector< MGLBRep > &deris, double taumax[4], double cosmax[4]) const |
double | get_perimeters_max_sin (const MGSurface &srf, double taumax[4], double sinmax[4], bool *eval=0) const |
double | max_cos (const MGCurve *perimeter[4]) const |
double | max_cos (const MGPvector< MGLBRep > &perimeters) const |
bool | specified (int i) const |
void | set_TP_null (int i) |
Set i-th perimeter's TP as a null, as an unspecified one. [詳解] | |
void | set_TP (int i, const MGLBRep &tp) |
Set i-th perimeter's TP(copy version). [詳解] | |
void | set_TP (int i, std::auto_ptr< MGLBRep > &tp) |
Set i-th perimeter's TP(auto_ptr version). [詳解] | |
const MGLBRep & | TP (int i) const |
Return i-th perimeter's TP. [詳解] | |
MGLBRep & | TP (int i) |
MGLBRep ** | TP () |
フレンド | |
MG_DLL_DECLR friend std::ostream & | operator<< (std::ostream &, const MGSBRepTP &) |
String stream Function. [詳解] | |
Defines Tangent Plane Line B-Representation Class.
Tangent plane is a line b-representation of (unit)normal vector of tangent plane along surface perimeter.
MGSBRepTP::MGSBRepTP | ( | ) |
Default Constructor, will be set as no TPs' are specified.
MGSBRepTP::MGSBRepTP | ( | const MGSBRepTP & | ) |
Copy Constructor.
MGSBRepTP::MGSBRepTP | ( | const MGSurface & | srf | ) |
Compute TP of four boundaries of a Surface B-Rep.
MGSBRepTP::~MGSBRepTP | ( | ) |
double MGSBRepTP::get_perimeters_max_cos | ( | const MGPvector< MGLBRep > & | deris, |
double | taumax[4], | ||
double | cosmax[4] | ||
) | const |
Compute the maximum (absolute) cos value of between vector deris[i](t) and vector this->TP(i)(t) for i=0,1,2,3, where t is a common parameter of the data point obtained from deris[i]'s knot vector. Function's return value is the max out of cosmax[.].
deris | the size must be 4. |
taumax | parameter on which the maximum value attains will be stored. |
cosmax | the maximum value will be stored. |
double MGSBRepTP::get_perimeters_max_sin | ( | const MGSurface & | srf, |
double | taumax[4], | ||
double | sinmax[4], | ||
bool * | eval = 0 |
||
) | const |
Compute the maximum (absolute) sin value of between vector srf.normal(uv(t)) and vector this->TP(i)(t) for i=0,1,2,3, where perim[i] is the same as srf.perimeter_curve(i), and t is a common parameter of deris[i] and TP(i). Function's return value is the max out of sinmax[.].
srf | surface which must corresponds to this object. |
taumax | parameters on which the maximum value attains will be stored. |
sinmax | the maximum value will be stored. |
eval | indicates perimeters to evalate if eval!=null, When eval[i] is true, perimeter i is evaluated for 0<=i<=3. |
double MGSBRepTP::max_cos | ( | const MGCurve * | perimeter[4] | ) | const |
Compute maximun abs(cons(theta)), where theta=angle of TP(i) and corresponding edge_crvl[i]'s start and end points' tangent vector.
perimeter | 境界線リスト(vmin,umax,vmax,uminの順,辺番号0,1,2,3の順) |
Compute maximun abs(cons(theta)), where theta=angle of TP(i) and corresponding edge_crvl[i]'s start and end points' tangent vector.
perimeters | 境界線リスト(vmin,umax,vmax,uminの順,辺番号0,1,2,3の順) |
void MGSBRepTP::set_TP | ( | int | i, |
const MGLBRep & | tp | ||
) |
Set i-th perimeter's TP(copy version).
void MGSBRepTP::set_TP | ( | int | i, |
std::auto_ptr< MGLBRep > & | tp | ||
) |
Set i-th perimeter's TP(auto_ptr version).
void MGSBRepTP::set_TP_null | ( | int | i | ) |
Set i-th perimeter's TP as a null, as an unspecified one.
|
inline |
Return if i-th perimeter's TP specified(true) or not. i=0, 2 are v=min and max u-parameter line. i=1, 3 are u=max and min v-parameter line.
|
inline |
Return i-th perimeter's TP.
|
inline |
|
inline |
|
friend |
String stream Function.