Vulkan® 1.0.57 - A Specification

The Khronos Vulkan Working Group

Version 1.0.57, Tue, 01 Aug 2017 00:30:33 +0000

Table of Contents

1. Introduction 3
1.1. What is the Vulkan Graphics System? 3
1.2. Filing Bug Reports 4
1.3. Terminology 4
1.4. Normative References 5

2. Fundamentals 6
2.1. Architecture Model 6
2.2. Execution Model 6
2.3. Object Model 9
2.4. Command Syntax and Duration 12
2.5. Threading Behavior 13
2.6. Errors 20
2.7. Numeric Representation and Computation 25
2.8. Fixed-Point Data Conversions 27
2.9. API Version Numbers and Semantics 29
2.10. Common Object Types 29

3. Initialization 32
3.1. Command Function Pointers 32
3.2. Instances 34

4. Devices and Queues 39
4.1. Physical Devices 39
4.2. Devices 45
4.3. Queues 50

5. Command Buffers 55
5.1. Command Buffer Lifecycle 55
5.2. Command Pools 56
5.3. Command Buffer Allocation and Management 61
5.4. Command Buffer Recording 65
5.5. Command Buffer Submission 70
5.6. Queue Forward Progress 75
5.7. Secondary Command Buffer Execution 76

6. Synchronization and Cache Control 79
6.1. Execution and Memory Dependencies 79
6.2. Implicit Synchronization Guarantees 91
6.3. Fences 92
6.4. Semaphores 98

6.5. Events 102
6.6. Pipeline Barriers 113

6.7. Memory Barriers 118

6.8. Wait Idle Operations 126
6.9. Host Write Ordering Guarantees 128
7. Render Pass 129
7.1. Render Pass Creation 130
7.2. Render Pass Compatibility 147
7.3. Framebuffers 148
7.4. Render Pass Commands 152
8. Shaders 160
8.1. Shader Modules 160
8.2. Shader Execution 163
8.3. Shader Memory Access Ordering 163
8.4. Shader Inputs and Outputs 165
8.5. Vertex Shaders 165
8.6. Tessellation Control Shaders 166
8.7. Tessellation Evaluation Shaders 166
8.8. Geometry Shaders 167
8.9. Fragment Shaders 167
8.10. Compute Shaders 168
8.11. Interpolation Decorations 168
8.12. Static Use 169
8.13. Invocation and Derivative Groups 169
9. Pipelines 170
9.1. Compute Pipelines 172
9.2. Graphics Pipelines 178
9.3. Pipeline destruction 189
9.4. Multiple Pipeline Creation 190
9.5. Pipeline Derivatives 190
9.6. Pipeline Cache 191
9.7. Specialization Constants 197
9.8. Pipeline Binding 201
10. Memory Allocation 204
10.1. Host Memory 204
10.2. Device Memory 211
11. Resource Creation 226
11.1. Buffers 226
11.2. Buffer Views 231
11.3. Images 234
11.4. Image Layouts 246
11.5. Image Views 249

11.6. Resource Memory Association 260

11.7. Resource Sharing Mode 266

11.8. Memory Aliasing 267
12. Samplers 269
13. Resource Descriptors 277

13.1. Descriptor Types 278

13.2. Descriptor Sets 286
14. Shader Interfaces 324

14.1. Shader Input and Output Interfaces 324

14.2. Vertex Input Interface 328

14.3. Fragment Output Interface 328

14.4. Fragment Input Attachment Interface 329

14.5. Shader Resource Interface 329

14.6. Built-In Variables 335
15. Image Operations 346

15.1. Image Operations Overview 346

15.2. Conversion Formulas 349

15.3. Texel Input Operations 351

15.4. Texel Output Operations 357

15.5. Derivative Operations 358

15.6. Normalized Texel Coordinate Operations 360

15.7. Unnormalized Texel Coordinate Operations 365

15.8. Image Sample Operations 366

15.9. Image Operation Steps 368
16. Queries 370

16.1. Query Pools 370

16.2. Query Operation 373

16.3. Occlusion Queries 384

16.4. Pipeline Statistics Queries 385

16.5. Timestamp Queries 387
17. Clear Commands 390

17.1. Clearing Images Outside A Render Pass Instance 390

17.2. Clearing Images Inside A Render Pass Instance 394

17.3. Clear Values 398

17.4. Filling Buffers 399

17.5. Updating Buffers 401
18. Copy Commands 403

18.1. Common Operation 403

18.2. Copying Data Between Buffers 403

18.3. Copying Data Between Images 406

18.4. Copying Data Between Buffers and Images 413

18.5. Image Copies with Scaling 421

18.6. Resolving Multisample Images 429

19. Drawing Commands 433
19.1. Primitive Topologies 434
19.2. Primitive Order 440
19.3. Programmable Primitive Shading 441

20. Fixed-Function Vertex Processing 458
20.1. Vertex Attributes 458
20.2. Vertex Input Description 463
20.3. Example 468

21. Tessellation 470
21.1. Tessellator 470
21.2. Tessellator Patch Discard 472
21.3. Tessellator Spacing 472
21.4. Tessellation Primitive Ordering 473
21.5. Triangle Tessellation 473
21.6. Quad Tessellation 476
21.7. Isoline Tessellation 479
21.8. Tessellation Pipeline State 479

22. Geometry Shading 481
22.1. Geometry Shader Input Primitives 481
22.2. Geometry Shader Output Primitives 482
22.3. Multiple Invocations of Geometry Shaders 482
22.4. Geometry Shader Primitive Ordering 483

23. Fixed-Function Vertex Post-Processing 484
23.1. Flat Shading 484
23.2. Primitive Clipping 485
23.3. Clipping Shader Outputs 487
23.4. Coordinate Transformations 487
23.5. Controlling the Viewport 488

24. Rasterization 493
24.1. Discarding Primitives Before Rasterization 496
24.2. Rasterization Order 496
24.3. Multisampling 497
24.4. Sample Shading 498
24.5. Points 498
24.6. Line Segments 499
24.7. Polygons 502

25. Fragment Operations 508
25.1. Early Per-Fragment Tests 508
25.2. Scissor Test 508

25.3. Sample Mask 510

25.4. Early Fragment Test Mode 510

25.5. Late Per-Fragment Tests 511
25.6. Multisample Coverage 511
25.7. Depth and Stencil Operations 512
25.8. Depth Bounds Test 513
25.9. Stencil Test 514
25.10. Depth Test 521
25.11. Sample Counting 522
25.12. Coverage Reduction 522
26. The Framebuffer 523
26.1. Blending 523
26.2. Logical Operations 531
26.3. Color Write Mask 532
27. Dispatching Commands 534
28. Sparse Resources 541
28.1. Sparse Resource Features 541
28.2. Sparse Buffers and Fully-Resident Images 542
28.3. Sparse Partially-Resident Buffers 543
28.4. Sparse Partially-Resident Images 543
28.5. Sparse Memory Aliasing 549
28.6. Sparse Resource Implementation Guidelines 550
28.7. Sparse Resource API 552
28.8. Examples 570
29. Extended Functionality 576
29.1. Layers 576
29.2. Extensions 579
29.3. Extension Dependencies 583
30. Features, Limits, and Formats 584
30.1. Features 584
30.2. Limits 595
30.3. Formats 614
30.4. Additional Image Capabilities 655
31. Debugging 660
Appendix A: Vulkan Environment for SPIR-V 662
Required Versions and Formats 662
Capabilities 662
Validation Rules within a Module 663
Precision and Operation of SPIR-V Instructions 664
Appendix B: Compressed Image Formats 668
Block-Compressed Image Formats 669

ETC Compressed Image Formats 670

ASTC Compressed Image Formats
Appendix C: Layers & Extensions
VK_KHR_sampler_mirror_clamp_to_edge
Appendix D: API Boilerplate
Structure Types
Flag Types
Macro Definitions in vulkan.h
Platform-Specific Macro Definitions in vk_platform.h
Appendix E: Invariance
Repeatability
Multi-pass Algorithms
Invariance Rules
Tessellation Invariance
Glossary
Common Abbreviations
Prefixes

Appendix F: Credits

671
672
672
675
675
676
680
682
684
684
684
684
686
688
705
706
707

Copyright 2014-2017 The Khronos Group Inc.

This specification is protected by copyright laws and contains material proprietary to Khronos.
Except as described by these terms, it or any components may not be reproduced, republished,
distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the
express prior written permission of Khronos.

This specification has been created under the Khronos Intellectual Property Rights Policy, which is
Attachment A of the Khronos Group Membership Agreement available at
www.khronos.org/files/member_agreement.pdf. Khronos Group grants a conditional copyright
license to use and reproduce the unmodified specification for any purpose, without fee or royalty,
EXCEPT no licenses to any patent, trademark or other intellectual property rights are granted under
these terms. Parties desiring to implement the specification and make use of Khronos trademarks
in relation to that implementation, and receive reciprocal patent license protection under the
Khronos IP Policy must become Adopters and confirm the implementation as conformant under
the process defined by Khronos for this specification; see https://www.khronos.org/adopters.

Khronos makes no, and expressly disclaims any, representations or warranties, express or implied,
regarding this specification, including, without limitation: merchantability, fitness for a particular
purpose, non-infringement of any intellectual property, correctness, accuracy, completeness,
timeliness, and reliability. Under no circumstances will Khronos, or any of its Promoters,
Contributors or Members, or their respective partners, officers, directors, employees, agents or
representatives be liable for any damages, whether direct, indirect, special or consequential
damages for lost revenues, lost profits, or otherwise, arising from or in connection with these
materials.

This specification contains substantially unmodified functionality from, and is a successor to,
Khronos specifications including OpenGL, OpenGL ES and OpenCL.

Some parts of this Specification are purely informative and do not define requirements necessary
for compliance and so are outside the Scope of this Specification. These parts of the Specification
are marked by the “Note” icon or designated “Informative”.

Where this Specification uses terms, defined in the Glossary or otherwise, that refer to enabling
technologies that are not expressly set forth as being required for compliance, those enabling
technologies are outside the Scope of this Specification.

Where this Specification uses the terms “may”, or “optional”, such features or behaviors do not
define requirements necessary for compliance and so are outside the Scope of this Specification.

Where this Specification uses the terms “not required”, such features or behaviors may be omitted
from certain implementations, but when they are included, they define requirements necessary for
compliance and so are INCLUDED in the Scope of this Specification.

Where this Specification includes normative references to external documents, the specifically
identified sections and functionality of those external documents are in Scope. Requirements
defined by external documents not created by Khronos may contain contributions from non-
members of Khronos not covered by the Khronos Intellectual Property Rights Policy.

Vulkan is a registered trademark, and Khronos is a trademark of The Khronos Group Inc. ASTC is a

https://www.khronos.org/adopters

trademark of ARM Holdings PLC; OpenCL is a trademark of Apple Inc.; and OpenGL is a registered
trademark of Silicon Graphics International, all used under license by Khronos. All other product
names, trademarks, and/or company names are used solely for identification and belong to their
respective owners.

Chapter 1. Introduction

This chapter is Informative except for the sections on Terminology and Normative References.

This document, referred to as the “Vulkan Specification” or just the “Specification” hereafter,
describes the Vulkan graphics system: what it is, how it acts, and what is required to implement it.
We assume that the reader has at least a rudimentary understanding of computer graphics. This
means familiarity with the essentials of computer graphics algorithms and terminology as well as
with modern GPUs (Graphic Processing Units).

The canonical version of the Specification is available in the official Vulkan Registry, located at URL

http://www.khronos.org/registry/vulkan/

1.1. What is the Vulkan Graphics System?

Vulkan is an API (Application Programming Interface) for graphics and compute hardware. The API
consists of many commands that allow a programmer to specify shader programs, compute kernels,
objects, and operations involved in producing high-quality graphical images, specifically color
images of three-dimensional objects.

1.1.1. The Programmer’s View of Vulkan

To the programmer, Vulkan is a set of commands that allow the specification of shader programs or
shaders, kernels, data used by kernels or shaders, and state controlling aspects of Vulkan outside of
shader execution. Typically, the data represents geometry in two or three dimensions and texture
images, while the shaders and kernels control the processing of the data, rasterization of the
geometry, and the lighting and shading of fragments generated by rasterization, resulting in the
rendering of geometry into the framebuffer.

A typical Vulkan program begins with platform-specific calls to open a window or otherwise
prepare a display device onto which the program will draw. Then, calls are made to open queues to
which command buffers are submitted. The command buffers contain lists of commands which will
be executed by the underlying hardware. The application can also allocate device memory,
associate resources with memory and refer to these resources from within command buffers.
Drawing commands cause application-defined shader programs to be invoked, which can then
consume the data in the resources and use them to produce graphical images. To display the
resulting images, further platform-specific commands are made to transfer the resulting image to a
display device or window.

1.1.2. The Implementor’s View of Vulkan

To the implementor, Vulkan is a set of commands that allow the construction and submission of
command buffers to a device. Modern devices accelerate virtually all Vulkan operations, storing
data and framebuffer images in high-speed memory and executing shaders in dedicated GPU
processing resources.

The implementor’s task is to provide a software library on the host which implements the Vulkan

http://www.khronos.org/registry/vulkan/

API, while mapping the work for each Vulkan command to the graphics hardware as appropriate
for the capabilities of the device.

1.1.3. Our View of Vulkan

We view Vulkan as a pipeline having some programmable stages and some state-driven fixed-
function stages that are invoked by a set of specific drawing operations. We expect this model to
result in a specification that satisfies the needs of both programmers and implementors. It does not,
however, necessarily provide a model for implementation. An implementation must produce
results conforming to those produced by the specified methods, but may carry out particular
computations in ways that are more efficient than the one specified.

1.2. Filing Bug Reports

Issues with and bug reports on the Vulkan Specification and the API Registry can be filed in the
Khronos Vulkan GitHub repository, located at URL

http://github.com/KhronosGroup/Vulkan-Docs

Please tag issues with appropriate labels, such as “Specification”, “Ref Pages” or “Registry”, to help
us triage and assign them appropriately. Unfortunately, GitHub does not currently let users who do
not have write access to the repository set GitHub labels on issues. In the meantime, they can be
added to the title line of the issue set in brackets, e.g. "[Specification]".

1.3. Terminology

The key words must, required, should, recommend, may, and optional in this document are to be
interpreted as described in RFC 2119:

http://www.ietf.org/rfc/rfc2119.txt

must

When used alone, this word, or the term required, means that the definition is an absolute
requirement of the specification. When followed by not (“must not”), the phrase means that the
definition is an absolute prohibition of the specification.

should

When used alone, this word means that there may exist valid reasons in particular
circumstances to ignore a particular item, but the full implications must be understood and
carefully weighed before choosing a different course. When followed by not (“should not”), the
phrase means that there may exist valid reasons in particular circumstances when the
particular behavior is acceptable or even useful, but the full implications should be understood
and the case carefully weighed before implementing any behavior described with this label. In
cases where grammatically appropriate, the terms recommend or recommendation may be
used instead of should.

may

This word, or the adjective optional, means that an item is truly optional. One vendor may

http://github.com/KhronosGroup/Vulkan-Docs
http://www.ietf.org/rfc/rfc2119.txt

choose to include the item because a particular marketplace requires it or because the vendor
feels that it enhances the product while another vendor may omit the same item. An
implementation which does not include a particular option must be prepared to interoperate
with another implementation which does include the option, though perhaps with reduced
functionality. In the same vein an implementation which does include a particular option must
be prepared to interoperate with another implementation which does not include the option
(except, of course, for the feature the option provides).

The additional terms can and cannot are to be interpreted as follows:

can

This word means that the particular behavior described is a valid choice for an application, and
is never used to refer to implementation behavior.

cannot

This word means that the particular behavior described is not achievable by an application. For
example, an entry point does not exist, or shader code is not capable of expressing an operation.

Note

There is an important distinction between cannot and must not, as used in this
0 Specification. Cannot means something the application literally is unable to
express or accomplish through the API, while must not means something that the
application is capable of expressing through the API, but that the consequences of
doing so are undefined and potentially unrecoverable for the implementation.

1.4. Normative References

Normative references are references to external documents or resources to which implementers of
Vulkan must comply.

IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008, http://dx.doi.org/10.1109/
IEEESTD.2008.4610935, August, 2008.

A. Garrard, Khronos Data Format Specification, version 1.1, https://www.khronos.org/registry/
dataformat/specs/1.1/dataformat.1.1.html, June, 2017.

J. Kessenich, SPIR-V Extended Instructions for GLSL, Version 1.00, https://www.khronos.org/registry/
spir-v/, February 10, 2016.

J. Kessenich and B. Ouriel, The Khronos SPIR-V Specification, Version 1.00, https://www.khronos.org/
registry/spir-v/, February 10, 2016.

J. Leech and T. Hector, Vulkan Documentation and Extensions: Procedures and Conventions,
https://www.khronos.org/registry/vulkan/, July 11, 2016

Vulkan Loader Specification and Architecture Overview, https://github.com/KhronosGroup/Vulkan-
LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md, August, 2016.

http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
https://www.khronos.org/registry/dataformat/specs/1.1/dataformat.1.1.html
https://www.khronos.org/registry/dataformat/specs/1.1/dataformat.1.1.html
https://www.khronos.org/registry/spir-v/
https://www.khronos.org/registry/spir-v/
https://www.khronos.org/registry/spir-v/
https://www.khronos.org/registry/spir-v/
https://www.khronos.org/registry/vulkan/
https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md
https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md

Chapter 2. Fundamentals

This chapter introduces fundamental concepts including the Vulkan architecture and execution
model, API syntax, queues, pipeline configurations, numeric representation, state and state queries,
and the different types of objects and shaders. It provides a framework for interpreting more
specific descriptions of commands and behavior in the remainder of the Specification.

2.1. Architecture Model

Vulkan is designed for, and the API is written for, CPU, GPU, and other hardware accelerator
architectures with the following properties:

* Runtime support for 8, 16, 32 and 64-bit signed and unsigned twos-complement integers, all
addressable at the granularity of their size in bytes.

* Runtime support for 32- and 64-bit floating-point types satisfying the range and precision
constraints in the Floating Point Computation section.

* The representation and endianness of these types must be identical for the host and the
physical devices.

Note

Since a variety of data types and structures in Vulkan may be mapped back and

0 forth between host and physical device memory, host and device architectures
must both be able to access such data efficiently in order to write portable and
performant applications.

Where the Specification leaves choices open that would affect Application Binary Interface
compatibility on a given platform supporting Vulkan, those choices are usually made to be
compliant to the preferred ABI defined by the platform vendor. Some choices, such as function
calling conventions, may be made in platform-specific portions of the vk_platform.h header file.

Note

0 For example, the Android ABI is defined by Google, and the Linux ABI is defined by
a combination of gcc defaults, distribution vendor choices, and external standards
such as the Linux Standard Base.

2.2. Execution Model

This section outlines the execution model of a Vulkan system.

Vulkan exposes one or more devices, each of which exposes one or more queues which may process
work asynchronously to one another. The set of queues supported by a device is partitioned into
families. Each family supports one or more types of functionality and may contain multiple queues
with similar characteristics. Queues within a single family are considered compatible with one
another, and work produced for a family of queues can be executed on any queue within that
family. This specification defines four types of functionality that queues may support: graphics,

compute, transfer, and sparse memory management.

Note

A single device may report multiple similar queue families rather than, or as well

O as, reporting multiple members of one or more of those families. This indicates
that while members of those families have similar capabilities, they are not
directly compatible with one another.

Device memory is explicitly managed by the application. Each device may advertise one or more
heaps, representing different areas of memory. Memory heaps are either device local or host local,
but are always visible to the device. Further detail about memory heaps is exposed via memory
types available on that heap. Examples of memory areas that may be available on an
implementation include:

* device local is memory that is physically connected to the device.
* device local, host visible is device local memory that is visible to the host.

* host local, host visible is memory that is local to the host and visible to the device and host.
On other architectures, there may only be a single heap that can be used for any purpose.

A Vulkan application controls a set of devices through the submission of command buffers which
have recorded device commands issued via Vulkan library calls. The content of command buffers is
specific to the underlying hardware and is opaque to the application. Once constructed, a command
buffer can be submitted once or many times to a queue for execution. Multiple command buffers
can be built in parallel by employing multiple threads within the application.

Command buffers submitted to different queues may execute in parallel or even out of order with
respect to one another. Command buffers submitted to a single queue respect submission order, as
described further in synchronization chapter. Command buffer execution by the device is also
asynchronous to host execution. Once a command buffer is submitted to a queue, control may
return to the application immediately. Synchronization between the device and host, and between
different queues is the responsibility of the application.

2.2.1. Queue Operation

Vulkan queues provide an interface to the execution engines of a device. Commands for these
execution engines are recorded into command buffers ahead of execution time. These command
buffers are then submitted to queues with a queue submission command for execution in a number
of batches. Once submitted to a queue, these commands will begin and complete execution without
further application intervention, though the order of this execution is dependent on a number of
implicit and explicit ordering constraints.

Work is submitted to queues using queue submission commands that typically take the form
vkQueue* (e.g. vkQueueSubmit, vkQueueBindSparse), and optionally take a list of semaphores upon
which to wait before work begins and a list of semaphores to signal once work has completed. The
work itself, as well as signaling and waiting on the semaphores are all queue operations.

Queue operations on different queues have no implicit ordering constraints, and may execute in

any order. Explicit ordering constraints between queues can be expressed with semaphores and
fences.

Command buffer submissions to a single queue respect submission order and other implicit
ordering guarantees, but otherwise may overlap or execute out of order. Other types of batches and
queue submissions against a single queue (e.g. sparse memory binding) have no implicit ordering
constraints with any other queue submission or batch. Additional explicit ordering constraints
between queue submissions and individual batches can be expressed with semaphores and fences.

Before a fence or semaphore is signaled, it is guaranteed that any previously submitted queue
operations have completed execution, and that memory writes from those queue operations are
available to future queue operations. Waiting on a signaled semaphore or fence guarantees that
previous writes that are available are also visible to subsequent commands.

Command buffer boundaries, both between primary command buffers of the same or different
batches or submissions as well as between primary and secondary command buffers, do not
introduce any additional ordering constraints. In other words, submitting the set of command
buffers (which can include executing secondary command buffers) between any semaphore or
fence operations execute the recorded commands as if they had all been recorded into a single
primary command buffer, except that the current state is reset on each boundary. Explicit ordering
constraints can be expressed with explicit synchronization primitives.

There are a few implicit ordering guarantees between commands within a command buffer, but
only covering a subset of execution. Additional explicit ordering constraints can be expressed with
the various explicit synchronization primitives.

Note

9 Implementations have significant freedom to overlap execution of work submitted
to a queue, and this is common due to deep pipelining and parallelism in Vulkan
devices.

Commands recorded in command buffers either perform actions (draw, dispatch, clear, copy,
query/timestamp operations, begin/end subpass operations), set state (bind pipelines, descriptor
sets, and buffers, set dynamic state, push constants, set render pass/subpass state), or perform
synchronization (set/wait events, pipeline barrier, render pass/subpass dependencies). Some
commands perform more than one of these tasks. State setting commands update the current state
of the command buffer. Some commands that perform actions (e.g. draw/dispatch) do so based on
the current state set cumulatively since the start of the command buffer. The work involved in
performing action commands is often allowed to overlap or to be reordered, but doing so must not
alter the state to be used by each action command. In general, action commands are those
commands that alter framebuffer attachments, read/write buffer or image memory, or write to
query pools.

Synchronization commands introduce explicit execution and memory dependencies between two
sets of action commands, where the second set of commands depends on the first set of commands.
These dependencies enforce that both the execution of certain pipeline stages in the later set occur
after the execution of certain stages in the source set, and that the effects of memory accesses
performed by certain pipeline stages occur in order and are visible to each other. When not
enforced by an explicit dependency or implicit ordering guarantees, action commands may overlap

execution or execute out of order, and may not see the side effects of each other’s memory
accesses.

The device executes queue operations asynchronously with respect to the host. Control is returned
to an application immediately following command buffer submission to a queue. The application
must synchronize work between the host and device as needed.

2.3. Object Model

The devices, queues, and other entities in Vulkan are represented by Vulkan objects. At the API
level, all objects are referred to by handles. There are two classes of handles, dispatchable and non-
dispatchable. Dispatchable handle types are a pointer to an opaque type. This pointer may be used
by layers as part of intercepting API commands, and thus each API command takes a dispatchable
type as its first parameter. Each object of a dispatchable type must have a unique handle value
during its lifetime.

Non-dispatchable handle types are a 64-bit integer type whose meaning is implementation-
dependent, and may encode object information directly in the handle rather than pointing to a
software structure. Objects of a non-dispatchable type may not have unique handle values within a
type or across types. If handle values are not unique, then destroying one such handle must not
cause identical handles of other types to become invalid, and must not cause identical handles of
the same type to become invalid if that handle value has been created more times than it has been
destroyed.

All objects created or allocated from a VkDevice (i.e. with a VkDevice as the first parameter) are
private to that device, and must not be used on other devices.

2.3.1. Object Lifetime

Objects are created or allocated by vkCreate* and vkAllocate* commands, respectively. Once an
object is created or allocated, its “structure” is considered to be immutable, though the contents of
certain object types is still free to change. Objects are destroyed or freed by vkDestroy* and vkFree*
commands, respectively.

Objects that are allocated (rather than created) take resources from an existing pool object or
memory heap, and when freed return resources to that pool or heap. While object creation and
destruction are generally expected to be low-frequency occurrences during runtime, allocating and
freeing objects can occur at high frequency. Pool objects help accommodate improved performance
of the allocations and frees.

It is an application’s responsibility to track the lifetime of Vulkan objects, and not to destroy them
while they are still in use.

Application-owned memory is immediately consumed by any Vulkan command it is passed into.
The application can alter or free this memory as soon as the commands that consume it have
returned.

The following object types are consumed when they are passed into a Vulkan command and not
further accessed by the objects they are used to create. They must not be destroyed in the duration

of any API command they are passed into:

o VkShaderModule
« VkPipelineCache

A VkRenderPass object passed as a parameter to create another object is not further accessed by that
object after the duration of the command it is passed into. A VkRenderPass used in a command
buffer follows the rules described below.

A VkPipelinelLayout object must not be destroyed while any command buffer that uses it is in the
recording state.

VkDescriptorSetLayout objects may be accessed by commands that operate on descriptor sets
allocated wusing that layout, and those descriptor sets must not be updated with
vkUpdateDescriptorSets after the descriptor set layout has been destroyed. Otherwise, descriptor
set layouts can be destroyed any time they are not in use by an API command.

The application must not destroy any other type of Vulkan object until all uses of that object by the
device (such as via command buffer execution) have completed.

The following Vulkan objects must not be destroyed while any command buffers using the object
are in the pending state:

« VkEvent

« VkQueryPool

o VkBuffer

o VkBufferView

« VkImage

o VkImageView

« VkPipeline

« VkSampler

« VkDescriptorPool
o VkFramebuffer

« VkRenderPass

o VkCommandBuffer
« VkCommandPool

« VkDeviceMemory

« VkDescriptorSet

Destroying these objects will move any command buffers that are in the recording or executable
state, and are using those objects, to the invalid state.

The following Vulkan objects must not be destroyed while any queue is executing commands that
use the object:

« VkFence
« VkSemaphore
« VkCommandBuffer

10

« VkCommandPool

In general, objects can be destroyed or freed in any order, even if the object being freed is involved
in the use of another object (e.g. use of a resource in a view, use of a view in a descriptor set, use of
an object in a command buffer, binding of a memory allocation to a resource), as long as any object
that uses the freed object is not further used in any way except to be destroyed or to be reset in
such a way that it no longer uses the other object (such as resetting a command buffer). If the object
has been reset, then it can be used as if it never used the freed object. An exception to this is when
there is a parent/child relationship between objects. In this case, the application must not destroy a
parent object before its children, except when the parent is explicitly defined to free its children
when it is destroyed (e.g. for pool objects, as defined below).

VkCommandPool objects are parents of VkCommandBuffer objects. VkDescriptorPool objects are parents of
VkDescriptorSet objects. VkDevice objects are parents of many object types (all that take a VkDevice
as a parameter to their creation).

The following Vulkan objects have specific restrictions for when they can be destroyed:

* VkQueue objects cannot be explicitly destroyed. Instead, they are implicitly destroyed when the
VkDevice object they are retrieved from is destroyed.

* Destroying a pool object implicitly frees all objects allocated from that pool. Specifically,
destroying VkCommandPool frees all VkCommandBuffer objects that were allocated from it, and
destroying VkDescriptorPool frees all VkDescriptorSet objects that were allocated from it.

 VkDevice objects can be destroyed when all VkQueue objects retrieved from them are idle, and all
objects created from them have been destroyed. This includes the following objects:
- VkFence
» VkSemaphore
» VkEvent
o VkQueryPool
o VkBuffer
o VkBufferView
o VkImage
o VkImageView
» VkShaderModule
» VkPipelineCache
» VkPipeline
o VkPipelinelayout
o VkSampler
o VkDescriptorSetLayout
o VkDescriptorPool
o VkFramebuffer
- VkRenderPass
» VkCommandPool
o VkCommandBuffer

o VkDeviceMemory

11

» VkPhysicalDevice objects cannot be explicitly destroyed. Instead, they are implicitly destroyed
when the VkInstance object they are retrieved from is destroyed.

* VkInstance objects can be destroyed once all VkDevice objects created from any of its
VkPhysicalDevice objects have been destroyed.

2.4. Command Syntax and Duration

The Specification describes Vulkan commands as functions or procedures using C99 syntax.
Language bindings for other languages such as C++ and JavaScript may allow for stricter parameter
passing, or object-oriented interfaces.

Vulkan uses the standard C types for the base type of scalar parameters (e.g. types from stdint.h),
with exceptions described below, or elsewhere in the text when appropriate:

VkBool32 represents boolean True and False values, since C does not have a sufficiently portable
built-in boolean type:

typedef uint32_t VkBool32;

VK_TRUE represents a boolean True (integer 1) value, and VK_FALSE a boolean False (integer 0) value.
All values returned from a Vulkan implementation in a VkBoo132 will be either VK_TRUE or VK_FALSE.

Applications must not pass any other values than VK_TRUE or VK_FALSE into a Vulkan implementation
where a VkBool32 is expected.

VkDeviceSize represents device memory size and offset values:
typedef uint64_t VkDeviceSize;

Commands that create Vulkan objects are of the form vkCreate* and take Vk*CreateInfo structures
with the parameters needed to create the object. These Vulkan objects are destroyed with
commands of the form vkDestroy*.

The last in-parameter to each command that creates or destroys a Vulkan object is pAllocator. The
pAllocator parameter can be set to a non-NULL value such that allocations for the given object are
delegated to an application provided callback; refer to the Memory Allocation chapter for further
details.

Commands that allocate Vulkan objects owned by pool objects are of the form vkAllocate*, and take
Vk*AllocateInfo structures. These Vulkan objects are freed with commands of the form vkFree*.
These objects do not take allocators; if host memory is needed, they will use the allocator that was
specified when their parent pool was created.

Commands are recorded into a command buffer by calling API commands of the form vkCmd*. Each
such command may have different restrictions on where it can be used: in a primary and/or
secondary command buffer, inside and/or outside a render pass, and in one or more of the

12

supported queue types. These restrictions are documented together with the definition of each such
command.

The duration of a Vulkan command refers to the interval between calling the command and its
return to the caller.

2.4.1. Lifetime of Retrieved Results

Information is retrieved from the implementation with commands of the form vkGet* and
vkEnumerate*.

Unless otherwise specified for an individual command, the results are invariant; that is, they will
remain unchanged when retrieved again by calling the same command with the same parameters,
so long as those parameters themselves all remain valid.

2.5. Threading Behavior

Vulkan is intended to provide scalable performance when used on multiple host threads. All
commands support being called concurrently from multiple threads, but certain parameters, or
components of parameters are defined to be externally synchronized. This means that the caller
must guarantee that no more than one thread is using such a parameter at a given time.

More precisely, Vulkan commands use simple stores to update software structures representing
Vulkan objects. A parameter declared as externally synchronized may have its software structures
updated at any time during the host execution of the command. If two commands operate on the
same object and at least one of the commands declares the object to be externally synchronized,
then the caller must guarantee not only that the commands do not execute simultaneously, but also
that the two commands are separated by an appropriate memory barrier (if needed).

Note

Memory barriers are particularly relevant on the ARM CPU architecture which is
0 more weakly ordered than many developers are accustomed to from x86/x64
programming. Fortunately, most higher-level synchronization primitives (like the
pthread library) perform memory barriers as a part of mutual exclusion, so
mutexing Vulkan objects via these primitives will have the desired effect.

Many object types are immutable, meaning the objects cannot change once they have been created.
These types of objects never need external synchronization, except that they must not be destroyed
while they are in use on another thread. In certain special cases, mutable object parameters are
internally synchronized such that they do not require external synchronization. One example of
this is the use of a VkPipelineCache in vkCreateGraphicsPipelines and vkCreateComputePipelines,
where external synchronization around such a heavyweight command would be impractical. The
implementation must internally synchronize the cache in this example, and may be able to do so in
the form of a much finer-grained mutex around the command. Any command parameters that are
not labeled as externally synchronized are either not mutated by the command or are internally
synchronized. Additionally, certain objects related to a command’s parameters (e.g. command pools
and descriptor pools) may be affected by a command, and must also be externally synchronized.
These implicit parameters are documented as described below.

13

Parameters of commands that are externally synchronized are listed below.

14

Externally Synchronized Parameters

The instance parameter in vkDestroyInstance

The device parameter in vkDestroyDevice

The queue parameter in vkQueueSubmit

The fence parameter in vkQueueSubmit

The memory parameter in vkFreeMemory

The memory parameter in vkMapMemory

The memory parameter in vkUnmapMemory

The buffer parameter in vkBindBufferMemory

The image parameter in vkBindImageMemory

The queue parameter in vkQueueBindSparse

The fence parameter in vkQueueBindSparse

The fence parameter in vkDestroyFence

The semaphore parameter in vkDestroySemaphore

The event parameter in vkDestroyEvent

The event parameter in vkSetEvent

The event parameter in vkResetEvent

The queryPool parameter in vkDestroyQueryPool

The buffer parameter in vkDestroyBuffer

The bufferView parameter in vkDestroyBufferView

The image parameter in vkDestroylmage

The imageView parameter in vkDestroylmageView

The shaderModule parameter in vkDestroyShaderModule
The pipelineCache parameter in vkDestroyPipelineCache
The dstCache parameter in vkMergePipelineCaches

The pipeline parameter in vkDestroyPipeline

The pipelinelayout parameter in vkDestroyPipelineLayout
The sampler parameter in vkDestroySampler

The descriptorSetLayout parameter in vkDestroyDescriptorSetLayout
The descriptorPool parameter in vkDestroyDescriptorPool
The descriptorPool parameter in vkResetDescriptorPool
The descriptorPool the pAllocateInfo parameter in vkAllocateDescriptorSets
The descriptorPool parameter in vkFreeDescriptorSets

The framebuffer parameter in vkDestroyFramebuffer

15

16

The renderPass parameter in vkDestroyRenderPass
The commandPool parameter in vkDestroyCommandPool

The commandPool parameter in vkResetCommandPool

The commandPool the pAllocateInfo parameter in vkAllocateCommandBuffers

The commandPool parameter in vkFreeCommandBuffers

The commandBuffer parameter in vkBeginCommandBuffer
The commandBuffer parameter in vkEndCommandBuffer

The commandBuffer parameter in vkResetCommandBuffer
The commandBuffer parameter in vkCmdBindPipeline

The commandBuffer parameter in vkCmdSetViewport

The commandBuffer parameter in vkCmdSetScissor

The commandBuffer parameter in vkCmdSetLineWidth

The commandBuffer parameter in vkCmdSetDepthBias

The commandBuffer parameter in vkCmdSetBlendConstants
The commandBuffer parameter in vkCmdSetDepthBounds

The commandBuffer parameter in vkCmdSetStencilCompareMask
The commandBuffer parameter in vkCmdSetStencilWriteMask
The commandBuffer parameter in vkCmdSetStencilReference
The commandBuffer parameter in vkCmdBindDescriptorSets
The commandBuffer parameter in vkCmdBindIndexBuffer
The commandBuffer parameter in vkCmdBindVertexBuffers
The commandBuffer parameter in vkCmdDraw

The commandBuffer parameter in vkCmdDrawIndexed

The commandBuffer parameter in vkCmdDrawIndirect

The commandBuffer parameter in vkCmdDrawIndexedIndirect
The commandBuffer parameter in vkCmdDispatch

The commandBuffer parameter in vkCmdDispatchIndirect
The commandBuffer parameter in vkCmdCopyBuffer

The commandBuffer parameter in vkCmdCopylmage

The commandBuffer parameter in vkCmdBlitImage

The commandBuffer parameter in vkCmdCopyBufferToImage
The commandBuffer parameter in vkCmdCopylmageToBuffer
The commandBuffer parameter in vkCmdUpdateBuffer

The commandBuffer parameter in vkCmdFillBuffer

The commandBuffer parameter in vkCmdClearColorImage

» The commandBuffer parameter in vkCmdClearDepthStencillmage
* The commandBuffer parameter in vkCmdClearAttachments

» The commandBuffer parameter in vkCmdResolvelmage

* The commandBuffer parameter in vkCmdSetEvent

» The commandBuffer parameter in vkCmdResetEvent

* The commandBuffer parameter in vkCmdWaitEvents

» The commandBuffer parameter in vkCmdPipelineBarrier

» The commandBuffer parameter in vkCmdBeginQuery

» The commandBuffer parameter in vkCmdEndQuery

* The commandBuffer parameter in vkCmdResetQueryPool

» The commandBuffer parameter in vkCmdWriteTimestamp

» The commandBuffer parameter in vkCmdCopyQueryPoolResults
» The commandBuffer parameter in vkCmdPushConstants

» The commandBuffer parameter in vkCmdBeginRenderPass

» The commandBuffer parameter in vkCmdNextSubpass

» The commandBuffer parameter in vkCmdEndRenderPass

e The commandBuffer parameter in vkCmdExecuteCommands

There are also a few instances where a command can take in a user allocated list whose contents
are externally synchronized parameters. In these cases, the caller must guarantee that at most one
thread is using a given element within the list at a given time. These parameters are listed below.

17

Externally Synchronized Parameter Lists
* Each element of the pWaitSemaphores member of each element of the pSubmits parameter
in vkQueueSubmit

» Each element of the pSignalSemaphores member of each element of the pSubmits parameter
in vkQueueSubmit

» Each element of the pWaitSemaphores member of each element of the pBindInfo parameter
in vkQueueBindSparse

* Each element of the pSignalSemaphores member of each element of the pBindInfo
parameter in vkQueueBindSparse

* The buffer member of each element of the pBufferBinds member of each element of the
pBindInfo parameter in vkQueueBindSparse

» The image member of each element of the pImageOpaqueBinds member of each element of
the pBindInfo parameter in vkQueueBindSparse

* The image member of each element of the pImageBinds member of each element of the
pBindInfo parameter in vkQueueBindSparse

» Each element of the pFences parameter in vkResetFences
» Each element of the pDescriptorSets parameter in vkFreeDescriptorSets

» The dstSet member of each element of the pDescriptorlirites parameter in
vkUpdateDescriptorSets

 The dstSet member of each element of the pDescriptorCopies parameter in
vkUpdateDescriptorSets

* Each element of the pCommandBuffers parameter in vkFreeCommandBuffers

In addition, there are some implicit parameters that need to be externally synchronized. For
example, all commandBuffer parameters that need to be externally synchronized imply that the
commandPool that was passed in when creating that command buffer also needs to be externally
synchronized. The implicit parameters and their associated object are listed below.

18

Implicit Externally Synchronized Parameters

All VkQueue objects created from device in vkDeviceWaitldle

Any VkDescriptorSet objects allocated from descriptorPool in vkResetDescriptorPool
The VkCommandPool that commandBuffer was allocated from in vkBeginCommandBuffer
The VkCommandPool that commandBuffer was allocated from in vkEndCommandBuffer
The VkCommandPool that commandBuffer was allocated from, in vkCmdBindPipeline

The VkCommandPool that commandBuffer was allocated from, in vkCmdSetViewport

The VkCommandPool that commandBuffer was allocated from, in vkCmdSetScissor

The VkCommandPool that commandBuffer was allocated from, in vkCmdSetLineWidth
The VkCommandPool that commandBuffer was allocated from, in vkCmdSetDepthBias
The VkCommandPool that commandBuffer was allocated from, in vkCmdSetBlendConstants
The VkCommandPool that commandBuffer was allocated from, in vkCmdSetDepthBounds

The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetStencilCompareMask

The VkCommandPool that commandBuffer was allocated from, in vkCmdSetStencilWriteMask
The VkCommandPool that commandBuffer was allocated from, in vkCmdSetStencilReference
The VkCommandPool that commandBuffer was allocated from, in vkCmdBindDescriptorSets
The VkCommandPool that commandBuffer was allocated from, in vkCmdBindIndexBuffer
The VkCommandPool that commandBuffer was allocated from, in vkCmdBindVertexBuffers
The VkCommandPool that commandBuffer was allocated from, in vkCmdDraw

The VkCommandPool that commandBuffer was allocated from, in vkCmdDrawIndexed

The VkCommandPool that commandBuffer was allocated from, in vkCmdDrawIndirect

The VkCommandPool that commandBuffer was allocated from, in vkCmdDrawIndexedIndirect
The VkCommandPool that commandBuffer was allocated from, in vkCmdDispatch

The VkCommandPool that commandBuffer was allocated from, in vkCmdDispatchIndirect
The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyBuffer

The VkCommandPool that commandBuffer was allocated from, in vkCmdCopylmage

The VkCommandPool that commandBuffer was allocated from, in vkCmdBlitImage

The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyBufferTolmage
The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyIlmageToBuffer
The VkCommandPool that commandBuffer was allocated from, in vkCmdUpdateBuffer

The VkCommandPool that commandBuffer was allocated from, in vkCmdFillBuffer

The VkCommandPool that commandBuffer was allocated from, in vkCmdClearColorImage

The VkCommandPool that commandBuffer was allocated from, in

19

vkCmdClearDepthStencillmage
* The VkCommandPool that commandBuffer was allocated from, in vkCmdClearAttachments
 The VkCommandPool that commandBuffer was allocated from, in vkCmdResolvelmage
e The VkCommandPool that commandBuffer was allocated from, in vkCmdSetEvent
» The VkCommandPool that commandBuffer was allocated from, in vkCmdResetEvent
* The VkCommandPool that commandBuffer was allocated from, in vkCmdWaitEvents
» The VkCommandPool that commandBuffer was allocated from, in vkCmdPipelineBarrier
* The VkCommandPool that commandBuffer was allocated from, in vkCmdBeginQuery
* The VkCommandPool that commandBuffer was allocated from, in vkCmdEndQuery
» The VkCommandPool that commandBuffer was allocated from, in vkCmdResetQueryPool
» The VkCommandPool that commandBuffer was allocated from, in vkCmdWriteTimestamp
» The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyQueryPoolResults
* The VkCommandPool that commandBuffer was allocated from, in vkCmdPushConstants
» The VkCommandPool that commandBuffer was allocated from, in vkCmdBeginRenderPass
» The VkCommandPool that commandBuffer was allocated from, in vkCmdNextSubpass
e The VkCommandPool that commandBuffer was allocated from, in vkCmdEndRenderPass

* The VkCommandPool that commandBuffer was allocated from, in vkCmdExecuteCommands

2.6. Errors

Vulkan is a layered API. The lowest layer is the core Vulkan layer, as defined by this Specification.
The application can use additional layers above the core for debugging, validation, and other
purposes.

One of the core principles of Vulkan is that building and submitting command buffers should be
highly efficient. Thus error checking and validation of state in the core layer is minimal, although
more rigorous validation can be enabled through the use of layers.

The core layer assumes applications are using the API correctly. Except as documented elsewhere in
the Specification, the behavior of the core layer to an application using the API incorrectly is
undefined, and may include program termination. However, implementations must ensure that
incorrect usage by an application does not affect the integrity of the operating system, the Vulkan
implementation, or other Vulkan client applications in the system, and does not allow one
application to access data belonging to another application. Applications can request stronger
robustness guarantees by enabling the robustBufferAccess feature as described in Features, Limits,
and Formats.

Validation of correct API usage is left to validation layers. Applications should be developed with
validation layers enabled, to help catch and eliminate errors. Once validated, released applications
should not enable validation layers by default.

20

2.6.1. Valid Usage

Valid usage defines a set of conditions which must be met in order to achieve well-defined run-time
behavior in an application. These conditions depend only on Vulkan state, and the parameters or
objects whose usage is constrained by the condition.

Some valid usage conditions have dependencies on run-time limits or feature availability. It is
possible to validate these conditions against Vulkan’s minimum supported values for these limits
and features, or some subset of other known values.

Valid usage conditions do not cover conditions where well-defined behavior (including returning
an error code) exists.

Valid usage conditions should apply to the command or structure where complete information
about the condition would be known during execution of an application. This is such that a
validation layer or linter can be written directly against these statements at the point they are
specified.

Note

This does lead to some non-obvious places for valid usage statements. For instance,

the valid values for a structure might depend on a separate value in the calling

command. In this case, the structure itself will not reference this valid usage as it is

impossible to determine validity from the structure that it is invalid - instead this
0 valid usage would be attached to the calling command.

Another example is draw state - the state setters are independent, and can cause a
legitimately invalid state configuration between draw calls; so the valid usage
statements are attached to the place where all state needs to be valid - at the draw
command.

Valid usage conditions are described in a block labelled “Valid Usage” following each command or
structure they apply to.

2.6.2. Implicit Valid Usage

Some valid usage conditions apply to all commands and structures in the API, unless explicitly
denoted otherwise for a specific command or structure. These conditions are considered implicit,
and are described in a block labelled “Valid Usage (Implicit)” following each command or structure
they apply to. Implicit valid usage conditions are described in detail below.

Valid Usage for Object Handles

Any input parameter to a command that is an object handle must be a valid object handle, unless
otherwise specified. An object handle is valid if:

* It has been created or allocated by a previous, successful call to the API. Such calls are noted in
the specification.

* It has not been deleted or freed by a previous call to the API. Such calls are noted in the
specification.

21

* Any objects used by that object, either as part of creation or execution, must also be valid.

The reserved values VK_NULL_HANDLE and NULL can be used in place of valid non-dispatchable
handles and dispatchable handles, respectively, when explicitly called out in the specification. Any
command that creates an object successfully must not return these values. It is valid to pass these
values to vkDestroy* or vkFree* commands, which will silently ignore these values.

Valid Usage for Pointers

Any parameter that is a pointer must either be a valid pointer, or if explicitly called out in the
specification, can be NULL. A pointer is valid if it points at memory containing values of the number
and type(s) expected by the command, and all fundamental types accessed through the pointer (e.g.
as elements of an array or as members of a structure) satisfy the alignment requirements of the
host processor.

Valid Usage for Strings

Any parameter that is a pointer to char must be a finite sequence of values terminated by a null
character, or if explicitly called out in the specification, can be NULL.

Valid Usage for Enumerated Types

Any parameter of an enumerated type must be a valid enumerant for that type. A enumerant is
valid if:

* The enumerant is defined as part of the enumerated type.

* The enumerant is not one of the special values defined for the enumerated type, which are

suffixed with _BEGIN_RANGE, _END_RANGE, _RANGE_SIZE or _MAX_ENUM.

Any enumerated type returned from a query command or otherwise output from Vulkan to the
application must not have a reserved value. Reserved values are values not defined by any
extension for that enumerated type.

Note

O This language is intended to accomodate cases such as “hidden” extensions known
only to driver internals, or layers enabling extensions without knowledge of the
application, without allowing return of values not defined by any extension.

Valid Usage for Flags

A collection of flags is represented by a bitmask using the type VkFlags:
typedef uint32_t VkFlags;

Bitmasks are passed to many commands and structures to compactly represent options, but VkFlags
is not used directly in the API. Instead, a Vk*Flags type which is an alias of VkFlags, and whose name
matches the corresponding Vk*FlagBits that are valid for that type, is used. These aliases are
described in the Flag Types appendix of the Specification.

22

Any Vk*Flags member or parameter used in the API as an input must be a valid combination of bit
flags. A valid combination is either zero or the bitwise OR of valid bit flags. A bit flag is valid if:

» The bit flag is defined as part of the Vk*FlagBits type, where the bits type is obtained by taking
the flag type and replacing the trailing Flags with FlagBits. For example, a flag value of type
VkColorComponentFlags must contain only bit flags defined by VkColorComponentFlagBits.

* The flag is allowed in the context in which it is being used. For example, in some cases, certain
bit flags or combinations of bit flags are mutually exclusive.

Any Vk*Flags member or parameter returned from a query command or otherwise output from
Vulkan to the application may contain bit flags undefined in its corresponding Vk*FlagBits type. An
application cannot rely on the state of these unspecified bits.

Valid Usage for Structure Types

Any parameter that is a structure containing a sType member must have a value of sType which is a
valid VkStructureType value matching the type of the structure. As a general rule, the name of this
value is obtained by taking the structure name, stripping the leading Vk, prefixing each capital letter
with _, converting the entire resulting string to upper case, and prefixing it with VK_STRUCTURE_TYPE_.
For example, structures of type VkImageCreateInfo must have a sType value of
VK_STRUCTURE _TYPE _IMAGE_CREATE_INFO.

The values VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO and
VK_STRUCTURE _TYPE _LOADER_DEVICE_CREATE_INFO are reserved for internal use by the loader, and do
not have corresponding Vulkan structures in this specification.

The list of supported structure types is defined in an appendix.

Valid Usage for Structure Pointer Chains

Any parameter that is a structure containing a void* pNext member must have a value of pNext that
is either NULL, or points to a valid structure defined by an extension, containing sType and pNext
members as described in the Vulkan Documentation and Extensions document in the section
“Extension Interactions”. The set of structures connected by pNext pointers is referred to as a pNext
chain. If that extension is supported by the implementation, then it must be enabled.

Each type of valid structure must not appear more than once in a pNext chain.

Any component of the implementation (the loader, any enabled layers, and drivers) must skip over,
without processing (other than reading the sType and pNext members) any structures in the chain
with sType values not defined by extensions supported by that component.

Extension structures are not described in the base Vulkan specification, but either in layered
specifications incorporating those extensions, or in separate vendor-provided documents.

Valid Usage for Nested Structures

The above conditions also apply recursively to members of structures provided as input to a
command, either as a direct argument to the command, or themselves a member of another
structure.

23

Specifics on valid usage of each command are covered in their individual sections.

2.6.3. Return Codes

While the core Vulkan API is not designed to capture incorrect usage, some circumstances still
require return codes. Commands in Vulkan return their status via return codes that are in one of
two categories:

» Successful completion codes are returned when a command needs to communicate success or
status information. All successful completion codes are non-negative values.

e Run time error codes are returned when a command needs to communicate a failure that could
only be detected at run time. All run time error codes are negative values.

All return codes in Vulkan are reported via VkResult return values. The possible codes are:

typedef enum VkResult {
VK_SUCCESS = 0,
VK_NOT_READY = 1,
VK_TIMEOUT = 2,
VK_EVENT_SET = 3,
VK_EVENT_RESET = 4,
VK_INCOMPLETE = 5,
VK_ERROR_OUT_OF _HOST_MEMORY = -1,
VK_ERROR_OUT_OF _DEVICE_MEMORY = -2,
VK_ERROR_INITIALIZATION_FAILED = -3,
VK_ERROR_DEVICE_LOST = -4,
VK_ERROR_MEMORY_MAP_FAILED = -5,
VK_ERROR_LAYER_NOT_PRESENT = -6,
VK_ERROR_EXTENSION_NOT_PRESENT = -7,
VK_ERROR_FEATURE_NOT_PRESENT = -8,
VK_ERROR_INCOMPATIBLE_DRIVER = -9,
VK_ERROR_TOO_MANY_OBJECTS = -10,
VK_ERROR_FORMAT_NOT_SUPPORTED = -11,
VK_ERROR_FRAGMENTED_POOL = -12,

} VkResult;

Success Codes

» VK_SUCCESS Command successfully completed

VK_NOT_READY A fence or query has not yet completed

VK_TIMEOUT A wait operation has not completed in the specified time

VK_EVENT_SET An event is signaled

VK_EVENT_RESET An event is unsignaled

VK_INCOMPLETE A return array was too small for the result

Error codes

» VK_ERROR_QUT_OF _HOST_MEMORY A host memory allocation has failed.

24

* VK_ERROR_OUT_OF_DEVICE_MEMORY A device memory allocation has failed.

o VK_ERROR_INITIALIZATION_FAILED Initialization of an object could not be completed for
implementation-specific reasons.

» VK_ERROR_DEVICE_LOST The logical or physical device has been lost. See Lost Device

* VK_ERROR_MEMORY_MAP_FAILED Mapping of a memory object has failed.

» VK_ERROR_LAYER_NOT_PRESENT A requested layer is not present or could not be loaded.
* VK_ERROR_EXTENSION_NOT_PRESENT A requested extension is not supported.

» VK_ERROR_FEATURE_NOT_PRESENT A requested feature is not supported.

* VK_ERROR_INCOMPATIBLE_DRIVER The requested version of Vulkan is not supported by the driver or
is otherwise incompatible for implementation-specific reasons.

» VK_ERROR_TOO_MANY_OBJECTS Too many objects of the type have already been created.
* VK_ERROR_FORMAT_NOT_SUPPORTED A requested format is not supported on this device.

» VK_ERROR_FRAGMENTED_POOL A pool allocation has failed due to fragmentation of the pool’s
memory. This must only be returned if no attempt to allocate host or device memory was made
to accomodate the new allocation.

If a command returns a run time error, it will leave any result pointers unmodified, unless other
behavior is explicitly defined in the specification.

Out of memory errors do not damage any currently existing Vulkan objects. Objects that have
already been successfully created can still be used by the application.

Performance-critical commands generally do not have return codes. If a run time error occurs in
such commands, the implementation will defer reporting the error until a specified point. For
commands that record into command buffers (vkCmd*) run time errors are reported by
vkEndCommandBuffer.

2.7. Numeric Representation and Computation

Implementations normally perform computations in floating-point, and must meet the range and
precision requirements defined under “Floating-Point Computation” below.

These requirements only apply to computations performed in Vulkan operations outside of shader
execution, such as texture image specification and sampling, and per-fragment operations. Range
and precision requirements during shader execution differ and are specified by the Precision and
Operation of SPIR-V Instructions section.

In some cases, the representation and/or precision of operations is implicitly limited by the
specified format of vertex or texel data consumed by Vulkan. Specific floating-point formats are
described later in this section.

2.7.1. Floating-Point Computation

Most floating-point computation is performed in SPIR-V shader modules. The properties of
computation within shaders are constrained as defined by the Precision and Operation of SPIR-V

25

Instructions section.

Some floating-point computation is performed outside of shaders, such as viewport and depth
range calculations. For these computations, we do not specify how floating-point numbers are to be
represented, or the details of how operations on them are performed, but only place minimal
requirements on representation and precision as described in the remainder of this section.

We require simply that numbers' floating-point parts contain enough bits and that their exponent
fields are large enough so that individual results of floating-point operations are accurate to about 1
part in 10°. The maximum representable magnitude for all floating-point values must be at least 2*.

X x 0 =0 xx =0 for any non-infinite and non-NaN x.
Ixx=xx1=X

X+0=0+x=X

0’=1.

Occasionally, further requirements will be specified. Most single-precision floating-point formats
meet these requirements.

The special values Inf and -Inf encode values with magnitudes too large to be represented; the
special value NaN encodes “Not A Number” values resulting from undefined arithmetic operations
such as 0/ 0. Implementations may support Inf and NaN in their floating-point computations.

Any representable floating-point value is legal as input to a Vulkan command that requires floating-
point data. The result of providing a value that is not a floating-point number to such a command is
unspecified, but must not lead to Vulkan interruption or termination. In IEEE 754 arithmetic, for
example, providing a negative zero or a denormalized number to an Vulkan command must yield
deterministic results, while providing a NaN or Inf yields unspecified results.

2.7.2. 16-Bit Floating-Point Numbers

16-bit floating point numbers are defined in the “16-bit floating point numbers” section of the
Khronos Data Format Specification.

Any representable 16-bit floating-point value is legal as input to a Vulkan command that accepts 16-
bit floating-point data. The result of providing a value that is not a floating-point number (such as
Inf or NaN) to such a command is unspecified, but must not lead to Vulkan interruption or
termination. Providing a denormalized number or negative zero to Vulkan must yield
deterministic results.

2.7.3. Unsigned 11-Bit Floating-Point Numbers

Unsigned 11-bit floating point numbers are defined in the “Unsigned 11-bit floating point numbers”
section of the Khronos Data Format Specification.

When a floating-point value is converted to an unsigned 11-bit floating-point representation, finite

26

values are rounded to the closest representable finite value.

While less accurate, implementations are allowed to always round in the direction of zero. This
means negative values are converted to zero. Likewise, finite positive values greater than 65024
(the maximum finite representable unsigned 11-bit floating-point value) are converted to 65024.
Additionally: negative infinity is converted to zero; positive infinity is converted to positive infinity;
and both positive and negative NaN are converted to positive NaN.

Any representable unsigned 11-bit floating-point value is legal as input to a Vulkan command that
accepts 11-bit floating-point data. The result of providing a value that is not a floating-point number
(such as Inf or NaN) to such a command is unspecified, but must not lead to Vulkan interruption or
termination. Providing a denormalized number to Vulkan must yield deterministic results.

2.7.4. Unsigned 10-Bit Floating-Point Numbers

Unsigned 10-bit floating point numbers are defined in the “Unsigned 10-bit floating point numbers”
section of the Khronos Data Format Specification.

When a floating-point value is converted to an unsigned 10-bit floating-point representation, finite
values are rounded to the closest representable finite value.

While less accurate, implementations are allowed to always round in the direction of zero. This
means negative values are converted to zero. Likewise, finite positive values greater than 64512
(the maximum finite representable unsigned 10-bit floating-point value) are converted to 64512.
Additionally: negative infinity is converted to zero; positive infinity is converted to positive infinity;
and both positive and negative NaN are converted to positive NaN.

Any representable unsigned 10-bit floating-point value is legal as input to a Vulkan command that
accepts 10-bit floating-point data. The result of providing a value that is not a floating-point number
(such as Inf or NaN) to such a command is unspecified, but must not lead to Vulkan interruption or
termination. Providing a denormalized number to Vulkan must yield deterministic results.

2.7.5. General Requirements

Some calculations require division. In such cases (including implied divisions performed by vector
normalization), division by zero produces an unspecified result but must not lead to Vulkan
interruption or termination.

2.8. Fixed-Point Data Conversions

When generic vertex attributes and pixel color or depth components are represented as integers,
they are often (but not always) considered to be normalized. Normalized integer values are treated
specially when being converted to and from floating-point values, and are usually referred to as
normalized fixed-point.

In the remainder of this section, b denotes the bit width of the fixed-point integer representation.
When the integer is one of the types defined by the API, b is the bit width of that type. When the
integer comes from an image containing color or depth component texels, b is the number of bits
allocated to that component in its specified image format.

27

The signed and unsigned fixed-point representations are assumed to be b-bit binary two’s-
complement integers and binary unsigned integers, respectively.

2.8.1. Conversion from Normalized Fixed-Point to Floating-Point

Unsigned normalized fixed-point integers represent numbers in the range [0,1]. The conversion
from an unsigned normalized fixed-point value c to the corresponding floating-point value f is
defined as

Signed normalized fixed-point integers represent numbers in the range [-1,1]. The conversion from
a signed normalized fixed-point value c to the corresponding floating-point value f is performed
using

(o}
f = max(m, - 1.0)

Only the range [-2”" + 1, 2" - 1] is used to represent signed fixed-point values in the range [-1,1]. For
example, if b = 8, then the integer value -127 corresponds to -1.0 and the value 127 corresponds to
1.0. Note that while zero is exactly expressible in this representation, one value (-128 in the
example) is outside the representable range, and must be clamped before use. This equation is used
everywhere that signed normalized fixed-point values are converted to floating-point.

2.8.2. Conversion from Floating-Point to Normalized Fixed-Point

The conversion from a floating-point value f to the corresponding unsigned normalized fixed-point
value c is defined by first clamping f to the range [0,1], then computing

¢ = convertFloatToUint(f x (2° - 1), b)

where convertFloatToUint}(r,b) returns one of the two unsigned binary integer values with exactly
b bits which are closest to the floating-point value r. Implementations should round to nearest. If r
is equal to an integer, then that integer value must be returned. In particular, if f is equal to 0.0 or
1.0, then ¢ must be assigned 0 or 2P 1, respectively.

The conversion from a floating-point value f to the corresponding signed normalized fixed-point
value c is performed by clamping f to the range [-1,1], then computing

¢ = convertFloatToInt(f x (2" - 1), b)

where convertFloatTolnt(r,b) returns one of the two signed two’s-complement binary integer
values with exactly b bits which are closest to the floating-point value r. Implementations should
round to nearest. If r is equal to an integer, then that integer value must be returned. In particular,
if fis equal to -1.0, 0.0, or 1.0, then ¢ must be assigned -2 - 1), 0, or 2bt . 1, respectively.

This equation is used everywhere that floating-point values are converted to signed normalized
fixed-point.

28

2.9. API Version Numbers and Semantics

The Vulkan version number is used in several places in the API In each such use, the API major
version number, minor version number, and patch version number are packed into a 32-bit integer as
follows:

* The major version number is a 10-bit integer packed into bits 31-22.
* The minor version number is a 10-bit integer packed into bits 21-12.

» The patch version number is a 12-bit integer packed into bits 11-0.

Differences in any of the Vulkan version numbers indicates a change to the API in some way, with
each part of the version number indicating a different scope of changes.

A difference in patch version numbers indicates that some usually small part of the specification or
header has been modified, typically to fix a bug, and may have an impact on the behavior of
existing functionality. Differences in this version number should not affect either full compatibility
or backwards compatibility between two versions, or add additional interfaces to the API.

A difference in minor version numbers indicates that some amount of new functionality has been
added. This will usually include new interfaces in the header, and may also include behavior
changes and bug fixes. Functionality may be deprecated in a minor revision, but will not be
removed. When a new minor version is introduced, the patch version is reset to 0, and each minor
revision maintains its own set of patch versions. Differences in this version should not affect
backwards compatibility, but will affect full compatibility.

A difference in major version numbers indicates a large set of changes to the API, potentially
including new functionality and header interfaces, behavioral changes, removal of deprecated
features, modification or outright replacement of any feature, and is thus very likely to break any
and all compatibility. Differences in this version will typically require significant modification to an
application in order for it to function.

C language macros for manipulating version numbers are defined in the Version Number Macros
appendix.

2.10. Common Object Types

Some types of Vulkan objects are used in many different structures and command parameters, and
are described here. These types include offsets, extents, and rectangles.

2.10.1. Offsets

Offsets are used to describe a pixel location within an image or framebuffer, as an (x,y) location for
two-dimensional images, or an (x,y,z) location for three-dimensional images.

A two-dimensional offsets is defined by the structure:

29

typedef struct VkOffset2D {
int32_t X;
int32_t y;

} VkOffset2D;

* x is the x offset.

* yis they offset.

A three-dimensional offset is defined by the structure:

typedef struct VkOffset3D {

int32_t X;
int32_t y;
int32 t Z;

} VkOffset3D;

* x is the x offset.
* yis they offset.

e 7z is the z offset.

2.10.2. Extents

Extents are used to describe the size of a rectangular region of pixels within an image or
framebuffer, as (width,height) for two-dimensional images, or as (width,height,depth) for three-
dimensional images.

A two-dimensional extent is defined by the structure:

typedef struct VkExtent2D {
uint32_ t width;
uint32_t height;

} VkExtent2D;

e width is the width of the extent.

* height is the height of the extent.

A three-dimensional extent is defined by the structure:

typedef struct VkExtent3D {
uint32_t width;
uint32_ t height;
uint32_t depth;

} VkExtent3D;

30

* width is the width of the extent.
* height is the height of the extent.

* depthis the depth of the extent.

2.10.3. Rectangles

Rectangles are used to describe a specified rectangular region of pixels within an image or
framebuffer. Rectangles include both an offset and an extent of the same dimensionality, as
described above. Two-dimensional rectangles are defined by the structure

typedef struct VkRect2D {
VkOffset2D offset;
VkExtent2D extent;
} VkRect2D;

» offset is a VkOffset2D specifying the rectangle offset.

* extent is a VkExtent2D specifying the rectangle extent.

31

Chapter 3. Initialization

Before using Vulkan, an application must initialize it by loading the Vulkan commands, and
creating a VkInstance object.

3.1. Command Function Pointers

Vulkan commands are not necessarily exposed statically on a platform. Function pointers for all
Vulkan commands can be obtained with the command:

PFN_vkVoidFunction vkGetInstanceProcAddr(
VkInstance instance,
const char* pName);

* instance is the instance that the function pointer will be compatible with, or NULL for commands
not dependent on any instance.

 pName is the name of the command to obtain.

vkGetInstanceProcAddr itself is obtained in a platform- and loader- specific manner. Typically, the
loader library will export this command as a function symbol, so applications can link against the
loader library, or load it dynamically and look up the symbol using platform-specific APIs. Loaders
are encouraged to export function symbols for all other core Vulkan commands as well; if this is
done, then applications that use only the core Vulkan commands have no need to use
vkGetInstanceProcAddr.

The table below defines the various use cases for vkGetInstanceProcAddr and expected return value
("fp" is function pointer) for each case.

The returned function pointer is of type PFN_vkVoidFunction, and must be cast to the type of the
command being queried.

Table 1. vkGetInstanceProcAddr behavior

instance pName return value

* NULL undefined

invalid instance * undefined

NULL vkEnumerateInstanceExt fp
ensionProperties

NULL vkEnumerateInstanceLa fp
yerProperties

NULL vkCreatelnstance fp

NULL * (any pName not covered NULL
above)

instance core Vulkan command fp'

32

instance pName return value

1

instance enabled instance fp
extension commands for
instance

instance available device fp'
extension’ commands for
instance

instance * (any pName not covered NULL
above)

1

The returned function pointer must only be called with a dispatchable object (the first
parameter) that is instance or a child of instance. e.g. VkInstance, VkPhysicalDevice, VkDevice,
VkQueue, or VkCommandBuffer.

An “available extension” is an extension function supported by any of the loader, driver or layer.

Valid Usage (Implicit)

o If instance is not NULL, instance must be a valid VkInstance handle

* pName must be a null-terminated UTF-8 string

In order to support systems with multiple Vulkan implementations comprising heterogeneous
collections of hardware and software, the function pointers returned by vkGetInstanceProcAddr may
point to dispatch code, which calls a different real implementation for different VkDevice objects
(and objects created from them). The overhead of this internal dispatch can be avoided by
obtaining device-specific function pointers for any commands that use a device or device-child
object as their dispatchable object. Such function pointers can be obtained with the command:

PEN_vkVoidFunction vkGetDeviceProcAddr(
VkDevice device,
const char* pName);

The table below defines the various use cases for vkGetDeviceProcAddr and expected return value for
each case.

The returned function pointer is of type PFN_vkVoidFunction, and must be cast to the type of the
command being queried.

Table 2. vkGetDeviceProcAddr behavior

device pName return value
NULL * undefined
invalid device * undefined

33

device pName return value

device NULL undefined

device core Vulkan command fp'

device enabled extension fp'
commands

device * (any pName not covered NULL
above)

1

The returned function pointer must only be called with a dispatchable object (the first
parameter) that is device or a child of device. e.g. VkDevice, VkQueue, or VkCommandBuffer.

Valid Usage (Implicit)

e device must be a valid VkDevice handle

* pName must be a null-terminated UTF-8 string
The definition of PFN_vkVoidFunction is:

typedef void (VKAPI_PTR *PFN_vkVoidFunction)(void);

3.2. Instances

There is no global state in Vulkan and all per-application state is stored in a VkInstance object.
Creating a VkInstance object initializes the Vulkan library and allows the application to pass
information about itself to the implementation.

Instances are represented by VkInstance handles:
VK_DEFINE_HANDLE(VkInstance)
To create an instance object, call:

VkResult vkCreateInstance(

const VkInstanceCreateInfo* pCreatelnfo,
const VkAllocationCallbacks* pAllocator,
VkInstance* pInstance);

» pCreatelnfo points to an instance of VkinstanceCreatelnfo controlling creation of the instance.
* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pInstance points a VkInstance handle in which the resulting instance is returned.

34

vkCreateInstance verifies that the requested layers exist. If not, vkCreateInstance will return
VK_ERROR_LAYER_NOT_PRESENT. Next vkCreateInstance verifies that the requested extensions are
supported (e.g. in the implementation or in any enabled instance layer) and if any requested
extension is not supported, vkCreateInstance must return VK_ERROR_EXTENSION_NOT_PRESENT. After
verifying and enabling the instance layers and extensions the VkInstance object is created and
returned to the application. If a requested extension is only supported by a layer, both the layer and
the extension need to be specified at vkCreateInstance time for the creation to succeed.

Valid Usage

Al required extensions for each extension in the VkInstanceCreateInfo
::ppEnabledExtensionNames list must also be present in that list.

Valid Usage (Implicit)

pCreateInfo must be a pointer to a valid VkInstanceCreateInfo structure

If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

* pInstance must be a pointer to a VkInstance handle

Return Codes

Success
o VK_SUCCESS

Failure
o VK_ERROR_OUT_OF _HOST_MEMORY
« VK_ERROR_OUT_OF _DEVICE_MEMORY
o VK_ERROR_INITIALIZATION_FAILED
o VK_ERROR_LAYER_NOT_PRESENT
o VK_ERROR_EXTENSION_NOT_PRESENT
o VK_ERROR_INCOMPATIBLE_DRIVER

The VkInstanceCreateInfo structure is defined as:

35

typedef struct VkInstanceCreateInfo {

VkStructureType sType;

const void* pNext;
VkInstanceCreateFlags flags;

const VkApplicationInfo* pApplicationInfo;
uint32_t enabledlLayerCount;

const char* const* ppEnabledLayerNames;
uint32_t enabledExtensionCount;
const char* const* ppEnabledExtensionNames;

} VkInstanceCreateInfo;

* sType is the type of this structure.
» pNext is NULL or a pointer to an extension-specific structure.
» flags is reserved for future use.

* pApplicationInfo is NULL or a pointer to an instance of VkApplicationInfo. If not NULL, this
information helps implementations recognize behavior inherent to classes of applications.
VKkApplicationInfo is defined in detail below.

 enabledLayerCount is the number of global layers to enable.

* ppEnabledLayerNames is a pointer to an array of enabledLayerCount null-terminated UTF-8 strings
containing the names of layers to enable for the created instance. See the Layers section for
further details.

* enabledExtensionCount is the number of global extensions to enable.

* ppEnabledExtensionNames is a pointer to an array of enabledExtensionCount null-terminated UTF-8
strings containing the names of extensions to enable.

Valid Usage (Implicit)

* sType must be VK_STRUCTURE _TYPE_INSTANCE_CREATE_INFO
* pNext must be NULL
» flags must be 0

o If pApplicationInfo is not NULL, pApplicationInfo must be a pointer to a valid
VkApplicationInfo structure

» If enabledLayerCount is not 0, ppEnabledLayerNames must be a pointer to an array of
enabledlLayerCount null-terminated UTF-8 strings

* If enabledExtensionCount is not 0, ppEnabledExtensionNames must be a pointer to an array of
enabledExtensionCount null-terminated UTF-8 strings

The VkApplicationInfo structure is defined as:

36

typedef struct VkApplicationInfo {
VkStructureType sType;

const void* pNext;

const char* pApplicationName;
uint32_ t applicationVersion;
const char* pEngineName;
uint32_ t engineVersion;
uint32_t apiVersion;

+ VkApplicationInfo;

* sType is the type of this structure.
* pNext is NULL or a pointer to an extension-specific structure.

* pApplicationName is NULL or is a pointer to a null-terminated UTF-8 string containing the name of
the application.

* applicationVersion is an unsigned integer variable containing the developer-supplied version
number of the application.

* pEngineName is NULL or is a pointer to a null-terminated UTF-8 string containing the name of the
engine (if any) used to create the application.

* engineVersion is an unsigned integer variable containing the developer-supplied version
number of the engine used to create the application.

» apiVersion is the version of the Vulkan API against which the application expects to run,
encoded as described in the API Version Numbers and Semantics section. If apiVersion is 0 the
implementation must ignore it, otherwise if the implementation does not support the requested
apiVersion, or an effective substitute for apiVersion, it must return
VK_ERROR_INCOMPATIBLE_DRIVER. The patch version number specified in apiVersion is ignored
when creating an instance object. Only the major and minor versions of the instance must
match those requested in apiVersion.

Valid Usage (Implicit)

* sType must be VK_STRUCTURE_TYPE_APPLICATION_INFO
* pNext must be NULL

o If pApplicationName is not NULL, pApplicationName must be a null-terminated UTF-8 string

If pEngineName is not NULL, pEngineName must be a null-terminated UTF-8 string

To destroy an instance, call:

void vkDestroyInstance(
VkInstance instance,
const VkAllocationCallbacks* pAllocator);

* instance is the handle of the instance to destroy.

37

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

38

Valid Usage

All child objects created using instance must have been destroyed prior to destroying
instance

If VkAllocationCallbacks were provided when instance was created, a compatible set of
callbacks must be provided here

If no VkAllocationCallbacks were provided when instance was created, pAllocator must
be NULL

Valid Usage (Implicit)

If instance is not NULL, instance must be a valid VkInstance handle

If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

Host Synchronization

Host access to instance must be externally synchronized

Chapter 4. Devices and Queues

Once Vulkan is initialized, devices and queues are the primary objects used to interact with a
Vulkan implementation.

Vulkan separates the concept of physical and logical devices. A physical device usually represents a
single device in a system (perhaps made up of several individual hardware devices working
together), of which there are a finite number. A logical device represents an application’s view of
the device.

Physical devices are represented by VkPhysicalDevice handles:
VK_DEFINE_HANDLE(VkPhysicalDevice)

4.1. Physical Devices

To retrieve a list of physical device objects representing the physical devices installed in the system,
call:

VkResult vkEnumeratePhysicalDevices(

VkInstance instance,
uint32_t* pPhysicalDeviceCount,
VkPhysicalDevice* pPhysicalDevices);

* instance is a handle to a Vulkan instance previously created with vkCreatelnstance.

* pPhysicalDeviceCount is a pointer to an integer related to the number of physical devices
available or queried, as described below.

* pPhysicalDevices is either NULL or a pointer to an array of VkPhysicalDevice handles.

If pPhysicalDevices is NULL, then the number of physical devices available is returned in
pPhysicalDeviceCount. Otherwise, pPhysicalDeviceCount must point to a variable set by the user to
the number of elements in the pPhysicalDevices array, and on return the variable is overwritten
with the number of handles actually written to pPhysicalDevices. If pPhysicalDeviceCount is less
than the number of physical devices available, at most pPhysicalDeviceCount structures will be
written. If pPhysicalDeviceCount is smaller than the number of physical devices available,
VK_INCOMPLETE will be returned instead of VK_SUCCESS, to indicate that not all the available physical
devices were returned.

39

Valid Usage (Implicit)

* instance must be a valid VkInstance handle
* pPhysicalDeviceCount must be a pointer to a uint32_t value

« If the value referenced by pPhysicalDeviceCount is not 0, and pPhysicalDevices is not NULL,
pPhysicalDevices must be a pointer to an array of pPhysicalDeviceCount VkPhysicalDevice
handles

Return Codes

Success
o VK_SUCCESS
o VK _INCOMPLETE

Failure
« VK_ERROR_OUT_OF HOST_MEMORY

« VK_ERROR_OUT_OF _DEVICE_MEMORY
o VK_ERROR_INITIALIZATION_FAILED

To query general properties of physical devices once enumerated, call:

void vkGetPhysicalDeviceProperties(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties* pProperties);

* physicalDevice is the handle to the physical device whose properties will be queried.

* pProperties points to an instance of the VkPhysicalDeviceProperties structure, that will be filled
with returned information.

Valid Usage (Implicit)

* physicalDevice must be a valid VkPhysicalDevice handle

* pProperties must be a pointer to a VkPhysicalDeviceProperties structure

The VkPhysicalDeviceProperties structure is defined as:

40

typedef struct VkPhysicalDeviceProperties {

uint32_ t apiVersion;

uint32 t driverVersion;

uint32_t vendorID;

uint32_ t devicelD;

VkPhysicalDeviceType deviceType;

char deviceName[VK_MAX_PHYSICAL_DEVICE_NAME_SIZE];
uint8_t pipelineCacheUUID[VK_UUID_SIZE];
VkPhysicalDevicelLimits limits;

VkPhysicalDeviceSparseProperties sparseProperties;
} VkPhysicalDeviceProperties;

* apiVersion is the version of Vulkan supported by the device, encoded as described in the API
Version Numbers and Semantics section.

 driverVersion is the vendor-specified version of the driver.

 vendorIDis a unique identifier for the vendor (see below) of the physical device.

* deviceIDis a unique identifier for the physical device among devices available from the vendor.
» deviceType is a VkPhysicalDeviceType specifying the type of device.

* deviceName is a null-terminated UTF-8 string containing the name of the device.

* pipelineCacheUUID is an array of size VK_UUID_SIZE, containing 8-bit values that represent a
universally unique identifier for the device.

* limits is the VkPhysicalDeviceLimits structure which specifies device-specific limits of the
physical device. See Limits for details.

» sparseProperties is the VkPhysicalDeviceSparseProperties structure which specifies various
sparse related properties of the physical device. See Sparse Properties for details.

The vendorID and deviceID fields are provided to allow applications to adapt to device
characteristics that are not adequately exposed by other Vulkan queries. These may include
performance profiles, hardware errata, or other characteristics. In PCI-based implementations, the
low sixteen bits of vendorID and deviceID must contain (respectively) the PCI vendor and device IDs
associated with the hardware device, and the remaining bits must be set to zero. In non-PCI
implementations, the choice of what values to return may be dictated by operating system or
platform policies. It is otherwise at the discretion of the implementer, subject to the following
constraints and guidelines:

» For purposes of physical device identification, the vendor of a physical device is the entity
responsible for the most salient characteristics of the hardware represented by the physical
device handle. In the case of a discrete GPU, this should be the GPU chipset vendor. In the case
of a GPU or other accelerator integrated into a system-on-chip (SoC), this should be the supplier
of the silicon IP used to create the GPU or other accelerator.

« If the vendor of the physical device has a valid PCI vendor ID issued by PCI-SIG, that ID should
be wused to construct vendorID as described above for PCI-based implementations.
Implementations that do not return a PCI vendor ID in vendorID must return a valid Khronos
vendor ID, obtained as described in the Vulkan Documentation and Extensions document in the

41

https://pcisig.com/

section “Registering a Vendor ID with Khronos”. Khronos vendor IDs are allocated starting at
0x10000, to distinguish them from the PCI vendor ID namespace.

* The vendor of the physical device is responsible for selecting deviceID. The value selected
should uniquely identify both the device version and any major configuration options (for
example, core count in the case of multicore devices). The same device ID should be used for all
physical implementations of that device version and configuration. For example, all uses of a
specific silicon IP GPU version and configuration should use the same device ID, even if those
uses occur in different SoCs.

The physical device types which may be returned in VkPhysicalDeviceProperties::deviceType are:

typedef enum VkPhysicalDeviceType {
VK_PHYSICAL_DEVICE_TYPE_OTHER = 0,
VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU = 1,
VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU = 2,
VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU = 3,
VK_PHYSICAL_DEVICE_TYPE_CPU = 4,

} VkPhysicalDeviceType;

o VK_PHYSICAL_DEVICE_TYPE_OTHER - the device does not match any other available types.

o VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU - the device is typically one embedded in or tightly
coupled with the host.

o VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU - the device is typically a separate processor connected to
the host via an interlink.

o VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU - the device is typically a virtual node in a virtualization
environment.

o VK_PHYSICAL_DEVICE_TYPE_CPU - the device is typically running on the same processors as the host.

The physical device type is advertised for informational purposes only, and does not directly affect
the operation of the system. However, the device type may correlate with other advertised
properties or capabilities of the system, such as how many memory heaps there are.

To query properties of queues available on a physical device, call:

void vkGetPhysicalDeviceQueueFamilyProperties(

VkPhysicalDevice physicalDevice,
uint32_t* pQueueFamilyPropertyCount,
VkQueueFamilyProperties* pQueueFamilyProperties);

* physicalDevice is the handle to the physical device whose properties will be queried.

* pQueueFamilyPropertyCount is a pointer to an integer related to the number of queue families
available or queried, as described below.

* pQueueFamilyProperties is either NULL or a pointer to an array of VkQueueFamilyProperties
structures.

42

If pQueueFamilyProperties is NULL, then the number of queue families available is returned in
pQueueFamilyPropertyCount. Otherwise, pQueueFamilyPropertyCount must point to a variable set by the
user to the number of elements in the pQueueFamilyProperties array, and on return the variable is
overwritten with the number of structures actually written to pQueueFamilyProperties. If
pQueueFamilyPropertyCount is less than the number of queue families available, at most
pQueueFamilyPropertyCount structures will be written.

Valid Usage (Implicit)

* physicalDevice must be a valid VkPhysicalDevice handle
* pQueueFamilyPropertyCount must be a pointer to a uint32_t value

o If the value referenced by pQueueFamilyPropertyCount is not 0, and pQueueFamilyProperties
is not NULL, pQueueFamilyProperties must be a pointer to an array of
pQueueFamilyPropertyCount VkQueueFamilyProperties structures

The VkQueueFamilyProperties structure is defined as:

typedef struct VkQueueFamilyProperties {
VkQueueFlags queueFlags;

uint32_ t queueCount;
uint32 t timestampValidBits;
VkExtent3D minImageTransferGranularity;

} VkQueueFamilyProperties;

* queueFlags is a bitmask of VkQueueFlagBits indicating capabilities of the queues in this queue
family.

* queueCount is the unsigned integer count of queues in this queue family.

* timestampValidBits is the unsigned integer count of meaningful bits in the timestamps written
via vkCmdWriteTimestamp. The valid range for the count is 36..64 bits, or a value of 0, indicating no
support for timestamps. Bits outside the valid range are guaranteed to be zeros.

* minImageTransferGranularity is the minimum granularity supported for image transfer

operations on the queues in this queue family.

The value returned in minImageTransferGranularity has a unit of compressed texel blocks for images
having a block-compressed format, and a unit of texels otherwise.

Possible values of minImageTransferGranularity are:

* (0,0,0) which indicates that only whole mip levels must be transferred using the image transfer
operations on the corresponding queues. In this case, the following restrictions apply to all
offset and extent parameters of image transfer operations:

> The x, y, and z members of a VkOffset3D parameter must always be zero.

o The width, height, and depth members of a VkExtent3D parameter must always match the
width, height, and depth of the image subresource corresponding to the parameter,

43

respectively.

* (Ay, Ay, A) where A, A, and A, are all integer powers of two. In this case the following
restrictions apply to all image transfer operations:

> X, ¥, and z of a VKkOffset3D parameter must be integer multiples of A,, A, and A,
respectively.

o width of a VkExtent3D parameter must be an integer multiple of A,, or else x + width must
equal the width of the image subresource corresponding to the parameter.

o height of a VkExtent3D parameter must be an integer multiple of A,, or else y + height must
equal the height of the image subresource corresponding to the parameter.

o depth of a VkExtent3D parameter must be an integer multiple of A,, or else z + depth must
equal the depth of the image subresource corresponding to the parameter.

o If the format of the image corresponding to the parameters is one of the block-compressed
formats then for the purposes of the above calculations the granularity must be scaled up
by the compressed texel block dimensions.

Queues supporting graphics and/or compute operations must report (1,1,1) in
minImageTransferGranularity, meaning that there are no additional restrictions on the granularity of
image transfer operations for these queues. Other queues supporting image transfer operations are
only required to support whole mip level transfers, thus minImageTransferGranularity for queues
belonging to such queue families may be (0,0,0).

The Device Memory section describes memory properties queried from the physical device.
For physical device feature queries see the Features chapter.

Bits which may be set in VkQueueFamilyProperties::queveFlags indicating capabilities of queues in
a queue family are:

typedef enum VkQueueFlagBits {
VK_QUEUE_GRAPHICS_BIT = 0x00000001,
VK_QUEUE_COMPUTE_BIT = 0x00000002,
VK_QUEUE_TRANSFER_BIT = 0x00000004,
VK_QUEUE_SPARSE_BINDING_BIT = 0x00000008,
} VkQueueFlagBits;

VK_QUEUE_GRAPHICS_BIT indicates that queues in this queue family support graphics operations.

VK_QUEUE_COMPUTE_BIT indicates that queues in this queue family support compute operations.

VK_QUEUE_TRANSFER_BIT indicates that queues in this queue family support transfer operations.

VK_QUEUE_SPARSE_BINDING_BIT indicates that queues in this queue family support sparse memory
management operations (see Sparse Resources). If any of the sparse resource features are
enabled, then at least one queue family must support this bit.

If an implementation exposes any queue family that supports graphics operations, at least one
queue family of at least one physical device exposed by the implementation must support both
graphics and compute operations.

44

Note

All commands that are allowed on a queue that supports transfer operations are

ﬂ also allowed on a queue that supports either graphics or compute operations.
Thus, if the capabilities of a queue family include VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT, then reporting the VK_QUEUE_TRANSFER_BIT capability
separately for that queue family is optional.

For further details see Queues.

4.2. Devices

Device objects represent logical connections to physical devices. Each device exposes a number of
queue families each having one or more queues. All queues in a queue family support the same
operations.

As described in Physical Devices, a Vulkan application will first query for all physical devices in a
system. Each physical device can then be queried for its capabilities, including its queue and queue
family properties. Once an acceptable physical device is identified, an application will create a
corresponding logical device. An application must create a separate logical device for each physical
device it will use. The created logical device is then the primary interface to the physical device.

How to enumerate the physical devices in a system and query those physical devices for their
queue family properties is described in the Physical Device Enumeration section above.

4.2.1. Device Creation

Logical devices are represented by VkDevice handles:
VK_DEFINE_HANDLE(VkDevice)
Alogical device is created as a connection to a physical device. To create a logical device, call:

VkResult vkCreateDevice(

VkPhysicalDevice physicalDevice,
const VkDeviceCreateInfo* pCreatelnfo,
const VkAllocationCallbacks* pAllocator,
VkDevice* pDevice);

* physicalDevice must be one of the device handles returned from a call to
vkEnumeratePhysicalDevices (see Physical Device Enumeration).

» pCreatelnfo is a pointer to a VkDeviceCreatelnfo structure containing information about how to
create the device.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pDevice points to a handle in which the created VkDevice is returned.

45

vkCreateDevice verifies that extensions and features requested in the ppEnabledExtensionNames and
pEnabledFeatures members of pCreateInfo, respectively, are supported by the implementation. If any
requested extension is not supported, vkCreateDevice must return VK_ERROR_EXTENSION_NOT_PRESENT.
If any requested feature is not supported, vkCreateDevice must return
VK_ERROR_FEATURE_NOT_PRESENT. Support for extensions can be checked before creating a device by
querying vkEnumerateDeviceExtensionProperties. Support for features can similarly be checked
by querying vkGetPhysicalDeviceFeatures.

After verifying and enabling the extensions the VkDevice object is created and returned to the
application. If a requested extension is only supported by a layer, both the layer and the extension
need to be specified at vkCreateInstance time for the creation to succeed.

Multiple logical devices can be created from the same physical device. Logical device creation may
fail due to lack of device-specific resources (in addition to the other errors). If that occurs,
vkCreateDevice will return VK_ERROR_TOO_MANY_OBJECTS.

Valid Usage

« Al required extensions for each extension in the VkDeviceCreateInfo
::ppEnabledExtensionNames list must also be present in that list.

Valid Usage (Implicit)

* physicalDevice must be a valid VkPhysicalDevice handle

pCreateInfo must be a pointer to a valid VkDeviceCreateInfo structure

If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

* pDevice must be a pointer to a VkDevice handle

Return Codes

Success
o VK_SUCCESS

Failure
o VK_ERROR_OUT_OF_HOST_MEMORY
o VK_ERROR_OUT_OF _DEVICE_MEMORY
o VK_ERROR_INITIALIZATION_FAILED
o VK_ERROR_EXTENSION_NOT_PRESENT
o VK_ERROR_FEATURE_NOT_PRESENT
o VK_ERROR_TOO_MANY_OBJECTS
o VK_ERROR_DEVICE_LOST

46

The VkDeviceCreateInfo structure is defined as:

typedef struct VkDeviceCreateInfo {

VkStructureType sType;

const void* pNext;
VkDeviceCreateFlags flags;

uint32_t queueCreateInfoCount;
const VkDeviceQueueCreateInfo* pQueueCreatelnfos;
uint32_t enabledlLayerCount;

const char* const* ppEnabledLayerNames;
uint32_t enabledExtensionCount;
const char* const* ppEnabledExtensionNames;

const VkPhysicalDeviceFeatures* pEnabledFeatures;
} VkDeviceCreatelnfo;

* sType is the type of this structure.
» pNext is NULL or a pointer to an extension-specific structure.
» flags is reserved for future use.

* queueCreateInfoCount is the unsigned integer size of the pQueueCreatelnfos array. Refer to the
Queue Creation section below for further details.

* pQueueCreatelnfos is a pointer to an array of VkDeviceQueueCreatelnfo structures describing the
queues that are requested to be created along with the logical device. Refer to the Queue
Creation section below for further details.

* enabledlLayerCount is deprecated and ignored.
* ppEnabledLayerNames is deprecated and ignored. See Device Layer Deprecation.
* enabledExtensionCount is the number of device extensions to enable.

* ppEnabledExtensionNames is a pointer to an array of enabledExtensionCount null-terminated UTF-8
strings containing the names of extensions to enable for the created device. See the Extensions
section for further details.

» pEnabledFeatures is NULL or a pointer to a VkPhysicalDeviceFeatures structure that contains
boolean indicators of all the features to be enabled. Refer to the Features section for further
details.

Valid Usage

* The queueFamilyIndex member of any given element of pQueuveCreateInfos must be unique
within pQueueCreateInfos

47

Valid Usage (Implicit)

* sType must be VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO
* pNext must be NULL
» flags must be 0

* pQueueCreateInfos must be a pointer to an array of queueCreateInfoCount wvalid
VkDeviceQueueCreateInfo structures

» If enabledLayerCount is not @, ppEnabledLayerNames must be a pointer to an array of
enabledLayerCount null-terminated UTF-8 strings

 If enabledExtensionCount is not 0, ppEnabledExtensionNames must be a pointer to an array of
enabledExtensionCount null-terminated UTF-8 strings

o If pEnabledFeatures is not NULL, pEnabledFeatures must be a pointer to a valid
VkPhysicalDeviceFeatures structure

» queueCreateInfoCount must be greater than 0

4.2.2. Device Use

The following is a high-level list of VkDevice uses along with references on where to find more
information:

* Creation of queues. See the Queues section below for further details.

* Creation and tracking of various synchronization constructs. See Synchronization and Cache
Control for further details.

» Allocating, freeing, and managing memory. See Memory Allocation and Resource Creation for
further details.

* Creation and destruction of command buffers and command buffer pools. See Command
Buffers for further details.

* Creation, destruction, and management of graphics state. See Pipelines and Resource
Descriptors, among others, for further details.

4.2.3. Lost Device

A logical device may become lost because of hardware errors, execution timeouts, power
management events and/or platform-specific events. This may cause pending and future command
execution to fail and cause hardware resources to be corrupted. When this happens, certain
commands will return VK_ERROR_DEVICE_LOST (see Error Codes for a list of such commands). After
any such event, the logical device is considered lost. It is not possible to reset the logical device to a
non-lost state, however the lost state is specific to a logical device (VkDevice), and the corresponding
physical device (VkPhysicalDevice) may be otherwise unaffected. In some cases, the physical device
may also be lost, and attempting to create a new logical device will fail, returning
VK_ERROR_DEVICE_LOST. This is usually indicative of a problem with the underlying hardware, or its
connection to the host. If the physical device has not been lost, and a new logical device is
successfully created from that physical device, it must be in the non-lost state.

48

Note

Whilst logical device loss may be recoverable, in the case of physical device loss, it
is unlikely that an application will be able to recover unless additional, unaffected
physical devices exist on the system. The error is largely informational and

0 intended only to inform the user that their hardware has probably developed a
fault or become physically disconnected, and should be investigated further. In
many cases, physical device loss may cause other more serious issues such as the
operating system crashing; in which case it may not be reported via the Vulkan
APIL

Note

Undefined behavior caused by an application error may cause a device to become
0 lost. However, such undefined behavior may also cause unrecoverable damage to

the process, and it is then not guaranteed that the API objects, including the

VkPhysicalDevice or the VkInstance are still valid or that the error is recoverable.

When a device is lost, its child objects are not implicitly destroyed and their handles are still valid.
Those objects must still be destroyed before their parents or the device can be destroyed (see the
Object Lifetime section). The host address space corresponding to device memory mapped using
vkMapMemory is still valid, and host memory accesses to these mapped regions are still valid, but
the contents are undefined. It is still legal to call any API command on the device and child objects.

Once a device is lost, command execution may fail, and commands that return a VkResult may
return VK_ERROR_DEVICE_LOST. Commands that do not allow run-time errors must still operate
correctly for valid usage and, if applicable, return valid data.

Commands that wait indefinitely for device execution (namely vkDeviceWaitldle, vkQueueWaitIdle,
vkWaitForFences with a maximum timeout, and vkGetQueryPoolResults with the
VK_QUERY_RESULT_WAIT_BIT bit set in flags) must return in finite time even in the case of a lost device,
and return either VK_SUCCESS or VK_ERROR_DEVICE_LOST. For any command that may return
VK_ERROR_DEVICE_LOST, for the purpose of determining whether a command buffer is in the pending
state, or whether resources are considered in-use by the device, a return value of
VK_ERROR_DEVICE_LOST is equivalent to VK_SUCCESS.

4.2.4. Device Destruction

To destroy a device, call:

void vkDestroyDevice(
VkDevice device,
const VkAllocationCallbacks* pAllocator);

* device is the logical device to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

To ensure that no work is active on the device, vkDeviceWaitldle can be used to gate the

49

destruction of the device. Prior to destroying a device, an application is responsible for
destroying/freeing any Vulkan objects that were created using that device as the first parameter of
the corresponding vkCreate* or vkAllocate* command.

Note

0 The lifetime of each of these objects is bound by the lifetime of the VkDevice object.
Therefore, to avoid resource leaks, it is critical that an application explicitly free
all of these resources prior to calling vkDestroyDevice.

Valid Usage

+ All child objects created on device must have been destroyed prior to destroying device

o If VkAllocationCallbacks were provided when device was created, a compatible set of
callbacks must be provided here

* If no VkAllocationCallbacks were provided when device was created, pAllocator must be
NULL

Valid Usage (Implicit)

o If device is not NULL, device must be a valid VkDevice handle

o If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

Host Synchronization

» Host access to device must be externally synchronized

4.3. Queues

4.3.1. Queue Family Properties

As discussed in the Physical Device Enumeration section above, the
vkGetPhysicalDeviceQueueFamilyProperties command is used to retrieve details about the queue
families and queues supported by a device.

Each index in the pQueueFamilyProperties array returned by
vkGetPhysicalDeviceQueueFamilyProperties describes a unique queue family on that physical
device. These indices are used when creating queues, and they correspond directly with the
queueFamilyIndex that is passed to the vkCreateDevice command via the VkDeviceQueueCreatelnfo
structure as described in the Queue Creation section below.

Grouping of queue families within a physical device is implementation-dependent.

50

Note

The general expectation is that a physical device groups all queues of matching

0 capabilities into a single family. However, while implementations should do this, it
is possible that a physical device may return two separate queue families with the
same capabilities.

Once an application has identified a physical device with the queue(s) that it desires to use, it will
create those queues in conjunction with a logical device. This is described in the following section.

4.3.2. Queue Creation

Creating a logical device also creates the queues associated with that device. The queues to create
are described by a set of VkDeviceQueueCreateInfo structures that are passed to vkCreateDevice in
pQueueCreateInfos.

Queues are represented by VkQueue handles:
VK_DEFINE_HANDLE (VkQueue)
The VkDeviceQueueCreateInfo structure is defined as:

typedef struct VkDeviceQueueCreateInfo {

VkStructureType sType;

const void* pNext;
VkDeviceQueueCreateFlags flags;

uint32_t queueFamilyIndex;
uint32_ t queueCount;

const float* pQueuePriorities;

} VkDeviceQueueCreateInfo;

* sType is the type of this structure.
* pNext is NULL or a pointer to an extension-specific structure.
» flags is reserved for future use.

* queueFamilyIndex is an unsigned integer indicating the index of the queue family to create on
this device. This index corresponds to the index of an element of the pQueueFamilyProperties
array that was returned by vkGetPhysicalDeviceQueueFamilyProperties.

» queueCount is an unsigned integer specifying the number of queues to create in the queue family
indicated by queueFamilyIndex.

* pQueuePriorities is an array of queueCount normalized floating point values, specifying priorities
of work that will be submitted to each created queue. See Queue Priority for more information.

51

Valid Usage

* queueFamilyIndex must be less than pQueueFamilyPropertyCount returned by
vkGetPhysicalDeviceQueueFamilyProperties

* queueCount must be less than or equal to the queueCount member of the

VkQueueFamilyProperties structure, as returned by
vkGetPhysicalDeviceQueueFamilyProperties in the pQueueFamilyProperties]|
queueFamilyIndex]

» Each element of pQueuePriorities must be between 0.0 and 1.0 inclusive

Valid Usage (Implicit)

* sType must be VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO

e pNext must be NULL

» flags must be 0

 pQueuePriorities must be a pointer to an array of queueCount float values

* queueCount must be greater than 0

To retrieve a handle to a VkQueue object, call:

void vkGetDeviceQueue(

VkDevice device,

uint32_ t queueFamilyIndex,
uint32 t queuelndex,
VkQueue* pQueue);

* device is the logical device that owns the queue.
* queueFamilyIndex is the index of the queue family to which the queue belongs.
* queuelndex is the index within this queue family of the queue to retrieve.

* pQueue is a pointer to a VkQueue object that will be filled with the handle for the requested queue.

Valid Usage
» queueFamilyIndex must be one of the queue family indices specified when device was
created, via the VkDeviceQueueCreateInfo structure

* queueIndex must be less than the number of queues created for the specified queue family
index when device was created, via the queueCount member of the VkDeviceQueueCreateInfo
structure

52

Valid Usage (Implicit)

* device must be a valid VkDevice handle

* pQueue must be a pointer to a VkQueue handle

4.3.3. Queue Family Index

The queue family index is used in multiple places in Vulkan in order to tie operations to a specific
family of queues.

When retrieving a handle to the queue via vkGetDeviceQueue, the queue family index is used to
select which queue family to retrieve the VkQueue handle from as described in the previous section.

When creating a VkCommandPool object (see Command Pools), a queue family index is specified in the
VkCommandPoolCreateInfo structure. Command buffers from this pool can only be submitted on
queues corresponding to this queue family.

When creating VkImage (see Images) and VkBuffer (see Buffers) resources, a set of queue families is
included in the VkImageCreateInfo and VkBufferCreateInfo structures to specify the queue families
that can access the resource.

When inserting a VkBufferMemoryBarrier or VkimageMemoryBarrier (see Events) a source and
destination queue family index is specified to allow the ownership of a buffer or image to be
transferred from one queue family to another. See the Resource Sharing section for details.

4.3.4. Queue Priority

Each queue is assigned a priority, as set in the VkDeviceQueueCreatelnfo structures when creating
the device. The priority of each queue is a normalized floating point value between 0.0 and 1.0,
which is then translated to a discrete priority level by the implementation. Higher values indicate a
higher priority, with 0.0 being the lowest priority and 1.0 being the highest.

Within the same device, queues with higher priority may be allotted more processing time than
queues with lower priority. The implementation makes no guarantees with regards to ordering or
scheduling among queues with the same priority, other than the constraints defined by any explicit
synchronization primitives. The implementation make no guarantees with regards to queues across
different devices.

An implementation may allow a higher-priority queue to starve a lower-priority queue on the same
VkDevice until the higher-priority queue has no further commands to execute. The relationship of
queue priorities must not cause queues on one VkDevice to starve queues on another VkDevice.

No specific guarantees are made about higher priority queues receiving more processing time or
better quality of service than lower priority queues.

4.3.5. Queue Submission

Work is submitted to a queue via queue submission commands such as vkQueueSubmit. Queue

53

submission commands define a set of queue operations to be executed by the underlying physical
device, including synchronization with semaphores and fences.

Submission commands take as parameters a target queue, zero or more batches of work, and an
optional fence to signal upon completion. Each batch consists of three distinct parts:
1. Zero or more semaphores to wait on before execution of the rest of the batch.
o If present, these describe a semaphore wait operation.
2. Zero or more work items to execute.
o If present, these describe a queue operation matching the work described.
3. Zero or more semaphores to signal upon completion of the work items.

o If present, these describe a semaphore signal operation.
If a fence is present in a queue submission, it describes a fence signal operation.

All work described by a queue submission command must be submitted to the queue before the
command returns.

Sparse Memory Binding

In Vulkan it is possible to sparsely bind memory to buffers and images as described in the Sparse
Resource chapter. Sparse memory binding is a queue operation. A queue whose flags include the
VK_QUEUE_SPARSE_BINDING_BIT must be able to support the mapping of a virtual address to a physical
address on the device. This causes an update to the page table mappings on the device. This update
must be synchronized on a queue to avoid corrupting page table mappings during execution of
graphics commands. By binding the sparse memory resources on queues, all commands that are
dependent on the updated bindings are synchronized to only execute after the binding is updated.
See the Synchronization and Cache Control chapter for how this synchronization is accomplished.

4.3.6. Queue Destruction

Queues are created along with a logical device during vkCreateDevice. All queues associated with a
logical device are destroyed when vkDestroyDevice is called on that device.

54

Chapter 5. Command Buffers

Command buffers are objects used to record commands which can be subsequently submitted to a
device queue for execution. There are two levels of command buffers - primary command buffers,
which can execute secondary command buffers, and which are submitted to queues, and secondary
command buffers, which can be executed by primary command buffers, and which are not directly
submitted to queues.

Command buffers are represented by VkCommandBuffer handles:
VK_DEFINE_HANDLE (VkCommandBuffer)

Recorded commands include commands to bind pipelines and descriptor sets to the command
buffer, commands to modify dynamic state, commands to draw (for graphics rendering),
commands to dispatch (for compute), commands to execute secondary command buffers (for
primary command buffers only), commands to copy buffers and images, and other commands.

Each command buffer manages state independently of other command buffers. There is no
inheritance of state across primary and secondary command buffers, or between secondary
command buffers. When a command buffer begins recording, all state in that command buffer is
undefined. When secondary command buffer(s) are recorded to execute on a primary command
buffer, the secondary command buffer inherits no state from the primary command buffer, and all
state of the primary command buffer is undefined after an execute secondary command buffer
command is recorded. There is one exception to this rule - if the primary command buffer is inside
a render pass instance, then the render pass and subpass state is not disturbed by executing
secondary command buffers. Whenever the state of a command buffer is undefined, the
application must set all relevant state on the command buffer before any state dependent
commands such as draws and dispatches are recorded, otherwise the behavior of executing that
command buffer is undefined.

Unless otherwise specified, and without explicit synchronization, the various commands submitted
to a queue via command buffers may execute in arbitrary order relative to each other, and/or
concurrently. Also, the memory side-effects of those commands may not be directly visible to other
commands without explicit memory dependencies. This is true within a command buffer, and
across command buffers submitted to a given queue. See the synchronization chapter for
information on implicit and explicit synchronization between commands.

5.1. Command Buffer Lifecycle
Each command buffer is always in one of the following states:

Initial
When a command buffer is first allocated is in the initial state. Some commands are able to reset
a command buffer, or a set of command buffers, back to this state from any of the executable,
recording or invalid state. Command buffers in the initial state can only be moved to the
recording state, or freed.

55

Recording

vkBeginCommandBuffer changes the state of a command buffer from the initial state to the
recording state. Once a command buffer is in the recording state, vkCmd* commands can be
used to record to the command buffer.

Executable

vkEndCommandBuffer ends the recording of a command buffer, and moves it from the
recording state to the executable state. Executable command buffers can be submitted, reset, or
recorded to another command buffer.

Pending

Queue submission of a command buffer changes the state of a command buffer from the
executable state to the pending state. Whilst in the pending state, applications must not attempt
to modify the command buffer in any way - the device may be processing the commands
recorded to it. Once execution of a command buffer completes, the command buffer reverts
back to the executable state. A synchronization command should be used to detect when this
occurs.

Invalid

Some operations, such as modifying or deleting a resource that was used in a command
recorded to a command buffer, will transition the state of a command buffer into the invalid
state. Command buffers in the invalid state can only be reset, moved to the recording state, or
freed.

Any given command that operates on a command buffer has its own requirements on what state a
command buffer must be in, which are detailed in the valid usage constraints for that command.

Resetting a command buffer is an operation that discards any previously recorded commands and
puts a command buffer in the initial state. Resetting occurs as a result of vkResetCommandBuffer
or vkResetCommandPool, or as part of vkBeginCommandBuffer (which additionally puts the
command buffer in the recording state).

Secondary command buffers can be recorded to a primary command buffer via
vkCmdExecuteCommands. This partially ties the lifecycle of the two command buffers together - if
the primary is submitted to a queue, both the primary and any secondaries recorded to it move to
the pending state. Once execution of the primary completes, so does any secondary recorded within
it, and once all executions of each command buffer complete, they move to the executable state. If a
secondary moves to any other state whilst it is recorded to another command buffer, the primary
moves to the invalid state. A primary moving to any other state does not affect the state of the
secondary. Resetting or freeing a primary command buffer removes the linkage to any secondary
command buffers that were recorded to it.

5.2. Command Pools

Command pools are opaque objects that command buffer memory is allocated from, and which
allow the implementation to amortize the cost of resource creation across multiple command
buffers. Command pools are externally synchronized, meaning that a command pool must not be
used concurrently in multiple threads. That includes use via recording commands on any

56

command buffers allocated from the pool, as well as operations that allocate, free, and reset
command buffers or the pool itself.

Command pools are represented by VkCommandPool handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkCommandPool)

To create a command pool, call:

VkResult vkCreateCommandPool(

VkDevice device,

const VkCommandPoolCreateInfo* pCreatelnfo,
const VkAllocationCallbacks* pAllocator,
VkCommandPool* pCommandPool);

* device is the logical device that creates the command pool.
* pCreatelnfo contains information used to create the command pool.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

pCommandPool points to a VkCommandPool handle in which the created pool is returned.

Valid Usage (Implicit)

e device must be a valid VkDevice handle

pCreateInfo must be a pointer to a valid VkCommandPoolCreateInfo structure

If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

» pCommandPool must be a pointer to a VkCommandPool handle

Return Codes

Success
o VK_SUCCESS

Failure
o VK_ERROR_OUT_OF HOST_MEMORY
o VK_ERROR_OUT_OF DEVICE MEMORY

The VkCommandPoolCreateInfo structure is defined as:

57

typedef struct VkCommandPoolCreateInfo {

VkStructureType sType;
const void* pNext;
VkCommandPoolCreateFlags flags;
uint32_ t queueFamilyIndex;

} VkCommandPoolCreatelnfo;

* sType is the type of this structure.
» pNext is NULL or a pointer to an extension-specific structure.

» flags is a bitmask of VkCommandPoolCreateFlagBits indicating usage behavior for the pool and
command buffers allocated from it.

* queueFamilyIndex designates a queue family as described in section Queue Family Properties. All
command buffers allocated from this command pool must be submitted on queues from the
same queue family.

Valid Usage

queueFamilyIndex must be the index of a queue family available in the calling command’s
device parameter

Valid Usage (Implicit)

» sType must be VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO
* pNext must be NULL

» flags must be a valid combination of VkCommandPoolCreateFlagBits values

Bits which can be set in VkCommandPoolCreatelnfo::flags to specify usage behavior for a
command pool are:

typedef enum VkCommandPoolCreateFlagBits {
VK_COMMAND_POOL_CREATE_TRANSIENT_BIT = 0x00000001,
VK_COMMAND_POOL _CREATE_RESET_COMMAND_BUFFER_BIT = 0x00000002,
} VkCommandPoolCreateFlagBits;

 VK_COMMAND_POOL_CREATE_TRANSIENT_BIT indicates that command buffers allocated from the pool
will be short-lived, meaning that they will be reset or freed in a relatively short timeframe. This
flag may be used by the implementation to control memory allocation behavior within the pool.

 VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT allows any command buffer allocated from a
pool to be individually reset to the initial state; either by calling vkResetCommandBuffer, or via
the implicit reset when calling vkBeginCommandBuffer. If this flag is not set on a pool, then
vkResetCommandBuffer must not be called for any command buffer allocated from that pool.

58

To reset a command pool, call:

VkResult vkResetCommandPool(

VkDevice device,
VkCommandPool commandPool,
VkCommandPoolResetFlags flags);

* device is the logical device that owns the command pool.
» commandPool is the command pool to reset.
» flags is a bitmask of VkCommandPoolResetFlagBits controlling the reset operation.
Resetting a command pool recycles all of the resources from all of the command buffers allocated

from the command pool back to the command pool. All command buffers that have been allocated
from the command pool are put in the initial state.

Any primary command buffer allocated from another VkCommandPool that is in the recording or
executable state and has a secondary command buffer allocated from commandPool recorded into it,
becomes invalid.

Valid Usage

All VkCommandBuffer objects allocated from commandPool must not be in the pending state

Valid Usage (Implicit)

* device must be a valid VkDevice handle
o commandPool must be a valid VkCommandPool handle
» flags must be a valid combination of VkCommandPoolResetFlagBits values

« commandPool must have been created, allocated, or retrieved from device

Host Synchronization

» Host access to commandPool must be externally synchronized

59

Return Codes

Success
o VK_SUCCESS

Failure
o VK_ERROR_OUT_OF HOST_MEMORY
o VK_ERROR _OUT_OF DEVICE MEMORY

Bits which can be set in vkResetCommandPool::flags to control the reset operation are:

typedef enum VkCommandPoolResetFlagBits {
VK_COMMAND_POOL_RESET_RELEASE_RESOURCES_BIT = 0x00000001,
} VkCommandPoolResetFlagBits;

 VK_COMMAND_POOL_RESET_RELEASE_RESOURCES_BIT specifies that resetting a command pool recycles
all of the resources from the command pool back to the system.

To destroy a command pool, call:

void vkDestroyCommandPool(

VkDevice device,
VkCommandPool commandPool,
const VkAllocationCallbacks* pAllocator);

* device is the logical device that destroys the command pool.
» commandPool is the handle of the command pool to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.
When a pool is destroyed, all command buffers allocated from the pool are freed.

Any primary command buffer allocated from another VkCommandPool that is in the recording or

executable state and has a secondary command buffer allocated from commandPool recorded into it,
becomes invalid.

Valid Usage

 All VkCommandBuffer objects allocated from commandPool must not be in the pending state.

 If VkAllocationCallbacks were provided when commandPool was created, a compatible set of
callbacks must be provided here

* If no VkAllocationCallbacks were provided when commandPool was created, pAllocator
must be NULL

60

Valid Usage (Implicit)

* device must be a valid VkDevice handle
o If commandPool is not VK_NULIL_HANDLE, commandPool must be a valid VkCommandPool handle

o If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

o If commandPool is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

» Host access to commandPool must be externally synchronized

5.3. Command Buffer Allocation and Management

To allocate command buffers, call:

VkResult vkAllocateCommandBuffers(

VkDevice device,
const VkCommandBufferAllocateInfo* pAllocatelnfo,
VkCommandBuffer* pCommandBuffers);

* device is the logical device that owns the command pool.

* pAllocatelnfo is a pointer to an instance of the VkCommandBufferAllocateInfo structure describing
parameters of the allocation.

* pCommandBuffers is a pointer to an array of VkCommandBuffer handles in which the resulting
command buffer objects are returned. The array must be at least the length specified by the
commandBufferCount member of pAllocateInfo. Each allocated command buffer begins in the
initial state.

When command buffers are first allocated, they are in the initial state.

Valid Usage (Implicit)

* device must be a valid VkDevice handle
* pAllocateInfo must be a pointer to a valid VkCommandBufferAllocateInfo structure

» pCommandBuffers must be a pointer to an array of pAllocateInfo::commandBufferCount
VkCommandBuffer handles

61

Host Synchronization

» Host access to pAllocateInfo::commandPool must be externally synchronized

Return Codes

Success
o VK_SUCCESS

Failure
« VK_ERROR_OUT_OF HOST_MEMORY
« VK_ERROR_OUT_OF DEVICE MEMORY

The VkCommandBufferAllocateInfo structure is defined as:

typedef struct VkCommandBufferAllocateInfo {

VkStructureType sType;

const void* pNext;
VkCommandPool commandPool;
VkCommandBufferLevel level;

uint32_t commandBufferCount;

} VkCommandBufferAllocateInfo;

* sType is the type of this structure.

pNext is NULL or a pointer to an extension-specific structure.

commandPool is the command pool from which the command buffers are allocated.
* level is an VkCommandBufferLevel value specifying the command buffer level.

» commandBufferCount is the number of command buffers to allocate from the pool.

Valid Usage

» commandBufferCount must be greater than 0

Valid Usage (Implicit)

* sType must be VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO
* pNext must be NULL
» commandPool must be a valid VkCommandPool handle

* level must be a valid VkCommandBufferLevel value

Possible values of VkCommandBufferAllocateInfo::flags, specifying the command buffer level, are:

62

typedef enum VkCommandBufferLevel {
VK_COMMAND_BUFFER_LEVEL_PRIMARY = 0,
VK_COMMAND_BUFFER_LEVEL_SECONDARY = 1,
} VkCommandBufferLevel;

 VK_COMMAND_BUFFER_LEVEL_PRIMARY specifies a primary command buffer.
 VK_COMMAND_BUFFER_LEVEL_SECONDARY specifies a secondary command buffer.

To reset command buffers, call:

VkResult vkResetCommandBuffer(
VkCommandBuffer commandBuffer,
VkCommandBufferResetFlags flags);

» commandBuffer is the command buffer to reset. The command buffer can be in any state other
than pending, and is moved into the initial state.

» flags is a bitmask of VkCommandBufferResetFlagBits controlling the reset operation.

Any primary command buffer that is in the recording or executable state and has commandBuffer
recorded into it, becomes invalid.

Valid Usage

» commandBuffer must not be in the pending state

» commandBuffer must have been allocated from a pool that was created with the
VK_COMMAND_POOL _CREATE_RESET_COMMAND_BUFFER_BIT

Valid Usage (Implicit)

» commandBuffer must be a valid VkCommandBuffer handle

» flags must be a valid combination of VkCommandBufferResetFlagBits values

Host Synchronization

» Host access to commandBuffer must be externally synchronized

63

Return Codes

Success
o VK_SUCCESS

Failure
o VK_ERROR_OUT_OF HOST_MEMORY
o VK_ERROR _OUT_OF DEVICE MEMORY

Bits which can be set in vkResetCommandBuffer::flags to control the reset operation are:

typedef enum VkCommandBufferResetFlagBits {
VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT = 0x00000001,
} VkCommandBufferResetFlagBits;

 VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT specifies that most or all memory resources
currently owned by the command buffer should be returned to the parent command pool. If
this flag is not set, then the command buffer may hold onto memory resources and reuse them
when recording commands. commandBuffer is moved to the initial state.

To free command buffers, call:

void vkFreeCommandBuffers(

VkDevice device,
VkCommandPool commandPool,

uint32 t commandBufferCount,
const VkCommandBuffer* pCommandBuffers);

* device is the logical device that owns the command pool.

commandPool is the command pool from which the command buffers were allocated.
» commandBufferCount is the length of the pCommandBuffers array.

* pCommandBuffers is an array of handles of command buffers to free.

Any primary command buffer that is in the recording or executable state and has any element of
pCommandBuffers recorded into it, becomes invalid.

Valid Usage

 All elements of pCommandBuffers must not be in the pending state

» pCommandBuffers must be a pointer to an array of commandBufferCount VkCommandBuffer
handles, each element of which must either be a valid handle or NULL

64

Valid Usage (Implicit)

* device must be a valid VkDevice handle

» commandPool must be a valid VkCommandPool handle

» commandBufferCount must be greater than 0

» commandPool must have been created, allocated, or retrieved from device

» Each element of pCommandBuffers that is a valid handle must have been created, allocated,
or retrieved from commandPool

Host Synchronization

» Host access to commandPool must be externally synchronized

» Host access to each member of pCommandBuffers must be externally synchronized

5.4. Command Buffer Recording

To begin recording a command buffer, call:

VkResult vkBeginCommandBuffer(
VkCommandBuffer commandBuffer,
const VkCommandBufferBeginInfo* pBeginInfo);

» commandBuffer is the handle of the command buffer which is to be put in the recording state.

* pBeginInfo is an instance of the VkCommandBufferBeginInfo structure, which defines additional
information about how the command buffer begins recording.

Valid Usage

» commandBuffer must not be in the recording or pending state.

o If commandBuffer was allocated from a VkCommandPool which did not have the
VK_COMMAND_POOL _CREATE_RESET_COMMAND_BUFFER_BIT flag set, commandBuffer must be in the
initial state.

o If commandBuffer is a secondary command buffer, the pInheritanceInfo member of
pBeginInfo must be a valid VkCommandBufferInheritanceInfo structure

o If commandBuffer is a secondary command buffer and either the occlusionQueryEnable
member of the pInheritanceInfo member of pBeginInfo is VK_FALSE, or the precise
occlusion queries feature is not enabled, the queryFlags member of the pInheritancelnfo
member pBeginInfo must not contain VK_QUERY_CONTROL_PRECISE_BIT

65

Valid Usage (Implicit)

o commandBuffer must be a valid VkCommandBuffer handle

* pBeginInfo must be a pointer to a valid VkCommandBufferBeginInfo structure

Host Synchronization

* Host access to commandBuffer must be externally synchronized

» Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Return Codes

Success
o VK_SUCCESS

Failure
o VK_ERROR_OUT_OF HOST_MEMORY

« VK_ERROR_OUT_OF _DEVICE_MEMORY
The VkCommandBufferBeginInfo structure is defined as:

typedef struct VkCommandBufferBeginInfo {

VkStructureType sType;
const void* pNext;
VkCommandBufferUsageFlags flags;

const VkCommandBufferInheritanceInfo* pInheritancelnfo;
} VkCommandBufferBeginInfo;

* sType is the type of this structure.
» pNext is NULL or a pointer to an extension-specific structure.

» flags is a bitmask of VkCommandBufferUsageFlagBits specifying usage behavior for the
command buffer.

* pInheritancelnfo is a pointer to a VkCommandBufferInheritanceInfo structure, which is used if
commandBuffer is a secondary command buffer. If this is a primary command buffer, then this
value is ignored.

66

Valid Usage

o If flags contains VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT, the renderPass
member of pInheritanceInfo must be a valid VkRenderPass

o If flags contains VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT, the subpass member

of pInheritancelnfo must be a valid subpass index within the renderPass member of
pInheritancelnfo

o If flags contains VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT, the framebuffer
member of pInheritanceInfo must be either VK_NULIL_HANDLE, or a valid VkFramebuffer
that is compatible with the renderPass member of pInheritancelnfo

Valid Usage (Implicit)

* sType must be VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO
* pNext must be NULL

 flags must be a valid combination of VkCommandBufferUsageFlagBits values

Bits which can be set in VkCommandBufferBeginInfo::flags to specify usage behavior for a
command buffer are:

typedef enum VkCommandBufferUsageFlagBits {
VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT = 0x00000001,
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT = 0x00000002,
VK_COMMAND_BUFFER_USAGE_SIMULTANEQOUS_USE_BIT = 0x00000004,

} VkCommandBufferUsageFlagBits;

 VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT specifies that each recording of the command
buffer will only be submitted once, and the command buffer will be reset and recorded again
between each submission.

 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT specifies that a secondary command buffer
is considered to be entirely inside a render pass. If this is a primary command buffer, then this
bit is ignored.

 VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT specifies that a command buffer can be
resubmitted to a queue while it is in the pending state, and recorded into multiple primary
command buffers.

If the command buffer is a secondary command buffer, then the VkCommandBufferInheritanceInfo
structure defines any state that will be inherited from the primary command buffer:

67

typedef struct VkCommandBufferInheritanceInfo {

VkStructureType sType;

const void* pNext;

VkRenderPass renderPass;

uint32_ t subpass;
VkFramebuffer framebuffer;

VkBoo132 occlusionQueryEnable;
VkQueryControlFlags queryFlags;

VkQueryPipelineStatisticFlags pipelineStatistics;

} VkCommandBufferInheritanceInfo;

68

sType is the type of this structure.
pNext is NULL or a pointer to an extension-specific structure.

renderPass is a VkRenderPass object defining which render passes the VkCommandBuffer will be
compatible with and can be executed within. If the VkCommandBuffer will not be executed within
a render pass instance, renderPass is ignored.

subpass is the index of the subpass within the render pass instance that the VkCommandBuffer will
be executed within. If the VkCommandBuffer will not be executed within a render pass instance,
subpass is ignored.

framebuffer optionally refers to the VkFramebuffer object that the VkCommandBuffer will be
rendering to if it is executed within a render pass instance. It can be VK_NULL_HANDLE if the
framebuffer is not known, or if the VkCommandBuffer will not be executed within a render pass
instance.

Note

O Specifying the exact framebuffer that the secondary command buffer will be
executed with may result in better performance at command buffer execution
time.

occlusionQueryEnable indicates whether the command buffer can be executed while an
occlusion query is active in the primary command buffer. If this is VK_TRUE, then this command
buffer can be executed whether the primary command buffer has an occlusion query active or
not. If this is VK_FALSE, then the primary command buffer must not have an occlusion query
active.

queryFlags indicates the query flags that can be used by an active occlusion query in the
primary command buffer when this secondary command buffer is executed. If this value
includes the VK_QUERY_CONTROL_PRECISE_BIT bit, then the active query can return boolean results
or actual sample counts. If this bit is not set, then the active query must not use the
VK_QUERY_CONTROL_PRECISE_BIT bit.

pipelineStatistics is a bitmask of VkQueryPipelineStatisticFlagBits specifying the set of
pipeline statistics that can be counted by an active query in the primary command buffer when
this secondary command buffer is executed. If this value includes a given bit, then this
command buffer can be executed whether the primary command buffer has a pipeline
statistics query active that includes this bit or not. If this value excludes a given bit, then the
active pipeline statistics query must not be from a query pool that counts that statistic.

Valid Usage

o If the inherited queries feature is not enabled, occlusionQueryEnable must be VK_FALSE

o If the inherited queries feature is enabled, queryFlags must be a valid combination of
VKkQueryControlFlagBits values

« If the pipeline statistics queries feature is not enabled, pipelineStatistics must be 0

Valid Usage (Implicit)

» sType must be VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE _INFO
* pNext must be NULL

 Both of framebuffer, and renderPass that are valid handles must have been created,
allocated, or retrieved from the same VkDevice

If VK_COMMAND_BUFFER_USAGE _SIMULTANEOUS_USE_BIT was not set when creating a command buffer, that
command buffer must not be submitted to a queue whilst it is already in the pending state. If
VK_COMMAND_BUFFER_USAGE _SIMULTANEOUS_USE_BIT is not set on a secondary command buffer, that
command buffer must not be used more than once in a given primary command buffer.

Note

0 On some implementations, not using the
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE _BIT bit enables command buffers to be
patched in-place if needed, rather than creating a copy of the command buffer.

If a command buffer is in the invalid, or executable state, and the command buffer was allocated
from a command pool with the VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
vkBeginCommandBuffer implicitly resets the command buffer, behaving as if vkResetCommandBuffer had
been called with VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. After the implicit reset,
commandBuffer is moved to the recording state.

Once recording starts, an application records a sequence of commands (vkCmd*) to set state in the
command buffer, draw, dispatch, and other commands.

To complete recording of a command buffer, call:

VkResult vkEndCommandBuffer(
VkCommandBuffer commandBuffer);

» commandBuffer is the command buffer to complete recording.

If there was an error during recording, the application will be notified by an unsuccessful return
code returned by vkEndCommandBuffer. If the application wishes to further use the command buffer,
the command buffer must be reset. The command buffer must have been in the recording state,
and is moved to the executable state.

69

Valid Usage

» commandBuffer must be in the recording state.

* If commandBuffer is a primary command buffer, there must not be an active render pass
instance

* All queries made active during the recording of commandBuffer must have been made
inactive

Valid Usage (Implicit)

e commandBuffer must be a valid VkCommandBuffer handle

Host Synchronization

» Host access to commandBuffer must be externally synchronized

» Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Return Codes

Success
o VK_SUCCESS

Failure
« VK_ERROR_OUT_OF HOST_MEMORY
« VK_ERROR_OUT_OF DEVICE MEMORY

When a command buffer is in the executable state, it can be submitted to a queue for execution.

5.5. Command Buffer Submission

To submit command buffers to a queue, call:

VkResult vkQueueSubmit(

VkQueue queue,
uint32_t submitCount,
const VkSubmitInfo* pSubmits,
VkFence fence);

* queue is the queue that the command buffers will be submitted to.

* submitCount is the number of elements in the pSubmits array.

70

» pSubmits is a pointer to an array of VkSubmitInfo structures, each specifying a command buffer
submission batch.

» fence is an optional handle to a fence to be signaled. If fence is not VK_NULL_HANDLE, it defines
a fence signal operation.

Note

0 Submission can be a high overhead operation, and applications should attempt to
batch work together into as few calls to vkQueueSubmit as possible.

vkQueueSubmit is a queue submission command, with each batch defined by an element of pSubmits
as an instance of the VkSubmitInfo structure. Batches begin execution in the order they appear in
pSubmits, but may complete out of order.

Fence and semaphore operations submitted with vkQueueSubmit have additional ordering
constraints compared to other submission commands, with dependencies involving previous and
subsequent queue operations. Information about these additional constraints can be found in the
semaphore and fence sections of the synchronization chapter.

Details on the interaction of pWaitDstStageMask with synchronization are described in the
semaphore wait operation section of the synchronization chapter.

The order that batches appear in pSubmits is used to determine submission order, and thus all the
implicit ordering guarantees that respect it. Other than these implicit ordering guarantees and any
explicit synchronization primitives, these batches may overlap or otherwise execute out of order.

If any command buffer submitted to this queue is in the executable state, it is moved to the pending
state. Once execution of all submissions of a command buffer complete, it moves from the pending
state, back to the executable state. If a command buffer was recorded with the
VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT flag, it instead moves back to the invalid state.

If vkQueueSubmit fails, it may return VK_ERROR_OUT_OF_HOST_MEMORY or VK_ERROR_OUT_OF_DEVICE_MEMORY.
If it does, the implementation must ensure that the state and contents of any resources or
synchronization primitives referenced by the submitted command buffers and any semaphores
referenced by pSubmits is unaffected by the call or its failure. If vkQueueSubmit fails in such a way
that the implementation can not make that guarantee, the implementation must return
VK_ERROR_DEVICE_LOST. See Lost Device.

71

72

Valid Usage

If fence is not VK_NULL_HANDLE, fence must be unsignaled

If fence is not VK_NULL_HANDLE, fence must not be associated with any other queue
command that has not yet completed execution on that queue

Any calls to vkCmdSetEvent, vkCmdResetEvent or vkCmdWaitEvents that have been
recorded into any of the command buffer elements of the pCommandBuffers member of any
element of pSubmits, must not reference any VkEvent that is referenced by any of those
commands in a command buffer that has been submitted to another queue and is still in
the pending state.

Any stage flag included in any element of the pWaitDstStageMask member of any element
of pSubmits must be a pipeline stage supported by one of the capabilities of queue, as
specified in the table of supported pipeline stages.

Any given element of the pSignalSemaphores member of any element of pSubmits must be
unsignaled when the semaphore signal operation it defines is executed on the device

When a semaphore unsignal operation defined by any element of the pWaitSemaphores
member of any element of pSubmits executes on queue, no other queue must be waiting on
the same semaphore.

All elements of the pWaitSemaphores member of all elements of pSubmits must be
semaphores that are signaled, or have semaphore signal operations previously submitted
for execution.

Any given element of the pCommandBuffers member of any element of pSubmits must be in
the pending or executable state.

If any given element of the pCommandBuffers member of any element of pSubmits was not
recorded with the VK _COMMAND BUFFER_USAGE SIMULTANEOUS USE BIT, it must not be in the
pending state.

Any secondary command buffers recorded into any given element of the pCommandBuffers
member of any element of pSubmits must be in the pending or executable state.

If any secondary command buffers recorded into any given element of the
pCommandBuffers member of any element of pSubmits was not recorded with the
VK_COMMAND_BUFFER_USAGE _SIMULTANEOUS_USE_BIT, it must not be in the pending state.

Any given element of the pCommandBuffers member of any element of pSubmits must have
been allocated from a VkCommandPool that was created for the same queue family queue
belongs to.

Valid Usage (Implicit)

* queue must be a valid VkQueue handle

o If submitCount is not @, pSubmits must be a pointer to an array of submitCount valid
VkSubmitInfo structures

e If fence isnot VK NULL_HANDLE, fence must be a valid VkFence handle

* Both of fence, and queue that are valid handles must have been created, allocated, or
retrieved from the same VkDevice

Host Synchronization

» Host access to queue must be externally synchronized
» Host access to pSubmits[].pWaitSemaphores[] must be externally synchronized
» Host access to pSubmits[].pSignalSemaphores[] must be externally synchronized

» Host access to fence must be externally synchronized

Command Properties

Command Buffer Render Pass Scope Supported Queue Pipeline Type
Levels Types

- - Any -

Return Codes

Success
o VK_SUCCESS

Failure
o VK_ERROR_OUT_OF _HOST_MEMORY
« VK_ERROR_QUT_OF _DEVICE_MEMORY
o VK_ERROR_DEVICE_LOST

The VkSubmitInfo structure is defined as:

73

typedef struct VkSubmitInfo {

VkStructureType sType;

const void* pNext;

uint32_t waitSemaphoreCount;
const VkSemaphore* pWaitSemaphores;
const VkPipelineStageFlags* pWaitDstStageMask;
uint32 t commandBufferCount;
const VkCommandBuffer* pCommandBuffers;
uint32_t signalSemaphoreCount;
const VkSemaphore* pSignalSemaphores;

} VkSubmitInfo;

* sType is the type of this structure.

» pNext is NULL or a pointer to an extension-specific structure.

* waitSemaphoreCount is the number of semaphores upon which to wait before executing the

command buffers for the batch.

* pWaitSemaphores is a pointer to an array of semaphores upon which to wait before the command

buffers for this batch begin execution. If semaphores to wait on are provided, they define a
semaphore wait operation.

* pWaitDstStageMask is a pointer to an array of pipeline stages at which each corresponding

semaphore wait will occur.

e commandBufferCount is the number of command buffers to execute in the batch.

» pCommandBuffers is a pointer to an array of command buffers to execute in the batch.

* signalSemaphoreCount is the number of semaphores to be signaled once the commands specified

in pCommandBuffers have completed execution.

» pSignalSemaphores is a pointer to an array of semaphores which will be signaled when the

command buffers for this batch have completed execution. If semaphores to be signaled are
provided, they define a semaphore signal operation.

The order that command buffers appear in pCommandBuffers is used to determine submission order,
and thus all the implicit ordering guarantees that respect it. Other than these implicit ordering
guarantees and any explicit synchronization primitives, these command buffers may overlap or
otherwise execute out of order.

74

Valid Usage

* Any given element of pCommandBuffers must not have been allocated with
VK_COMMAND_BUFFER_LEVEL _SECONDARY

o If the geometry shaders feature is not enabled, any given element of pWaitDstStageMask
must not contain VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

o If the tessellation shaders feature is not enabled, any given element of pWaitDstStageMask
must not contain VK_PIPELINE STAGE TESSELLATION_CONTROL_ SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

* Any given element of pWaitDstStageMask must not include VK_PIPELINE_STAGE_HOST_BIT.

Valid Usage (Implicit)

» sType must be VK_STRUCTURE_TYPE_SUBMIT_INFO
* pNext must be NULL

o If waitSemaphoreCount is not 0, pWaitSemaphores must be a pointer to an array of
waitSemaphoreCount valid VkSemaphore handles

o If waitSemaphoreCount is not 0, pWaitDstStageMask must be a pointer to an array of
waitSemaphoreCount valid combinations of VkPipelineStageFlagBits values

* Each element of pWaitDstStageMask must not be 0

o If commandBufferCount is not 0, pCommandBuffers must be a pointer to an array of
commandBufferCount valid VkCommandBuffer handles

 If signalSemaphoreCount is not @, pSignalSemaphores must be a pointer to an array of
signalSemaphoreCount valid VkSemaphore handles

* Each of the elements of pCommandBuffers, the elements of pSignalSemaphores, and the
elements of pWaitSemaphores that are valid handles must have been created, allocated, or
retrieved from the same VkDevice

5.6. Queue Forward Progress

The application must ensure that command buffer submissions will be able to complete without
any subsequent operations by the application on any queue. After any call to vkQueueSubmit, for
every queued wait on a semaphore there must be a prior signal of that semaphore that will not be
consumed by a different wait on the semaphore.

Command buffers in the submission can include vkCmdWaitEvents commands that wait on events
that will not be signaled by earlier commands in the queue. Such events must be signaled by the
application using vkSetEvent, and the vkCmdWaitEvents commands that wait upon them must not be
inside a render pass instance. Implementations may have limits on how long the command buffer
will wait, in order to avoid interfering with progress of other clients of the device. If the event is not
signaled within these limits, results are undefined and may include device loss.

75

5.7. Secondary Command Buffer Execution

A secondary command buffer must not be directly submitted to a queue. Instead, secondary
command buffers are recorded to execute as part of a primary command buffer with the
command:

void vkCmdExecuteCommands(

VkCommandBuffer commandBuffer,
uint32_t commandBufferCount,
const VkCommandBuffer* pCommandBuffers);

» commandBuffer is a handle to a primary command buffer that the secondary command buffers
are executed in.

» commandBufferCount is the length of the pCommandBuffers array.
* pCommandBuffers is an array of secondary command buffer handles, which are recorded to

execute in the primary command buffer in the order they are listed in the array.

If any element of pCommandBuffers was not recorded with the
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT flag, and it was recorded into any other primary
command buffer which is currently in the executable or recording state, that primary command
buffer becomes invalid.

76

Valid Usage

commandBuffer must have been allocated with a level of VK_COMMAND BUFFER_LEVEL PRIMARY

Any given element of pCommandBuffers must have been allocated with a level of
VK_COMMAND_BUFFER_LEVEL _SECONDARY

Any given element of pCommandBuffers must be in the pending or executable state.

If any element of pCommandBuffers ~was not recorded with the
VK_COMMAND_BUFFER_USAGE _SIMULTANEOUS_USE_BIT flag, and it was recorded into any other
primary command buffer, that primary command buffer must not be in the pending state

If any given element of pCommandBuffers was not recorded with the
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT flag, it must not be in the pending state.

If any given element of pCommandBuffers was not recorded with the
VK_COMMAND_BUFFER_USAGE _SIMULTANEOUS_USE_BIT flag, it must not have already been
recorded to commandBuffer.

If any given element of pCommandBuffers was not recorded with the
VK_COMMAND_BUFFER_USAGE _SIMULTANEOUS_USE_BIT flag, it must not appear more than once in
pCommandBuffers.

Any given element of pCommandBuffers must have been allocated from a VkCommandPool that
was created for the same queue family as the VkCommandPool from which commandBuffer
was allocated

If vkCmdExecuteCommands is being called within a render pass instance, that render pass
instance must have been begun with the contents parameter of vkCmdBeginRenderPass set
to VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS

If vkCmdExecuteCommands is being called within a render pass instance, any given element of
pCommandBuffers must have been recorded with the
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT

If vkCmdExecuteCommands is being called within a render pass instance, any given element of
pCommandBuffers must have been recorded with VkCommandBufferInheritanceInfo::subpass
set to the index of the subpass which the given command buffer will be executed in

If vkCmdExecuteCommands is being called within a render pass instance, the render passes
specified in the pname::pBeginInfo::pInheritanceInfo::renderPass members of the
vkBeginCommandBuffer commands wused to begin recording each element of
pCommandBuffers must be compatible with the current render pass.

If vkCmdExecuteCommands is being called within a render pass instance, and any given
element of pCommandBuffers was recorded with VkCommandBufferInheritanceInfo
::framebuffer not equal to VK NULL _HANDLE, that VkFramebuffer must match the
VkFramebuffer used in the current render pass instance

If vkCmdExecuteCommands is not being called within a render pass instance, any given
element of pCommandBuffers must not have been recorded with the
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT

If the inherited queries feature is not enabled, commandBuffer must not have any queries
active

77

o If commandBuffer has a VK_QUERY_TYPE_OCCLUSION query active, then each element of
pCommandBuffers must have been recorded with VkCommandBufferInheritanceInfo
::occlusionQueryEnable set to VK_TRUE

o If commandBuffer has a VK_QUERY_TYPE_OCCLUSION query active, then each element of
pCommandBuffers must have been recorded with VkCommandBufferInheritanceInfo
::queryFlags having all bits set that are set for the query

o If commandBuffer has a VK_QUERY_TYPE_PIPELINE_STATISTICS query active, then each element
of pCommandBuffers must have been recorded with VkCommandBufferInheritanceInfo
:pipelineStatistics having all bits set that are set in the VkQueryPool the query uses

* Any given element of pCommandBuffers must not begin any query types that are active in
commandBuffer

Valid Usage (Implicit)

e commandBuffer must be a valid VkCommandBuffer handle

» pCommandBuffers must be a pointer to an array of commandBufferCount valid VkCommandBuffer
handles

» commandBuffer must be in the recording state

» The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

» commandBuffer must be a primary VkCommandBuffer
» commandBufferCount must be greater than 0

* Both of commandBuffer, and the elements of pCommandBuffers must have been created,
allocated, or retrieved from the same VkDevice

Host Synchronization

* Host access to commandBuffer must be externally synchronized

» Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer Render Pass Scope Supported Queue Pipeline Type

Levels Types
Primary Both Transfer
graphics

compute

Chapter 6. Synchronization and Cache
Control

Synchronization of access to resources is primarily the responsibility of the application in Vulkan.
The order of execution of commands with respect to the host and other commands on the device
has few implicit guarantees, and needs to be explicitly specified. Memory caches and other
optimizations are also explicitly managed, requiring that the flow of data through the system is
largely under application control.

Whilst some implicit guarantees exist between commands, four explicit synchronization primitives
are exposed by Vulkan:

Fences

Fences can be used to communicate to the host that execution of some task on the device has
completed.

Semaphores

Semaphores can be used to control resource access across multiple queues.

Events

Events provide a fine-grained synchronization primitive which can be signaled either within a
command buffer or by the host, and can be waited upon within a command buffer or queried
on the host.

Pipeline Barriers

Pipeline barriers also provide synchronization control within a command buffer, but at a single
point, rather than with separate signal and wait operations.

In addition to the base primitives provided here, Render Passes provide a useful synchronization
framework for most rendering tasks, built upon the concepts in this chapter. Many cases that would
otherwise need an application to use synchronization primitives in this chapter can be expressed
more efficiently as part of a render pass.

6.1. Execution and Memory Dependencies

An operation is an arbitrary amount of work to be executed on the host, a device, or an external
entity such as a presentation engine. Synchronization commands introduce explicit execution
dependencies, and memory dependencies between two sets of operations defined by the command’s
two synchronization scopes.

The synchronization scopes define which other operations a synchronization command is able to
create execution dependencies with. Any type of operation that is not in a synchronization
command’s synchronization scopes will not be included in the resulting dependency. For example,
for many synchronization commands, the synchronization scopes can be limited to just operations
executing in specific pipeline stages, which allows other pipeline stages to be excluded from a
dependency. Other scoping options are possible, depending on the particular command.

79

An execution dependency is a guarantee that for two sets of operations, the first set must happen-
before the second set. If an operation happens-before another operation, then the first operation
must complete before the second operation is initiated. More precisely:

* Let A and B be separate sets of operations.

* Let S be a synchronization command.

* Let Ag and Bg be the synchronization scopes of S.
* Let A' be the intersection of sets A and As.

* Let B' be the intersection of sets B and Bg.

* Submitting A, S and B for execution, in that order, will result in execution dependency E
between A' and B'.

* Execution dependency E guarantees that A' happens-before B'.

An execution dependency chain is a sequence of execution dependencies that form a happens-before
relation between the first dependency’s A' and the final dependency’s B'. For each consecutive pair
of execution dependencies, a chain exists if the intersection of B in the first dependency and Ag in
the second dependency is not an empty set. The formation of a single execution dependency from
an execution dependency chain can be described by substituting the following in the description of
execution dependencies:

* Let S be a set of synchronization commands that generate an execution dependency chain.
» Let Ag be the first synchronization scope of the first command in S.

* Let Bs be the second synchronization scope of the last command in S.

Note

An execution dependency is inherently also multiple execution dependencies - a
dependency exists between each subset of A' and each subset of B', and the same is
true for execution dependency chains. For example, a synchronization command

0 with multiple pipeline stages in its stage masks effectively generates one
dependency between each source stage and each destination stage. This can be
useful to think about when considering how execution chains are formed if they
do not involve all parts of a synchronization command’s dependency. Similarly,
any set of adjacent dependencies in an execution dependency chain can be
considered an execution dependency chain in its own right.

Execution dependencies alone are not sufficient to guarantee that values resulting from writes in
one set of operations can be read from another set of operations.

Two additional types of operation are used to control memory access. Availability operations cause
the values generated by specified memory write accesses to become available for future access. Any
available value remains available until a subsequent write to the same memory location occurs
(whether it is made available or not) or the memory is freed. Visibility operations cause any
available values to become visible to specified memory accesses.

A memory dependency is an execution dependency which includes availability and visibility
operations such that:

80

» The first set of operations happens-before the availability operation.
» The availability operation happens-before the visibility operation.
» The visibility operation happens-before the second set of operations.
Once written values are made visible to a particular type of memory access, they can be read or

written by that type of memory access. Most synchronization commands in Vulkan define a
memory dependency.

The specific memory accesses that are made available and visible are defined by the access scopes
of a memory dependency. Any type of access that is in a memory dependency’s first access scope
and occurs in A' is made available. Any type of access that is in a memory dependency’s second
access scope and occurs in B' has any available writes made visible to it. Any type of operation that
is not in a synchronization command’s access scopes will not be included in the resulting
dependency.

A memory dependency enforces availability and visibility of memory accesses and execution order
between two sets of operations. Adding to the description of execution dependency chains:

* Let a be the set of memory accesses performed by A'.

* Let b be the set of memory accesses performed by B'.

* Let ag be the first access scope of the first command in S.

* Let bg be the second access scope of the last command in S.

* Let a' be the intersection of sets a and as.

e Let b' be the intersection of sets b and bs.

* Submitting A, S and B for execution, in that order, will result in a memory dependency m
between A" and B'.

* Memory dependency m guarantees that:
o Memory writes in a' are made available.

o Available memory writes, including those from a', are made visible to b'.

Note

Execution and memory dependencies are used to solve data hazards, i.e. to ensure
that read and write operations occur in a well-defined order. Write-after-read
0 hazards can be solved with just an execution dependency, but read-after-write and
write-after-write hazards need appropriate memory dependencies to be included
between them. If an application does not include dependencies to solve these
hazards, the results and execution orders of memory accesses are undefined.

6.1.1. Image Layout Transitions

Image subresources can be transitioned from one layout to another as part of a memory
dependency (e.g. by using an image memory barrier). When a layout transition is specified in a
memory dependency, it happens-after the availability operations in the memory dependency, and
happens-before the visibility operations. Image layout transitions may perform read and write

81

accesses on all memory bound to the image subresource range, so applications must ensure that all
memory writes have been made available before a layout transition is executed. Available memory
is automatically made visible to a layout transition, and writes performed by a layout transition are
automatically made available.

Layout transitions always apply to a particular image subresource range, and specify both an old
layout and new layout. If the old layout does not match the new layout, a transition occurs. The old
layout must match the current layout of the image subresource range, with one exception. The old
layout can always be specified as VK_IMAGE_LAYOUT_UNDEFINED, though doing so invalidates the
contents of the image subresource range.

Note

9 Setting the old layout to VK_IMAGE_LAYOUT_UNDEFINED implies that the contents of the
image subresource need not be preserved. Implementations may use this
information to avoid performing expensive data transition operations.

Note

Applications must ensure that layout transitions happen-after all operations

0 accessing the image with the old layout, and happen-before any operations that
will access the image with the new layout. Layout transitions are potentially
read/write operations, so not defining appropriate memory dependencies to
guarantee this will result in a data race.

Image layout transitions interact with memory aliasing.

6.1.2. Pipeline Stages

The work performed by an action command consists of multiple operations, which are performed
by a sequence of logically independent execution units known as pipeline stages. The exact pipeline
stages executed depend on the particular action command that is used, and current command
buffer state when the action command was recorded. Drawing commands, dispatching commands,
copy commands, and clear commands all execute in different sets of pipeline stages.

Execution of operations across pipeline stages must adhere to implicit ordering guarantees,
particularly including pipeline stage order. Otherwise, execution across pipeline stages may
overlap or execute out of order with regards to other stages, unless otherwise enforced by an
execution dependency.

Several of the synchronization commands include pipeline stage parameters, restricting the
synchronization scopes for that command to just those stages. This allows fine grained control over
the exact execution dependencies and accesses performed by action commands. Implementations
should use these pipeline stages to avoid unnecessary stalls or cache flushing.

Bits which can be set, specifying pipeline stages, are:

82

typedef enum VkPipelineStageFlagBits {
VK_PIPELINE_STAGE_TOP_OF _PIPE_BIT = 0x00000001,
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT = 0x00000002,
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT = 0x00000004,
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT = 0x00000008,
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT = 0x00000010,
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT = 0x00000020,
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT = 0x00000040,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT = 0x00000080,
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT = 0x00000100,
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT = 0x00000200,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT = 0x00000400,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT = 0x00000800,
VK_PIPELINE_STAGE_TRANSFER_BIT = 0x00001000,
VK_PIPELINE_STAGE_BOTTOM_OF _PIPE_BIT = 0x00002000,
VK_PIPELINE_STAGE_HOST_BIT = 0x00004000,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT = 0x00008000,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT = 0x00010000,

} VkPipelineStageFlagBits;

» VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT specifies the stage of the pipeline where any commands are
initially received by the queue.

o VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT specifies the stage of the pipeline where
Draw/DispatchIndirect data structures are consumed.

o VK_PIPELINE_STAGE_VERTEX_INPUT_BIT specifies the stage of the pipeline where vertex and index
buffers are consumed.

» VK_PIPELINE_STAGE_VERTEX_SHADER_BIT specifies the vertex shader stage.

o VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT specifies the tessellation control shader
stage.

o VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT specifies the tessellation evaluation
shader stage.

o VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT specifies the geometry shader stage.
* VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT specifies the fragment shader stage.

o VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT specifies the stage of the pipeline where early
fragment tests (depth and stencil tests before fragment shading) are performed. This stage also
includes subpass load operations for framebuffer attachments with a depth/stencil format.

o VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT specifies the stage of the pipeline where late
fragment tests (depth and stencil tests after fragment shading) are performed. This stage also
includes subpass store operations for framebuffer attachments with a depth/stencil format.

o VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT specifies the stage of the pipeline after blending
where the final color values are output from the pipeline. This stage also includes subpass load
and store operations and multisample resolve operations for framebuffer attachments with a
color format.

83

o VK_PIPELINE_STAGE_TRANSFER_BIT specifies the execution of copy commands. This includes the
operations resulting from all copy commands, clear commands (with the exception of
vkCmdClearAttachments), and vkCmdCopyQueryPoolResults.

* VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT specifies the execution of a compute shader.

» VK_PIPELINE_STAGE_BOTTOM_OF _PIPE_BIT specifies the final stage in the pipeline where operations
generated by all commands complete execution.

o VK_PIPELINE_STAGE_HOST_BIT specifies a pseudo-stage indicating execution on the host of
reads/writes of device memory. This stage is not invoked by any commands recorded in a
command buffer.

o VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT specifies the execution of all graphics pipeline stages, and is
equivalent to the logical OR of:
o VK_PIPELINE_STAGE_TOP_OF PIPE_BIT
o VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT
o VK_PIPELINE_STAGE_VERTEX_INPUT_BIT
o VK_PIPELINE_STAGE_VERTEX_SHADER_BIT
o VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT
o VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT
o VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT
o VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT
o VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT
o VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT
o VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT
o VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT

* VK_PIPELINE_STAGE_ALL_COMMANDS_BIT is equivalent to the logical OR of every other pipeline stage
flag that is supported on the queue it is used with.

Note

An execution dependency with only VK_PIPELINE_STAGE_BOTTOM_OF PIPE_BIT in the
destination stage mask will only prevent that stage from executing in subsequently
submitted commands. As this stage does not perform any actual execution, this is
not observable - in effect, it does not delay processing of subsequent commands.
Similarly an execution dependency with only VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT
in the source stage mask will effectively not wait for any prior commands to
complete.

0 When defining a memory dependency, using only
VK_PIPELINE_STAGE_BOTTOM_OF PIPE_BIT or VK_PIPELINE_STAGE_TOP_OF PIPE_BIT would
never make any accesses available and/or visible because these stages do not
access memory.

VK_PIPELINE_STAGE_BOTTOM_OF _PIPE_BIT and VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT are
useful for accomplishing layout transitions and queue ownership operations when
the required execution dependency is satisfied by other means - for example,
semaphore operations between queues.

84

If a synchronization command includes a source stage mask, its first synchronization scope only
includes execution of the pipeline stages specified in that mask, as well as any logically earlier
stages. If a synchronization command includes a destination stage mask, its second synchronization
scope only includes execution of the pipeline stages specified in that mask, as well as any logically
later stages.

Access scopes are affected in a similar way. If a synchronization command includes a source stage
mask, its first access scope only includes memory access performed by pipeline stages specified in
that mask. If a synchronization command includes a destination stage mask, its second access scope
only includes memory access performed by pipeline stages specified in that mask.

Note

Implementations may not support synchronization at every pipeline stage for

every synchronization operation. If a pipeline stage that an implementation does

not support synchronization for appears in a source stage mask, then it may

substitute that stage for any logically later stage. If a pipeline stage that an

implementation does not support synchronization for appears in a destination
ﬂ stage mask, then it may substitute that stage for any logically earlier stage.

For example, if an implementation is unable to signal an event immediately after
vertex shader execution is complete, it may instead signal the event after color
attachment output has completed.

If an implementation makes such a substitution, it must not affect the semantics of
execution or memory dependencies or image and buffer memory barriers.

Certain pipeline stages are only available on queues that support a particular set of operations. The
following table lists, for each pipeline stage flag, which queue capability flag must be supported by
the queue. When multiple flags are enumerated in the second column of the table, it means that the
pipeline stage is supported on the queue if it supports any of the listed capability flags. For further
details on queue capabilities see Physical Device Enumeration and Queues.

Table 3. Supported pipeline stage flags

Pipeline stage flag Required queue capability flag
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT None required
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE _BIT
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT VK_QUEUE_GRAPHICS_BIT
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT VK_QUEUE_GRAPHICS_BIT
VK_PIPELINE_STAGE _TESSELLATION_CONTROL_SHADER_BIT VK_QUEUE_GRAPHICS_BIT
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT VK_QUEUE_GRAPHICS_BIT
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT VK_QUEUE_GRAPHICS_BIT
VK_PIPELINE_STAGE _FRAGMENT_SHADER_BIT VK_QUEUE_GRAPHICS_BIT
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT VK_QUEUE_GRAPHICS_BIT
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT VK_QUEUE_GRAPHICS_BIT
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT VK_QUEUE_GRAPHICS_BIT

85

Pipeline stage flag
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT
VK_PIPELINE_STAGE_TRANSFER_BIT

VK_PIPELINE_STAGE_BOTTOM_OF PIPE_BIT
VK_PIPELINE_STAGE_HOST_BIT

VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT

Pipeline stages that execute as a result of a command logically complete execution in a specific
order, such that completion of a logically later pipeline stage must not happen-before completion of
a logically earlier stage. This means that including any given stage in the source stage mask for a
particular synchronization command also implies that any logically earlier stages are included in

Required queue capability flag
VK_QUEUE_COMPUTE_BIT

VK_QUEUE_GRAPHICS_BIT,

VK_QUEUE_COMPUTE_BIT or
VK_QUEUE_TRANSFER_BIT

None required

None required
VK_QUEUE_GRAPHICS_BIT

None required

A for that command.

Similarly, initiation of a logically earlier pipeline stage must not happen-after initiation of a
logically later pipeline stage. Including any given stage in the destination stage mask for a
particular synchronization command also implies that any logically later stages are included in Bg

for that command.

The order of pipeline stages depends on the particular pipeline; graphics, compute, transfer or host.

Note

0 Logically earlier/later stages are not included when defining the access scopes of a

memory barrier.

For the graphics pipeline, the following stages occur in this order:

VK_PIPELINE_STAGE_TOP_OF _PIPE_BIT
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_BOTTOM_OF PIPE_BIT

For the compute pipeline, the following stages occur in this order:

86

VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT

o VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT
o VK_PIPELINE_STAGE_BOTTOM_OF PIPE_BIT

For the transfer pipeline, the following stages occur in this order:

o VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT
o VK_PIPELINE_STAGE_TRANSFER_BIT
o VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT

For host operations, only one pipeline stage occurs, so no order is guaranteed:

o VK_PIPELINE_STAGE_HOST_BIT

6.1.3. Access Types

Memory in Vulkan can be accessed from within shader invocations and via some fixed-function
stages of the pipeline. The access type is a function of the descriptor type used, or how a fixed-
function stage accesses memory. Each access type corresponds to a bit flag in VkAccessFlagBits.

Some synchronization commands take sets of access types as parameters to define the access
scopes of a memory dependency. If a synchronization command includes a source access mask, its
first access scope only includes accesses via the access types specified in that mask. Similarly, if a
synchronization command includes a destination access mask, its second access scope only
includes accesses via the access types specified in that mask.

Access types that can be set in an access mask include:

typedef enum VkAccessFlagBits {
VK_ACCESS_INDIRECT_COMMAND_READ_BIT = 0x00000001,
VK_ACCESS_INDEX_READ_BIT = 0x00000002,
VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT = 0x00000004,
VK_ACCESS_UNIFORM_READ_BIT = 0x00000008,
VK_ACCESS_INPUT_ATTACHMENT _READ_BIT = 0x00000010,
VK_ACCESS_SHADER_READ_BIT = 0x00000020,
VK_ACCESS_SHADER_WRITE_BIT = 0x00000040,
VK_ACCESS_COLOR_ATTACHMENT _READ_BIT = 0x00000080,
VK_ACCESS_COLOR_ATTACHMENT _WRITE_BIT = 0x00000100,
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT = 0x00000200,
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT = 0x00000400,
VK_ACCESS_TRANSFER_READ_BIT = 0x00000800,
VK_ACCESS_TRANSFER_WRITE_BIT = 0x00001000,
VK_ACCESS_HOST_READ_BIT = 0x00002000,
VK_ACCESS_HOST_WRITE_BIT = 0x00004000,
VK_ACCESS_MEMORY_READ_BIT = 0x00008000,
VK_ACCESS_MEMORY_WRITE_BIT = 0x00010000,

} VkAccessFlagBits;

* VK_ACCESS_INDIRECT_COMMAND_READ_BIT specifies read access to an indirect command structure
read as part of an indirect drawing or dispatch command.

87

» VK_ACCESS_INDEX_READ_BIT specifies read access to an index buffer as part of an indexed drawing
command, bound by vkCmdBindIndexBuffer.

» VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT specifies read access to a vertex buffer as part of a
drawing command, bound by vkCmdBindVertexBuffers.

o VK_ACCESS_UNIFORM_READ_BIT specifies read access to a uniform buffer.

o VK_ACCESS_INPUT_ATTACHMENT _READ_BIT specifies read access to an input attachment within a
renderpass during fragment shading.

» VK_ACCESS_SHADER_READ_BIT specifies read access to a storage buffer, uniform texel buffer, storage
texel buffer, sampled image, or storage image.

» VK_ACCESS_SHADER_WRITE_BIT specifies write access to a storage buffer, storage texel buffer, or
storage image.

* VK_ACCESS_COLOR_ATTACHMENT_READ_BIT specifies read access to a color attachment, such as via
blending, logic operations, or via certain subpass load operations.

* VK_ACCESS_COLOR_ATTACHMENT _WRITE_BIT specifies write access to a color or resolve attachment
during a render pass or via certain subpass load and store operations.

* VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT specifies read access to a depth/stencil
attachment, via depth or stencil operations or via certain subpass load operations.

o VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT specifies write access to a depth/stencil
attachment, via depth or stencil operations or via certain subpass load and store operations.

» VK_ACCESS_TRANSFER_READ_BIT specifies read access to an image or buffer in a copy operation.

» VK_ACCESS_TRANSFER_WRITE_BIT specifies write access to an image or buffer in a clear or copy
operation.

» VK_ACCESS_HOST_READ_BIT specifies read access by a host operation. Accesses of this type are not
performed through a resource, but directly on memory.

» VK_ACCESS_HOST_WRITE_BIT specifies write access by a host operation. Accesses of this type are not
performed through a resource, but directly on memory.

» VK_ACCESS_MEMORY_READ_BIT specifies read access via non-specific entities. These entities include
the Vulkan device and host, but may also include entities external to the Vulkan device or
otherwise not part of the core Vulkan pipeline. When included in a destination access mask,
makes all available writes visible to all future read accesses on entities known to the Vulkan
device.

» VK_ACCESS_MEMORY_WRITE_BIT specifies write access via non-specific entities. These entities include
the Vulkan device and host, but may also include entities external to the Vulkan device or
otherwise not part of the core Vulkan pipeline. When included in a source access mask, all
writes that are performed by entities known to the Vulkan device are made available. When
included in a destination access mask, makes all available writes visible to all future write
accesses on entities known to the Vulkan device.

Certain access types are only performed by a subset of pipeline stages. Any synchronization
command that takes both stage masks and access masks uses both to define the access scopes - only
the specified access types performed by the specified stages are included in the access scope. An
application must not specify an access flag in a synchronization command if it does not include a

88

pipeline stage in the corresponding stage mask that is able to perform accesses of that type. The
following table lists, for each access flag, which pipeline stages can perform that type of access.

Table 4. Supported access types

Access flag
VK_ACCESS_INDIRECT_COMMAND_READ_BIT
VK_ACCESS_INDEX_READ_BIT
VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT
VK_ACCESS_UNIFORM_READ_BIT

VK_ACCESS_INPUT_ATTACHMENT _READ_BIT
VK_ACCESS_SHADER_READ_BIT

VK_ACCESS_SHADER_WRITE_BIT

VK_ACCESS_COLOR_ATTACHMENT _READ_BIT
VK_ACCESS_COLOR_ATTACHMENT _WRITE_BIT
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT

VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT

VK_ACCESS_TRANSFER_READ_BIT
VK_ACCESS_TRANSFER_WRITE_BIT
VK_ACCESS_HOST_READ_BIT
VK_ACCESS_HOST_WRITE_BIT
VK_ACCESS_MEMORY_READ_BIT

VK_ACCESS_MEMORY_WRITE_BIT

Supported pipeline stages
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT

VK_PIPELINE_STAGE_VERTEX_SHADER_BIT,
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_

BIT,
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHAD

ER_BIT, VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, or
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT

VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT,
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_

BIT,
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHAD

ER_BIT, VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT,

VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, or
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT

VK_PIPELINE_STAGE_VERTEX_SHADER_BIT,
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_

BIT,
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHAD

ER_BIT, VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT,

VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, or
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT

VK_PIPELINE_STAGE_COLOR_ATTACHMENT _OUTPUT_BIT
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT

VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT, or
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT

VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT, or
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT

VK_PIPELINE_STAGE_TRANSFER_BIT
VK_PIPELINE_STAGE_TRANSFER_BIT
VK_PIPELINE_STAGE_HOST_BIT
VK_PIPELINE_STAGE_HOST_BIT

N/A
N/A

If a memory object does not have the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT property, then
vkFlushMappedMemoryRanges must be called in order to guarantee that writes to the memory
object from the host are made visible to the VK_ACCESS_HOST_WRITE_BIT access type, where it can be
further made available to the device by synchronization commands. Similarly,
vkinvalidateMappedMemoryRanges must be called to guarantee that writes which are visible to
the VK_ACCESS_HOST_READ_BIT access type are made visible to host operations.

89

If the memory object does have the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT property flag, writes to
the memory object from the host are automatically made visible to the VK_ACCESS_HOST_WRITE_BIT
access type. Similarly, writes made visible to the VK_ACCESS_HOST_READ_BIT access type are
automatically made visible to the host.

Note

The vkQueueSubmit command automatically guarantees that host writes flushed
to VK_ACCESS_HOST_WRITE_BIT are made available if they were flushed before the

9 command executed, so in most cases an explicit memory barrier is not needed for
this case. In the few circumstances where a submit does not occur between the
host write and the device read access, writes can be made available by using an
explicit memory barrier.

6.1.4. Framebuffer Region Dependencies

Pipeline stages that operate on, or with respect to, the framebuffer are collectively the framebuffer-
space pipeline stages. These stages are:

o VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT

o VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT

o VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT

o VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT

For these pipeline stages, an execution or memory dependency from the first set of operations to
the second set can either be a single framebuffer-global dependency, or split into multiple
framebuffer-local dependencies. A dependency with non-framebuffer-space pipeline stages is
neither framebuffer-global nor framebuffer-local.

A framebuffer region is a set of sample (%, y, layer, sample) coordinates that is a subset of the entire
framebuffer.

Both synchronization scopes of a framebuffer-local dependency include only operations on the
same single framebuffer region. No ordering guarantees are made between framebuffer regions for
a framebuffer-local dependency.

Both synchronization scopes of a framebuffer-global dependency include operations on all
framebuffer-regions.

Note

0 Since fragment invocations are not specified to run in any particular groupings,
the size of a framebuffer region is implementation-dependent, not known to the
application, and must be assumed to be no larger than a single sample.

If a synchronization command includes a dependencyFlags parameter, and specifies the
VK_DEPENDENCY_BY_REGION_BIT flag, then it defines framebuffer-local dependencies for the
framebuffer-space pipeline stages in that synchronization command, for all framebuffer regions. If
no dependencyFlags parameter is included, or the VK_DEPENDENCY_BY_REGION_BIT flag is not specified,
then a framebuffer-global dependency is specified for those stages. The

90

VK_DEPENDENCY_BY_REGION_BIT flag does not affect the dependencies between non-framebuffer-space
pipeline stages, nor does it affect the dependencies between framebuffer-space and non-
framebuffer-space pipeline stages.

Note

Framebuffer-local dependencies are more optimal for most architectures;
particularly tile-based architectures - which can keep framebuffer-regions entirely

ﬂ in on-chip registers and thus avoid external bandwidth across such a dependency.
Including a framebuffer-global dependency in your rendering will usually force all
implementations to flush data to memory, or to a higher level cache, breaking any
potential locality optimizations.

6.2. Implicit Synchronization Guarantees

A small number of implicit ordering guarantees are provided by Vulkan, ensuring that the order in
which commands are submitted is meaningful, and avoiding unnecessary complexity in common
operations.

Submission order is a fundamental ordering in Vulkan, giving meaning to the order in which action
and synchronization commands are recorded and submitted to a single queue. Explicit and implicit
ordering guarantees between commands in Vulkan all work on the premise that this ordering is
meaningful.

Submission order for any given set of commands is based on the order in which they were
recorded to command buffers and then submitted. This order is determined as follows:

1. The initial order is determined by the order in which vkQueueSubmit commands are executed
on the host, for a single queue, from first to last.

2. The order in which VkSubmitinfo structures are specified in the pSubmits parameter of
vkQueueSubmit, from lowest index to highest.

3. The order in which command buffers are specified in the pCommandBuffers member of
VkSubmitInfo, from lowest index to highest.

4. The order in which commands were recorded to a command buffer on the host, from first to
last:

o For commands recorded outside a render pass, this includes all other commands recorded
outside a renderpass, including vkCmdBeginRenderPass and vkCmdEndRenderPass
commands; it does not directly include commands inside a render pass.

o For commands recorded inside a render pass, this includes all other commands recorded
inside the same subpass, including the vkCmdBeginRenderPass and vkCmdEndRenderPass
commands that delimit the same renderpass instance; it does not include commands
recorded to other subpasses.

Action and synchronization commands recorded to a command buffer execute the
VK_PIPELINE_STAGE_TOP_OF _PIPE_BIT pipeline stage in submission order - forming an implicit
execution dependency between this stage in each command.

91

State commands do not execute any operations on the device, instead they set the state of the
command buffer when they execute on the host, in the order that they are recorded. Action
commands consume the current state of the command buffer when they are recorded, and will
execute state changes on the device as required to match the recorded state.

Query commands, the order of primitives passing through the graphics pipeline and image layout
transitions as part of an image memory barrier provide additional guarantees based on submission
order.

Execution of pipeline stages within a given command also has a loose ordering, dependent only on
a single command.

6.3. Fences

Fences are a synchronization primitive that can be used to insert a dependency from a queue to the
host. Fences have two states - signaled and unsignaled. A fence can be signaled as part of the
execution of a queue submission command. Fences can be unsignaled on the host with
vkResetFences. Fences can be waited on by the host with the vkWaitForFences command, and the
current state can be queried with vkGetFenceStatus.

Fences are represented by VkFence handles:
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkFence)
To create a fence, call:

VkResult vkCreateFence(

VkDevice device,
const VkFenceCreateInfo* pCreatelnfo,
const VkAllocationCallbacks* pAllocator,
VkFence* pFence);

device is the logical device that creates the fence.

pCreatelnfo is a pointer to an instance of the VkFenceCreateInfo structure which contains
information about how the fence is to be created.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

» pFence points to a handle in which the resulting fence object is returned.

92

Valid Usage (Implicit)

* device must be a valid VkDevice handle

» pCreateInfo must be a pointer to a valid VkFenceCreateInfo structure

If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

» pFence must be a pointer to a VkFence handle

Return Codes

Success
o VK_SUCCESS

Failure
« VK_ERROR_OUT_OF HOST_MEMORY

o VK_ERROR_OUT_OF DEVICE MEMORY
The VkFenceCreateInfo structure is defined as:

typedef struct VkFenceCreateInfo {
VkStructureType sType;
const void* pNext;
VkFenceCreateFlags flags;

} VkFenceCreateInfo;

* sType is the type of this structure.
» pNext is NULL or a pointer to an extension-specific structure.

» flags is a bitmask of VkFenceCreateFlagBits specifying the initial state and behavior of the
fence.

Valid Usage (Implicit)

* sType must be VK_STRUCTURE_TYPE_FENCE_CREATE_INFO
* pNext must be NULL

» flags must be a valid combination of VkFenceCreateFlagBits values

typedef enum VkFenceCreateFlagBits {
VK_FENCE_CREATE_SIGNALED_BIT = 0x00000001,
} VkFenceCreateFlagBits;

» VK_FENCE_CREATE_SIGNALED_BIT specifies that the fence object is created in the signaled state.

93

Otherwise, it is created in the unsignaled state.

To destroy a fence, call:

void vkDestroyFence(

VkDevice device,
VkFence fence,
const VkAllocationCallbacks* pAllocator);

* device is the logical device that destroys the fence.
» fence is the handle of the fence to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

* All queue submission commands that refer to fence must have completed execution

» If VkAllocationCallbacks were provided when fence was created, a compatible set of
callbacks must be provided here

» If no VkAllocationCallbacks were provided when fence was created, pAllocator must be
NULL

Valid Usage (Implicit)

* device must be a valid VkDevice handle
 If fence is not VK_NULL_HANDLE, fence must be a valid VkFence handle

o If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

o If fence is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

» Host access to fence must be externally synchronized

To query the status of a fence from the host, call:

VkResult vkGetFenceStatus(
VkDevice device,
VkFence fence);

* device is the logical device that owns the fence.

 fence is the handle of the fence to query.

94

Upon success, vkGetFenceStatus returns the status of the fence object, with the following return
codes:

Table 5. Fence Object Status Codes

Status Meaning

VK_SUCCESS The fence specified by fence is
signaled.

VK_NOT_READY The fence specified by fence is
unsignaled.

VK_DEVICE_LOST The device has been lost. See Lost
Device.

If a queue submission command is pending execution, then the value returned by this command
may immediately be out of date.

If the device has been lost (see Lost Device), vkGetFenceStatus may return any of the above status
codes. If the device has been lost and vkGetFenceStatus is called repeatedly, it will eventually return
either VK_SUCCESS or VK_DEVICE_LOST.

Valid Usage (Implicit)

e device must be a valid VkDevice handle
* fence must be a valid VkFence handle

* fence must have been created, allocated, or retrieved from device

Return Codes

Success
o VK_SUCCESS
« VK_NOT_READY

Failure
o VK_ERROR_OUT_OF_HOST_MEMORY
o VK_ERROR_OUT_OF _DEVICE_MEMORY
o VK_ERROR_DEVICE_LOST

To set the state of fences to unsignaled from the host, call:

VkResult vkResetFences(

VkDevice device,
uint32_ t fenceCount,
const VkFence* pFences);

* device is the logical device that owns the fences.

95

* fenceCount is the number of fences to reset.

* pFences is a pointer to an array of fence handles to reset.

When vkResetFences is executed on the host, it defines a fence unsignal operation for each fence,
which resets the fence to the unsignaled state.

If any member of pFences is already in the unsignaled state when vkResetFences is executed, then
vkResetFences has no effect on that fence.

Valid Usage

» Any given element of pFences must not currently be associated with any queue command
that has not yet completed execution on that queue

Valid Usage (Implicit)

* device must be a valid VkDevice handle
* pFences must be a pointer to an array of fenceCount valid VkFence handles
» fenceCount must be greater than 0

» Each element of pFences must have been created, allocated, or retrieved from device

Host Synchronization

» Host access to each member of pFences must be externally synchronized

Return Codes

Success
« VK_SUCCESS

Failure
« VK_ERROR_OUT_OF HOST_MEMORY
« VK_ERROR_OUT_OF DEVICE MEMORY

When a fence is submitted to a queue as part of a queue submission command, it defines a memory
dependency on the batches that were submitted as part of that command, and defines a fence signal
operation which sets the fence to the signaled state.

The first synchronization scope includes every batch submitted in the same queue submission
command. Fence signal operations that are defined by vkQueueSubmit additionally include in the
first synchronization scope all previous queue submissions to the same queue via vkQueueSubmit.

The second synchronization scope only includes the fence signal operation.

96

The first access scope includes all memory access performed by the device.
The second access scope is empty.

To wait for one or more fences to enter the signaled state on the host, call:

VkResult vkWaitForFences(

VkDevice device,
uint32_t fenceCount,
const VkFence* pFences,
VkBoo132 waitAll,
uint64_t timeout);

device is the logical device that owns the fences.
» fenceCount is the number of fences to wait on.
» pFences is a pointer to an array of fenceCount fence handles.

* waitAll is the condition that must be satisfied to successfully unblock the wait. If waitAll is
VK_TRUE, then the condition is that all fences in pFences are signaled. Otherwise, the condition is
that at least one fence in pFences is signaled.

timeout is the timeout period in units of nanoseconds. timeout is adjusted to the closest value
allowed by the implementation-dependent timeout accuracy, which may be substantially longer
than one nanosecond, and may be longer than the requested period.

If the condition is satisfied when vkWaitForFences is called, then vkWaitForFences returns
immediately. If the condition is not satisfied at the time vkWaitForFences is called, then
vkWaitForFences will block and wait up to timeout nanoseconds for the condition to become
satisfied.

If timeout is zero, then vkWaitForFences does not wait, but simply returns the current state of the
fences. VK_TIMEOUT will be returned in this case if the condition is not satisfied, even though no
actual wait was performed.

If the specified timeout period expires before the condition is satisfied, vkWaitForFences returns
VK_TIMEOUT. If the condition is satisfied before timeout nanoseconds has expired, vkWaitForFences
returns VK_SUCCESS.

If device loss occurs (see Lost Device) before the timeout has expired, vkWaitForFences must return
in finite time with either VK_SUCCESS or VK_DEVICE LOST.

Note

While we guarantee that vkWaitForFences must return in finite time, no guarantees

0 are made that it returns immediately upon device loss. However, the client can
reasonably expect that the delay will be on the order of seconds and that calling
vkWaitForFences will not result in a permanently (or seemingly permanently) dead
process.

97

Valid Usage (Implicit)

* device must be a valid VkDevice handle

» pFences must be a pointer to an array of fenceCount valid VkFence handles

fenceCount must be greater than 0

» Each element of pFences must have been created, allocated, or retrieved from device

Return Codes

Success
o VK _SUCCESS
o VK_TIMEOUT

Failure
o VK_ERROR_OUT_OF_HOST_MEMORY
o VK_ERROR_OUT_OF _DEVICE_MEMORY
o VK_ERROR_DEVICE_LOST

An execution dependency is defined by waiting for a fence to become signaled, either via
vkWaitForFences or by polling on vkGetFenceStatus.

The first synchronization scope includes only the fence signal operation.

The second synchronization scope includes the host operations of vkWaitForFences or
vkGetFenceStatus indicating that the fence has become signaled.

Note

Signaling a fence and waiting on the host does not guarantee that the results of

0 memory accesses will be visible to the host, as the access scope of a memory
dependency defined by a fence only includes device access. A memory barrier or
other memory dependency must be used to guarantee this. See the description of
host access types for more information.

6.4. Semaphores

Semaphores are a synchronization primitive that can be used to insert a dependency between
batches submitted to queues. Semaphores have two states - signaled and unsignaled. The state of a
semaphore can be signaled after execution of a batch of commands is completed. A batch can wait
for a semaphore to become signaled before it begins execution, and the semaphore is also
unsignaled before the batch begins execution.

Semaphores are represented by VkSemaphore handles:

98

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkSemaphore)

To create a semaphore, call:

VkResult vkCreateSemaphore(

VkDevice device,
const VkSemaphoreCreateInfo* pCreatelnfo,
const VkAllocationCallbacks* pAllocator,
VkSemaphore* pSemaphore);

* device is the logical device that creates the semaphore.

* pCreatelnfo is a pointer to an instance of the VkSemaphoreCreateInfo structure which contains
information about how the semaphore is to be created.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

» pSemaphore points to a handle in which the resulting semaphore object is returned.

When created, the semaphore is in the unsignaled state.

Valid Usage (Implicit)

* device must be a valid VkDevice handle

» pCreateInfo must be a pointer to a valid VkSemaphoreCreateInfo structure

If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

 pSemaphore must be a pointer to a VkSemaphore handle

Return Codes

Success
o VK _SUCCESS

Failure
« VK_ERROR_OUT_OF HOST_MEMORY
« VK_ERROR_OUT_OF DEVICE MEMORY

The VkSemaphoreCreateInfo structure is defined as:

99

typedef struct VkSemaphoreCreateInfo {
VkStructureType sType;
const void* pNext;
VkSemaphoreCreateFlags flags;

} VkSemaphoreCreateInfo;

* sType is the type of this structure.
» pNext is NULL or a pointer to an extension-specific structure.

 flags is reserved for future use.

Valid Usage (Implicit)

* sType must be VK_STRUCTURE_TYPE_SEMAPHORE _CREATE_INFO
* pNext must be NULL

» flags must be 0
To destroy a semaphore, call:

void vkDestroySemaphore(

VkDevice device,
VkSemaphore semaphore,
const VkAllocationCallbacks* pAllocator);

» device is the logical device that destroys the semaphore.
» semaphore is the handle of the semaphore to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

» All submitted batches that refer to semaphore must have completed execution

o If VkAllocationCallbacks were provided when semaphore was created, a compatible set of
callbacks must be provided here

 If no VkAllocationCallbacks were provided when semaphore was created, pAllocator must
be NULL

100

Valid Usage (Implicit)

» device must be a valid VkDevice handle
o If semaphore is not VK_NULL_HANDLE, semaphore must be a valid VkSemaphore handle

o If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

 If semaphore is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

» Host access to semaphore must be externally synchronized

6.4.1. Semaphore Signaling

When a batch is submitted to a queue via a queue submission, and it includes semaphores to be
signaled, it defines a memory dependency on the batch, and defines semaphore signal operations
which set the semaphores to the signaled state.

The first synchronization scope includes every command submitted in the same batch. Semaphore
signal operations that are defined by vkQueueSubmit additionally include all batches previously
submitted to the same queue via vkQueueSubmit, including batches that are submitted in the same
queue submission command, but at a lower index within the array of batches.

The second synchronization scope includes only the semaphore signal operation.
The first access scope includes all memory access performed by the device.

The second access scope is empty.

6.4.2. Semaphore Waiting & Unsignaling

When a batch is submitted to a queue via a queue submission, and it includes semaphores to be
waited on, it defines a memory dependency between prior semaphore signal operations and the
batch, and defines semaphore unsignal operations which set the semaphores to the unsignaled state.

The first synchronization scope includes all semaphore signal operations that operate on
semaphores waited on in the same batch, and that happen-before the wait completes.

The second synchronization scope includes every command submitted in the same batch. In the
case of vkQueueSubmit, the second synchronization scope is limited to operations on the pipeline
stages determined by the destination stage mask specified by the corresponding element of
pWaitDstStageMask. Also, in the case of vkQueueSubmit, the second synchronization scope
additionally includes all batches subsequently submitted to the same queue via vkQueueSubmit,
including batches that are submitted in the same queue submission command, but at a higher
index within the array of batches.

101

The first access scope is empty.
The second access scope includes all memory access performed by the device.

The semaphore unsignal operation happens-after the first set of operations in the execution
dependency, and happens-before the second set of operations in the execution dependency.

Note

Unlike fences or events, the act of waiting for a semaphore also unsignals that
semaphore. If two operations are separately specified to wait for the same
O semaphore, and there are no other execution dependencies between those
operations, behaviour is undefined. An execution dependency must be present
that guarantees that the semaphore unsignal operation for the first of those waits,
happens-before the semaphore is signalled again, and before the second unsignal
operation. Semaphore waits and signals should thus occur in discrete 1:1 pairs.

6.4.3. Semaphore State Requirements For Wait Operations

Before waiting on a semaphore, the application must ensure the semaphore is in a valid state for a
wait operation. Specifically, when a semaphore wait and unsignal operation is submitted to a
queue:

* The semaphore must be signaled, or have an associated semaphore signal operation that is
pending execution.

* There must be no other queue waiting on the same semaphore when the operation executes.

6.5. Events

Events are a synchronization primitive that can be used to insert a fine-grained dependency
between commands submitted to the same queue, or between the host and a queue. Events have
two states - signaled and unsignaled. An application can signal an event, or unsignal it, on either
the host or the device. A device can wait for an event to become signaled before executing further
operations. No command exists to wait for an event to become signaled on the host, but the current
state of an event can be queried.

Events are represented by VkEvent handles:
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkEvent)
To create an event, call:

VkResult vkCreateEvent(

VkDevice device,
const VkEventCreateInfo* pCreatelnfo,
const VkAllocationCallbacks* pAllocator,
VkEvent* pEvent);

102

* device is the logical device that creates the event.

* pCreatelnfo is a pointer to an instance of the VkEventCreateInfo structure which contains
information about how the event is to be created.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pEvent points to a handle in which the resulting event object is returned.

When created, the event object is in the unsignaled state.

Valid Usage (Implicit)

e device must be a valid VkDevice handle

» pCreateInfo must be a pointer to a valid VkEvent(CreateInfo structure

If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

 pEvent must be a pointer to a VkEvent handle

Return Codes

Success
o VK_SUCCESS

Failure
« VK_ERROR_OUT_OF HOST_MEMORY
« VK_ERROR_OUT_OF DEVICE MEMORY

The VkEventCreateInfo structure is defined as:

typedef struct VkEventCreateInfo {
VkStructureType sType;
const void* pNext;
VkEventCreateFlags flags;

} VkEventCreateInfo;

* sType is the type of this structure.
* pNext is NULL or a pointer to an extension-specific structure.

» flags is reserved for future use.

103

Valid Usage (Implicit)

* sType must be VK_STRUCTURE_TYPE_EVENT_CREATE_INFO
* pNext must be NULL

» flags must be 0
To destroy an event, call:

void vkDestroyEvent(

VkDevice device,
VkEvent event,
const VkAllocationCallbacks* pAllocator);

* device is the logical device that destroys the event.
 event is the handle of the event to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

* All submitted commands that refer to event must have completed execution

 If VkAllocationCallbacks were provided when event was created, a compatible set of
callbacks must be provided here

* If no VkAllocationCallbacks were provided when event was created, pAllocator must be
NULL

Valid Usage (Implicit)

* device must be a valid VkDevice handle
e Ifevent isnot VK NULL HANDLE, event must be a valid VkEvent handle

o If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

o Ifevent is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

» Host access to event must be externally synchronized

To query the state of an event from the host, call:

104

VkResult vkGetEventStatus(
VkDevice device,
VkEvent event);

* device is the logical device that owns the event.

 event is the handle of the event to query.
Upon success, vkGetEventStatus returns the state of the event object with the following return codes:

Table 6. Event Object Status Codes

Status Meaning

VK_EVENT_SET The event specified by event is
signaled.

VK_EVENT_RESET The event specified by event is
unsignaled.

If a vkCmdSetEvent or vkCmdResetEvent command is in a command buffer that is in the pending state,
then the value returned by this command may immediately be out of date.

The state of an event can be updated by the host. The state of the event is immediately changed,
and subsequent calls to vkGetEventStatus will return the new state. If an event is already in the
requested state, then updating it to the same state has no effect.

Valid Usage (Implicit)

e device must be a valid VkDevice handle
* event must be a valid VkEvent handle

* event must have been created, allocated, or retrieved from device

Return Codes

Success
o VK _EVENT _SET

o VK_EVENT_RESET

Failure
« VK_ERROR_OUT_OF _HOST_MEMORY
« VK_ERROR_OUT_OF _DEVICE_MEMORY
« VK_ERROR_DEVICE_LOST

To set the state of an event to signaled from the host, call:

105

VkResult vkSetEvent(
VkDevice device,
VkEvent event);

* device is the logical device that owns the event.

e event is the event to set.

When vkSetEvent is executed on the host, it defines an event signal operation which sets the event
to the signaled state.

If event is already in the signaled state when vkSetEvent is executed, then vkSetEvent has no effect,
and no event signal operation occurs.

Valid Usage (Implicit)

e device must be a valid VkDevice handle
* event must be a valid VkEvent handle

* event must have been created, allocated, or retrieved from device

Host Synchronization

* Host access to event must be externally synchronized

Return Codes

Success
o VK_SUCCESS

Failure
« VK_ERROR_OUT_OF HOST_MEMORY
« VK_ERROR_OUT_OF DEVICE MEMORY

To set the state of an event to unsignaled from the host, call:

VkResult vkResetEvent(
VkDevice device,
VkEvent event);

* device is the logical device that owns the event.

e event is the event to reset.

When vkResetEvent is executed on the host, it defines an event unsignal operation which resets the

106

event to the unsignaled state.

If event is already in the unsignaled state when vkResetEvent is executed, then vkResetEvent has no
effect, and no event unsignal operation occurs.

Valid Usage

» event must not be waited on by a vkCmdWaitEvents command that is currently executing

Valid Usage (Implicit)

e device must be a valid VkDevice handle
e event must be a valid VkEvent handle

* event must have been created, allocated, or retrieved from device

Host Synchronization

» Host access to event must be externally synchronized

Return Codes

Success
o VK_SUCCESS

Failure
« VK_ERROR_OUT_OF HOST_MEMORY
« VK_ERROR_OUT_OF DEVICE MEMORY

The state of an event can also be updated on the device by commands inserted in command
buffers.

To set the state of an event to signaled from a device, call:

void vkCmdSetEvent(

VkCommandBuffer commandBuffer,
VkEvent event,
VkPipelineStageFlags stageMask);

e commandBuffer is the command buffer into which the command is recorded.
* event is the event that will be signaled.

 stageMask specifies the source stage mask used to determine when the event is signaled.

107

When vkCmdSetEvent is submitted to a queue, it defines an execution dependency on commands
that were submitted before it, and defines an event signal operation which sets the event to the
signaled state.

The first synchronization scope includes every command previously submitted to the same queue,
including those in the same command buffer and batch. The synchronization scope is limited to
operations on the pipeline stages determined by the source stage mask specified by stageMask.

The second synchronization scope includes only the event signal operation.

If event is already in the signaled state when vkCmdSetEvent is executed on the device, then
vkCmdSetEvent has no effect, no event signal operation occurs, and no execution dependency is
generated.

Valid Usage

* stageMask must not include VK_PIPELINE_STAGE_HOST_BIT

o If the geometry shaders feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

o If the tessellation shaders feature is not enabled, stageMask must not contain

VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

Valid Usage (Implicit)

» commandBuffer must be a valid VkCommandBuffer handle

» event must be a valid VkEvent handle

 stageMask must be a valid combination of VkPipelineStageFlagBits values
* stageMask must not be 0

» commandBuffer must be in the recording state

* The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

* This command must only be called outside of a render pass instance

* Both of commandBuffer, and event must have been created, allocated, or retrieved from the
same VkDevice

Host Synchronization

» Host access to commandBuffer must be externally synchronized

» Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

108

Command Properties

Command Buffer Render Pass Scope Supported Queue Pipeline Type

Levels Types
Primary Outside Graphics
Secondary compute

To set the state of an event to unsignaled from a device, call:

void vkCmdResetEvent(

VkCommandBuffer commandBuffer,
VkEvent event,
VkPipelineStageFlags stageMask);

e commandBuffer is the command buffer into which the command is recorded.
 event is the event that will be unsignaled.

» stageMask is a bitmask of VkPipelineStageFlagBits specifying the source stage mask used to
determine when the event is unsignaled.

When vkCmdResetEvent is submitted to a queue, it defines an execution dependency on commands
that were submitted before it, and defines an event unsignal operation which resets the event to
the unsignaled state.

The first synchronization scope includes every command previously submitted to the same queue,
including those in the same command buffer and batch. The synchronization scope is limited to
operations on the pipeline stages determined by the source stage mask specified by stageMask.

The second synchronization scope includes only the event unsignal operation.

If event is already in the unsignaled state when vkCmdResetEvent is executed on the device, then
vkCmdResetEvent has no effect, no event unsignal operation occurs, and no execution dependency
is generated.

Valid Usage

* stageMask must not include VK_PIPELINE_STAGE_HOST_BIT

o If the geometry shaders feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

o If the tessellation shaders feature is not enabled, stageMask must not contain

VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

* When this command executes, event must not be waited on by a vkCmdWaitEvents
command that is currently executing

109

Valid Usage (Implicit)

o commandBuffer must be a valid VkCommandBuffer handle

* event must be a valid VkEvent handle

 stageMask must be a valid combination of VkPipelineStageFlagBits values

* stageMask must not be 0

» commandBuffer must be in the recording state

» The VkCommandPool that commandBuffer was allocated from must support graphics, or

compute operations

* This command must only be called outside of a render pass instance

» Both of commandBuffer, and event must have been created, allocated, or retrieved from the

same VkDevice

Host Synchronization

* Host access to commandBuffer must be externally synchronized

» Host access to the VkCommandPool that commandBuffer was allocated from must be externally

Command Properties

synchronized
Command Buffer Render Pass Scope
Levels
Primary Outside
Secondary

Supported Queue Pipeline Type
Types

Graphics
compute

To wait for one or more events to enter the signaled state on a device, call:

void vkCmdWaitEvents(
VkCommandBuffer
uint32_ t
const VkEvent*
VkPipelineStageFlags
VkPipelineStageFlags
uint32_t
const VkMemoryBarrier*
uint32 t
const VkBufferMemoryBarrier*
uint32_ t
const VkImageMemoryBarrier*

110

commandBuffer,
eventCount,

pEvents,

srcStageMask,
dstStageMask,
memoryBarrierCount,
pMemoryBarriers,
bufferMemoryBarrierCount,
pBufferMemoryBarriers,
imageMemoryBarrierCount,
pImageMemoryBarriers);

» commandBuffer is the command buffer into which the command is recorded.

» eventCount is the length of the pEvents array.

» pEvents is an array of event object handles to wait on.

» srcStageMask is a bitmask of VkPipelineStageFlagBits specifying the source stage mask.

» dstStageMask is a bitmask of VkPipelineStageFlagBits specifying the destination stage mask.
» memoryBarrierCount is the length of the pMemoryBarriers array.

* pMemoryBarriers is a pointer to an array of VkMemoryBarrier structures.

* bufferMemoryBarrierCount is the length of the pBufferMemoryBarriers array.

» pBufferMemoryBarriers is a pointer to an array of VkBufferMemoryBarrier structures.

* imageMemoryBarrierCount is the length of the pImageMemoryBarriers array.

* pImageMemoryBarriers is a pointer to an array of VkimageMemoryBarrier structures.

When vkCmdWaitEvents is submitted to a queue, it defines a memory dependency between prior
event signal operations, and subsequent commands.

The first synchronization scope only includes event signal operations that operate on members of
pEvents, and the operations that happened-before the event signal operations. Event signal
operations performed by vkCmdSetEvent that were previously submitted to the same queue are
included in the first synchronization scope, if the logically latest pipeline stage in their stageMask
parameter is logically earlier than or equal to the logically latest pipeline stage in srcStageMask.
Event signal operations performed by vkSetEvent are only included in the first synchronization
scope if VK_PIPELINE_STAGE_HOST_BIT is included in srcStageMask.

The second synchronization scope includes commands subsequently submitted to the same queue,
including those in the same command buffer and batch. The second synchronization scope is
limited to operations on the pipeline stages determined by the destination stage mask specified by
dstStageMask.

The first access scope is limited to access in the pipeline stages determined by the source stage
mask specified by srcStageMask. Within that, the first access scope only includes the first access
scopes defined by elements of the pMemoryBarriers, pBufferMemoryBarriers and pImageMemoryBarriers
arrays, which each define a set of memory barriers. If no memory barriers are specified, then the
first access scope includes no accesses.

The second access scope is limited to access in the pipeline stages determined by the destination
stage mask specified by dstStageMask. Within that, the second access scope only includes the second
access scopes defined by elements of the pMemoryBarriers, pBufferMemoryBarriers and
pImageMemoryBarriers arrays, which each define a set of memory barriers. If no memory barriers
are specified, then the second access scope includes no accesses.

111

112

Note

vkCmdWaitEvents is used with vkCmdSetEvent to define a memory dependency

0 between two sets of action commands, roughly in the same way as pipeline

barriers, but split into two commands such that work between the two may
execute unhindered.

Note

Applications should be careful to avoid race conditions when using events. There

0 is no direct ordering guarantee between a vkCmdResetEvent command and a

vkCmdWaitEvents command submitted after it, so some other execution
dependency must be included between these commands (e.g. a semaphore).

Valid Usage

srcStageMask must be the bitwise OR of the stageMask parameter used in previous calls to
vkCmdSetEvent with any of the members of pEvents and VK_PIPELINE_STAGE_HOST_BIT if any
of the members of pEvents was set using vkSetEvent

If the geometry shaders feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

If the geometry shaders feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

If the tessellation shaders feature is not enabled, srcStageMask must not contain

VK_PIPELINE_STAGE _TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE _TESSELLATION_EVALUATION_SHADER_BIT

If the tessellation shaders feature is not enabled, dstStageMask must not contain

VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

If pEvents includes one or more events that will be signaled by vkSetEvent after

commandBuffer has been submitted to a queue, then vkCmdWaitEvents must not be called
inside a render pass instance

Any pipeline stage included in srcStageMask or dstStageMask must be supported by the
capabilities of the queue family specified by the queueFamilyIndex member of the
VkCommandPoolCreateInfo structure that was used to create the VkCommandPool that
commandBuffer was allocated from, as specified in the table of supported pipeline stages.

Any given element of pMemoryBarriers, pBufferMemoryBarriers or pImageMemoryBarriers
must not have any access flag included in its srcAccessMask member if that bit is not
supported by any of the pipeline stages in srcStageMask, as specified in the table of
supported access types.

Any given element of pMemoryBarriers, pBufferMemoryBarriers or pImageMemoryBarriers
must not have any access flag included in its dstAccessMask member if that bit is not
supported by any of the pipeline stages in dstStageMask, as specified in the table of
supported access types.

Valid Usage (Implicit)

» commandBuffer must be a valid VkCommandBuffer handle

» pEvents must be a pointer to an array of eventCount valid VkEvent handles
 srcStageMask must be a valid combination of VkPipelineStageFlagBits values
* srcStageMask must not be 0

» dstStageMask must be a valid combination of VkPipelineStageFlagBits values
» dstStageMask must not be 0

o If memoryBarrierCount is not 0, pMemoryBarriers must be a pointer to an array of
memoryBarrierCount valid VkMemoryBarrier structures

o If bufferMemoryBarrierCount is not @, pBufferMemoryBarriers must be a pointer to an array
of bufferMemoryBarrierCount valid VkBufferMemoryBarrier structures

o If imageMemoryBarrierCount is not 0, pImageMemoryBarriers must be a pointer to an array of
imageMemoryBarrierCount valid VkImageMemoryBarrier structures

» commandBuffer must be in the recording state

* The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

» eventCount must be greater than 0

» Both of commandBuffer, and the elements of pEvents must have been created, allocated, or
retrieved from the same VkDevice

Host Synchronization

* Host access to commandBuffer must be externally synchronized

» Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer Render Pass Scope Supported Queue Pipeline Type

Levels Types
Primary Both Graphics
Secondary compute

6.6. Pipeline Barriers

vkCmdPipelineBarrier is a synchronization command that inserts a dependency between
commands submitted to the same queue, or between commands in the same subpass.

113

To record a pipeline barrier, call:

void vkCmdPipelineBarrier(

VkCommandBuffer commandBuffer,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
VkDependencyFlags dependencyFlags,

uint32 t memoryBarrierCount,

const VkMemoryBarrier* pMemoryBarriers,

uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier* pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier* pImageMemoryBarriers);

» commandBuffer is the command buffer into which the command is recorded.
» srcStageMask is a bitmask of VkPipelineStageFlagBits specifying the source stage mask.
* dstStageMask is a bitmask of VkPipelineStageFlagBits specifying the destination stage mask.

 dependencyFlags is a bitmask of VkDependencyFlagBits specifying how execution and memory
dependencies are formed.

» memoryBarrierCount is the length of the pMemoryBarriers array.

* pMemoryBarriers is a pointer to an array of VkMemoryBarrier structures.

* bufferMemoryBarrierCount is the length of the pBufferMemoryBarriers array.

» pBufferMemoryBarriers is a pointer to an array of VkBufferMemoryBarrier structures.
 imageMemoryBarrierCount is the length of the pImageMemoryBarriers array.

» pImageMemoryBarriers is a pointer to an array of VkImageMemoryBarrier structures.

When vkCmdPipelineBarrier is submitted to a queue, it defines a memory dependency between
commands that were submitted before it, and those submitted after it.

If vkCmdPipelineBarrier was recorded outside a render pass instance, the first synchronization
scope includes every command submitted to the same queue before it, including those in the same
command buffer and batch. If vkCmdPipelineBarrier was recorded inside a render pass instance,
the first synchronization scope includes only commands submitted before it within the same
subpass. In either case, the first synchronization scope is limited to operations on the pipeline
stages determined by the source stage mask specified by srcStageMask.

If vkCmdPipelineBarrier was recorded outside a render pass instance, the second synchronization
scope includes every command submitted to the same queue after it, including those in the same
command buffer and batch. If vkCmdPipelineBarrier was recorded inside a render pass instance,
the second synchronization scope includes only commands submitted after it within the same
subpass. In either case, the second synchronization scope is limited to operations on the pipeline
stages determined by the destination stage mask specified by dstStageMask.

The first access scope is limited to access in the pipeline stages determined by the source stage
mask specified by srcStageMask. Within that, the first access scope only includes the first access

114

scopes defined by elements of the pMemoryBarriers, pBufferMemoryBarriers and pImageMemoryBarriers
arrays, which each define a set of memory barriers. If no memory barriers are specified, then the
first access scope includes no accesses.

The second access scope is limited to access in the pipeline stages determined by the destination
stage mask specified by dstStageMask. Within that, the second access scope only includes the second
access scopes defined by elements of the pMemoryBarriers, pBufferMemoryBarriers and
pImageMemoryBarriers arrays, which each define a set of memory barriers. If no memory barriers
are specified, then the second access scope includes no accesses.

If dependencyFlags includes VK_DEPENDENCY_BY_REGION_BIT, then any dependency between
framebuffer-space pipeline stages is framebuffer-local - otherwise it is framebuffer-global.

115

116

Valid Usage

If the geometry shaders feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

If the geometry shaders feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

If the tessellation shaders feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE _TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

If the tessellation shaders feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

If vkCmdPipelineBarrier is called within a render pass instance, the render pass must have
been created with a VkSubpassDependency instance in pDependencies that expresses a
dependency from the current subpass to itself.

If vkCmdPipelineBarrier is called within a render pass instance, srcStageMask must contain
a subset of the bit values in the srcStageMask member of that instance of
VkSubpassDependency

If vkCmdPipelineBarrier is called within a render pass instance, dstStageMask must contain
a subset of the bit values in the dstStageMask member of that instance of
VkSubpassDependency

If vkCmdPipelineBarrier is called within a render pass instance, the srcAccessMask of any
element of pMemoryBarriers or pImageMemoryBarriers must contain a subset of the bit
values the srcAccessMask member of that instance of VkSubpassDependency

If vkCmdPipelineBarrier is called within a render pass instance, the dstAccessMask of any
element of pMemoryBarriers or pImageMemoryBarriers must contain a subset of the bit
values the dstAccessMask member of that instance of VkSubpassDependency

If vkCmdPipelineBarrier is called within a render pass instance, dependencyFlags must be
equal to the dependencyFlags member of that instance of VkSubpassDependency

If vkCmdPipelineBarrier is called within a render pass instance, bufferMemoryBarrierCount
must be 0

If vkCmdPipelineBarrier is called within a render pass instance, the image member of any
element of pImageMemoryBarriers must be equal to one of the elements of pAttachments that
the current framebuffer was created with, that is also referred to by one of the elements of
the pColorAttachments, pResolveAttachments or pDepthStencilAttachment members of the
VkSubpassDescription instance that the current subpass was created with

If vkCmdPipelineBarrier is called within a render pass instance, the oldlLayout and
newLayout members of any element of pImageMemoryBarriers must be equal to the layout
member of an element of the pColorAttachments, pResolveAttachments or
pDepthStencilAttachment members of the VkSubpassDescription instance that the current
subpass was created with, that refers to the same image

If vkCmdPipelineBarrier is called within a render pass instance, the oldlLayout and
newLayout members of an element of pImageMemoryBarriers must be equal

If vkCmdPipelineBarrier is called within a render pass instance, the srcQueueFamilyIndex

and dstQueueFamilyIndex members of any element of pImageMemoryBarriers must be
VK_QUEUE_FAMILY_IGNORED

Any pipeline stage included in srcStageMask or dstStageMask must be supported by the
capabilities of the queue family specified by the queueFamilyIndex member of the
VkCommandPoolCreateInfo structure that was used to create the VkCommandPool that
commandBuffer was allocated from, as specified in the table of supported pipeline stages.

Any given element of pMemoryBarriers, pBufferMemoryBarriers or pImageMemoryBarriers
must not have any access flag included in its srcAccessMask member if that bit is not
supported by any of the pipeline stages in srcStageMask, as specified in the table of
supported access types.

Any given element of pMemoryBarriers, pBufferMemoryBarriers or pImageMemoryBarriers
must not have any access flag included in its dstAccessMask member if that bit is not
supported by any of the pipeline stages in dstStageMask, as specified in the table of
supported access types.

Valid Usage (Implicit)

commandBuffer must be a valid VkCommandBuffer handle

srcStageMask must be a valid combination of VkPipelineStageFlagBits values
srcStageMask must not be 0

dstStageMask must be a valid combination of VkPipelineStageFlagBits values
dstStageMask must not be 0

dependencyFlags must be a valid combination of VkDependencyFlagBits values

If memoryBarrierCount is not @, pMemoryBarriers must be a pointer to an array of
memoryBarrierCount valid VkMemoryBarrier structures

If bufferMemoryBarrierCount is not @, pBufferMemoryBarriers must be a pointer to an array
of bufferMemoryBarrierCount valid VkBufferMemoryBarrier structures

If imageMemoryBarrierCount is not 0, pImageMemoryBarriers must be a pointer to an array of
imageMemoryBarrierCount valid VkImageMemoryBarrier structures

commandBuffer must be in the recording state

The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

Host Synchronization

Host access to commandBuffer must be externally synchronized

Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

117

Command Properties

Command Buffer Render Pass Scope Supported Queue Pipeline Type

Levels Types

Primary Both Transfer

Secondary graphics
compute

Bits which can be set in vkCmdPipelineBarrier::dependencyFlags, specifying how execution and
memory dependencies are formed, are:

typedef enum VkDependencyFlagBits {
VK_DEPENDENCY_BY_REGION_BIT = 0x00000001,
} VkDependencyFlagBits;

» VK_DEPENDENCY_BY_REGION_BIT specifies that dependencies will be framebuffer-local.

6.6.1. Subpass Self-dependency

If vkCmdPipelineBarrier is called inside a render pass instance, the following restrictions apply. For a
given subpass to allow a pipeline barrier, the render pass must declare a self-dependency from that
subpass to itself. That is, there must exist a VkSubpassDependency in the subpass dependency list for
the render pass with srcSubpass and dstSubpass equal to that subpass index. More than one self-
dependency can be declared for each subpass. Self-dependencies must only include pipeline stage
bits that are graphics stages. Self-dependencies must not have any earlier pipeline stages depend
on any later pipeline stages (according to the order of graphics pipeline stages), unless all of the
stages are framebuffer-space stages. If the source and destination stage masks both include
framebuffer-space stages, then dependencyFlags must include VK_DEPENDENCY_BY_REGION_BIT.

A vkCmdPipelineBarrier command inside a render pass instance must be a subset of one of the self-
dependencies of the subpass it is used in, meaning that the stage masks and access masks must
each include only a subset of the bits of the corresponding mask in that self-dependency. If the self-
dependency has VK_DEPENDENCY_BY_REGION_BIT set, then so must the pipeline barrier. Pipeline
barriers within a render pass instance can only be types VkMemoryBarrier or VkImageMemoryBarrier. If
a VkImageMemoryBarrier is used, the image and image subresource range specified in the barrier
must be a subset of one of the image views used by the framebuffer in the current subpass.
Additionally, oldLayout must be equal to newlLayout, and both the srcQueueFamilyIndex and
dstQueueFamilyIndex must be VK_QUEUE_FAMILY_IGNORED.

6.7. Memory Barriers

Memory barriers are used to explicitly control access to buffer and image subresource ranges.
Memory barriers are used to transfer ownership between queue families, change image layouts,
and define availability and visibility operations. They explicitly define the access types and buffer
and image subresource ranges that are included in the access scopes of a memory dependency that
is created by a synchronization command that includes them.

118

6.7.1. Global Memory Barriers

Global memory barriers apply to memory accesses involving all memory objects that exist at the
time of its execution.

The VkMemoryBarrier structure is defined as:

typedef struct VkMemoryBarrier {
VkStructureType sType;

const void* pNext;
VkAccessFlags srcAccessMask;
VkAccessFlags dstAccessMask;

} VkMemoryBarrier;

sType is the type of this structure.

pNext is NULL or a pointer to an extension-specific structure.
* srcAccessMask is a bitmask of VkAccessFlagBits specifying a source access mask.

* dstAccessMask is a bitmask of VkAccessFlagBits specifying a destination access mask.
The first access scope is limited to access types in the source access mask specified by srcAccessMask.

The second access scope is limited to access types in the destination access mask specified by
dstAccessMask.

Valid Usage (Implicit)

* sType must be VK_STRUCTURE_TYPE_MEMORY_BARRIER
* pNext must be NULL
» srcAccessMask must be a valid combination of VkAccessFlagBits values

* dstAccessMask must be a valid combination of VkAccessFlagBits values

6.7.2. Buffer Memory Barriers

Buffer memory barriers only apply to memory accesses involving a specific buffer range. That is, a
memory dependency formed from an buffer memory barrier is scoped to access via the specified
buffer range. Buffer memory barriers can also be used to define a queue family ownership transfer
for the specified buffer range.

The VkBufferMemoryBarrier structure is defined as:

119

typedef struct VkBufferMemoryBarrier {
VkStructureType sType;

const void* pNext;

VkAccessFlags srcAccessMask;
VkAccessFlags dstAccessMask;
uint32_t srcQueueFamilyIndex;
uint32 t dstQueueFamilyIndex;
VkBuffer buffer;

VkDeviceSize offset;

VkDeviceSize Size;

} VkBufferMemoryBarrier;

* sType is the type of this structure.

» pNext is NULL or a pointer to an extension-specific structure.

* srcAccessMask is a bitmask of VkAccessFlagBits specifying a source access mask.

* dstAccessMask is a bitmask of VkAccessFlagBits specifying a destination access mask.

* srcQueueFamilyIndex is the source queue family for a queue family ownership transfer.

» dstQueueFamilyIndex is the destination queue family for a queue family ownership transfer.
* buffer is a handle to the buffer whose backing memory is affected by the barrier.

» offset is an offset in bytes into the backing memory for buffer; this is relative to the base offset
as bound to the buffer (see vkBindBufferMemory).

* size is a size in bytes of the affected area of backing memory for buffer, or VK_WHOLE_SIZE to use
the range from offset to the end of the buffer.

The first access scope is limited to access to memory through the specified buffer range, via access
types in the source access mask specified by srcAccessMask. If srcAccessMask includes
VK_ACCESS_HOST_WRITE_BIT, memory writes performed by that access type are also made visible, as
that access type is not performed through a resource.

The second access scope is limited to access to memory through the specified buffer range, via
access types in the destination access mask. specified by dstAccessMask. If dstAccessMask includes
VK_ACCESS_HOST_WRITE_BIT or VK_ACCESS_HOST_READ_BIT, available memory writes are also made
visible to accesses of those types, as those access types are not performed through a resource.

If srcQueueFamilyIndex is not equal to dstQueueFamilyIndex, and srcQueueFamilyIndex is equal to the
current queue family, then the memory barrier defines a queue family release operation for the
specified buffer range, and the second access scope includes no access, as if dstAccessMask was 0.

If dstQueueFamilyIndex is not equal to srcQueueFamilyIndex, and dstQueueFamilyIndex is equal to the
current queue family, then the memory barrier defines a queue family acquire operation for the
specified buffer range, and the first access scope includes no access, as if srcAccessMask was 0.

120

Valid Usage

» offset must be less than the size of buffer
 If size is not equal to VK_WHOLE_SIZE, size must be greater than 0

o If size is not equal to VK_WHOLE_SIZE, size must be less than or equal to than the size of
buffer minus offset

o If buffer was created with a sharing mode of VK_SHARING_MODE_CONCURRENT,
srcQueueFamilyIndex and dstQueueFamilyIndex must both be VK_QUEUE_FAMILY_IGNORED

o If buffer was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE,
srcQueueFamilyIndex and dstQueueFamilyIndex must either both be
VK_QUEUE_FAMILY_IGNORED, or both be a valid queue family (see Queue Family Properties)

o If buffer was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE, and
srcQueueFamilyIndex and dstQueueFamilyIndex are not VK_QUEUE_FAMILY_IGNORED, at least one
of them must be the same as the family of the queue that will execute this barrier

Valid Usage (Implicit)

* sType must be VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER

* pNext must be NULL

 srcAccessMask must be a valid combination of VkAccessFlagBits values
 dstAccessMask must be a valid combination of VkAccessFlagBits values

e buffer must be a valid VkBuffer handle

6.7.3. Image Memory Barriers

Image memory barriers only apply to memory accesses involving a specific image subresource
range. That is, a memory dependency formed from an image memory barrier is scoped to access
via the specified image subresource range. Image memory barriers can also be used to define
image layout transitions or a queue family ownership transfer for the specified image subresource
range.

The VkImageMemoryBarrier structure is defined as:

121

typedef struct VkImageMemoryBarrier {

VkStructureType sType;

const void* pNext;

VkAccessFlags srcAccessMask;
VkAccessFlags dstAccessMask;
VkImagelayout oldLayout;
VkImagelayout newlLayout;

uint32_t srcQueueFamilyIndex;
uint32_t dstQueueFamilyIndex;
VkImage image;

VkImageSubresourceRange subresourceRange;
} VkImageMemoryBarrier;

* sType is the type of this structure.

* pNext is NULL or a pointer to an extension-specific structure.

* srcAccessMask is a bitmask of VkAccessFlagBits specifying a source access mask.

* dstAccessMask is a bitmask of VkAccessFlagBits specifying a destination access mask.

* oldLayout is the old layout in an image layout transition.

* newlLayout is the new layout in an image layout transition.

* srcQueueFamilyIndex is the source queue family for a queue family ownership transfer.

» dstQueueFamilyIndex is the destination queue family for a queue family ownership transfer.

* image is a handle to the image affected by this barrier.

* subresourceRange describes the image subresource range within image that is affected by this

barrier.

The first access scope is limited to access to memory through the specified image subresource
range, via access types in the source access mask specified by srcAccessMask. If srcAccessMask
includes VK_ACCESS_HOST_WRITE_BIT, memory writes performed by that access type are also made
visible, as that access type is not performed through a resource.

The second access scope is limited to access to memory through the specified image subresource
range, via access types in the destination access mask specified by dstAccessMask. If dstAccessMask
includes VK_ACCESS_HOST_WRITE_BIT or VK_ACCESS_HOST_READ_BIT, available memory writes are also
made visible to accesses of those types, as those access types are not performed through a resource.

If srcQueueFamilyIndex is not equal to dstQueueFamilyIndex, and srcQueueFamilyIndex is equal to the
current queue family, then the memory barrier defines a queue family release operation for the
specified image subresource range, and the second access scope includes no access, as if
dstAccessMask was 0.

If dstQueueFamilyIndex is not equal to srcQueueFamilyIndex, and dstQueueFamilyIndex is equal to the
current queue family, then the memory barrier defines a queue family acquire operation for the
specified image subresource range, and the first access scope includes no access, as if srcAccessMask
was 0.

122

If oldLayout is not equal to newLayout, then the memory barrier defines an image layout transition
for the specified image subresource range.

Layout transitions that are performed via image memory barriers execute in their entirety in
submission order, relative to other image layout transitions submitted to the same queue, including
those performed by render passes. In effect there is an implicit execution dependency from each
such layout transition to all layout transitions previously submitted to the same queue.

123

124

Valid Usage

oldLayout must be VK_IMAGE_LAYOUT_UNDEFINED or the current layout of the image
subresources affected by the barrier

newLayout must not be VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED

If 1image was created with a sharing mode of VK_SHARING_MODE_CONCURRENT,
srcQueueFamilyIndex and dstQueueFamilyIndex must both be VK_QUEUE_FAMILY_IGNORED

If image was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE,
srcQueueFamilyIndex and dstQueueFamilyIndex must either both be
VK_QUEUE_FAMILY_IGNORED, or both be a valid queue family (see Queue Family Properties).

If image was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE, and
srcQueueFamilyIndex and dstQueueFamilyIndex are not VK_QUEUE_FAMILY_IGNORED, at least one
of them must be the same as the family of the queue that will execute this barrier

subresourceRange::baseMipLevel must be less than the miplevels specified in
VkImageCreateInfo when image was created

If subresourceRange::levelCount is not VK_REMAINING_MIP_LEVELS, subresourceRange
:‘levelCount must be non-zero and subresourceRange::baseMiplLevel + subresourceRange
::levelCount must be less than or equal to the mipLevels specified in VkImageCreateInfo
when image was created

subresourceRange::baseArrayLayer must be less than the arraylayers specified in
VkImageCreateInfo when image was created

If subresourceRange::layerCount is not VK_REMAINING_ARRAY_LAYERS, subresourceRange
::layerCount must be non-zero and subresourceRange::baseArraylLayer + subresourceRange
::layerCount must be less than or equal to the arraylayers specified in VkImageCreateInfo
when image was created

If image has a depth/stencil format with both depth and stencil components, then
aspectMask member of subresourceRange must include both VK_IMAGE_ASPECT_DEPTH_BIT and
VK_IMAGE _ASPECT_STENCIL_BIT

If either oldlLayout or newlLayout is VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL then image
must have been created with VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT set

If either oldLayout or newLayout is VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL then
image must have been created with VK_IMAGE_USAGE _DEPTH_STENCIL_ATTACHMENT_BIT set

If either oldLayout or newlLayout is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL then
image must have been created with VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT set

If either oldlLayout or newlayout is VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL then image
must have been created with VK_IMAGE _USAGE_SAMPLED BIT or
VK_IMAGE_USAGE_INPUT_ATTACHMENT BIT set

If either oldLayout or newlLayout is VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL then image must
have been created with VK_IMAGE_USAGE_TRANSFER_SRC_BIT set

If either oldLayout or newlLayout is VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL then image must
have been created with VK_IMAGE USAGE_TRANSFER_DST BIT set

Valid Usage (Implicit)

* sType must be VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER

* pNext must be NULL

* srcAccessMask must be a valid combination of VkAccessFlagBits values
» dstAccessMask must be a valid combination of VkAccessFlagBits values
 oldLayout must be a valid VkImageLayout value

* newlLayout must be a valid VkImageLayout value

* image must be a valid VkImage handle

* subresourceRange must be a valid VkImageSubresourceRange structure

6.7.4. Queue Family Ownership Transfer

Resources created with a VkSharingMode of VK_SHARING_MODE_EXCLUSIVE must have their ownership
explicitly transferred from one queue family to another in order to access their content in a well-
defined manner on a queue in a different queue family. If memory dependencies are correctly
expressed between uses of such a resource between two queues in different families, but no
ownership transfer is defined, the contents of that resource are undefined for any read accesses
performed by the second queue family.

Note

O If an application does not need the contents of a resource to remain valid when
transferring from one queue family to another, then the ownership transfer
should be skipped.

A queue family ownership transfer consists of two distinct parts:

1. Release exclusive ownership from the source queue family

2. Acquire exclusive ownership for the destination queue family

An application must ensure that these operations occur in the correct order by defining an
execution dependency between them, e.g. using a semaphore.

A release operation is used to release exclusive ownership of a range of a buffer or image
subresource range. A release operation is defined by executing a buffer memory barrier (for a
buffer range) or an image memory barrier (for an image subresource range), on a queue from the
source queue family. The srcQueuveFamilyIndex parameter of the barrier must be set to the source
queue family index, and the dstQueueFamilyIndex parameter to the destination queue family index.
dstStageMask is ignored for such a barrier, such that no visibility operation is executed - the value of
this mask does not affect the validity of the barrier. The release operation happens-after the
availability operation.

An acquire operation is used to acquire exclusive ownership of a range of a buffer or image
subresource range. An acquire operation is defined by executing a buffer memory barrier (for a

125

buffer range) or an image memory barrier (for an image subresource range), on a queue from the
destination queue family. The srcQueueFamilyIndex parameter of the barrier must be set to the
source queue family index, and the dstQueueFamilyIndex parameter to the destination queue family
index. srcStageMask is ignored for such a barrier, such that no availability operation is executed -
the value of this mask does not affect the validity of the barrier. The acquire operation happens-
before the visibility operation.

Note

Whilst it is not invalid to provide destination or source access masks for memory
barriers used for release or acquire operations, respectively, they have no practical
effect. Access after a release operation has undefined results, and so visibility for

ﬂ those accesses has no practical effect. Similarly, write access before an acquire
operation will produce undefined results for future access, so availability of those
writes has no practical use. In an earlier version of the specification, these were
required to match on both sides - but this was subsequently relaxed. These masks
should be set to 0.

If the transfer is via an image memory barrier, and an image layout transition is desired, then the
values of oldlLayout and newlLayout in the release memory barrier must be equal to values of
oldLayout and newlLayout in the acquire memory barrier. Although the image layout transition is
submitted twice, it will only be executed once. A layout transition specified in this way happens-
after the release operation and happens-before the acquire operation.

If the values of srcQueueFamilyIndex and dstQueueFamilyIndex are equal, no ownership transfer is
performed, and the barrier operates as if they were both set to VK_QUEUE_FAMILY_IGNORED.

Queue family ownership transfers may perform read and write accesses on all memory bound to
the image subresource or buffer range, so applications must ensure that all memory writes have
been made available before a queue family ownership transfer is executed. Available memory is
automatically made visible to queue family release and acquire operations, and writes performed
by those operations are automatically made available.

Once a queue family has acquired ownership of a buffer range or image subresource range of an
VK_SHARING_MODE_EXCLUSIVE resource, its contents are undefined to other queue families unless
ownership is transferred. The contents of any portion of another resource which aliases memory
that is bound to the transferred buffer or image subresource range are undefined after a release or
acquire operation.

6.8. Wait Idle Operations

To wait on the host for the completion of outstanding queue operations for a given queue, call:

VkResult vkQueueWaitIdle(
VkQueue queue);

* queue is the queue on which to wait.

126

vkQueuelaitIdle is equivalent to submitting a fence to a queue and waiting with an infinite timeout
for that fence to signal.
Valid Usage (Implicit)

* queue must be a valid VkQueue handle

Command Properties

Command Buffer Render Pass Scope Supported Queue Pipeline Type
Levels Types

- - Any -

Return Codes

Success
o VK_SUCCESS

Failure
o VK_ERROR_OUT_OF _HOST_MEMORY
o VK_ERROR_OUT_OF _DEVICE_MEMORY
o VK_ERROR_DEVICE_LOST

To wait on the host for the completion of outstanding queue operations for all queues on a given
logical device, call:

VkResult vkDeviceWaitIdle(
VkDevice device);

* device is the logical device to idle.

vkDeviceWaitIdle is equivalent to calling vkQueueWaitIdle for all queues owned by device.

Valid Usage (Implicit)

e device must be a valid VkDevice handle

Host Synchronization

» Host access to all VkQueue objects created from device must be externally synchronized

127

Return Codes

Success
o VK_SUCCESS

Failure
o VK_ERROR_OUT_OF _HOST_MEMORY
« VK_ERROR_QUT_OF _DEVICE_MEMORY
o VK_ERROR_DEVICE_LOST

6.9. Host Write Ordering Guarantees

When batches of command buffers are submitted to a queue via vkQueueSubmit, it defines a
memory dependency with prior host operations, and execution of command buffers submitted to
the queue.

The first synchronization scope is defined by the host execution model, but includes execution of
vkQueueSubmit on the host and anything that happened-before it.

The second synchronization scope includes every command submitted in the same queue
submission command, and all future submissions to the same queue.

The first access scope includes all host writes to mappable device memory that are either coherent,
or have been flushed with vkFlushMappedMemoryRanges.

The second access scope includes all memory access performed by the device.

128

Chapter 7. Render Pass

A render pass represents a collection of attachments, subpasses, and dependencies between the
subpasses, and describes how the attachments are used over the course of the subpasses. The use of
arender pass in a command buffer is a render pass instance.

Render passes are represented by VkRenderPass handles:
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkRenderPass)

An attachment description describes the properties of an attachment including its format, sample
count, and how its contents are treated at the beginning and end of each render pass instance.

A subpass represents a phase of rendering that reads and writes a subset of the attachments in a
render pass. Rendering commands are recorded into a particular subpass of a render pass instance.

A subpass description describes the subset of attachments that is involved in the execution of a
subpass. Each subpass can read from some attachments as input attachments, write to some as
color attachments or depth/stencil attachments, and perform multisample resolve operations to
resolve attachments. A subpass description can also include a set of preserve attachments, which are
attachments that are not read or written by the subpass but whose contents must be preserved
throughout the subpass.

A subpass uses an attachment if the attachment is a color, depth/stencil, resolve, or input
attachment for that subpass (as determined by the pColorAttachments, pDepthStencilAttachment,
pResolveAttachments, and pInputAttachments members of VkSubpassDescription, respectively). A
subpass does not use an attachment if that attachment is preserved by the subpass. The first use of
an attachment is in the lowest numbered subpass that uses that attachment. Similarly, the last use of
an attachment is in the highest numbered subpass that uses that attachment.

The subpasses in a render pass all render to the same dimensions, and fragments for pixel
(x,y,layer) in one subpass can only read attachment contents written by previous subpasses at that
same (x,y,layer) location.

Note

By describing a complete set of subpasses in advance, render passes provide the
implementation an opportunity to optimize the storage and transfer of attachment
O data between subpasses.

In practice, this means that subpasses with a simple framebuffer-space
dependency may be merged into a single tiled rendering pass, keeping the
attachment data on-chip for the duration of a render pass instance. However, it is
also quite common for a render pass to only contain a single subpass.

Subpass dependencies describe execution and memory dependencies between subpasses.

A subpass dependency chain is a sequence of subpass dependencies in a render pass, where the
source subpass of each subpass dependency (after the first) equals the destination subpass of the

129

previous dependency.

Execution of subpasses may overlap or execute out of order with regards to other subpasses, unless
otherwise enforced by an execution dependency. Each subpass only respects submission order for
commands recorded in the same subpass, and the vkCmdBeginRenderPass and
vkCmdEndRenderPass commands that delimit the render pass - commands within other subpasses
are not included. This affects most other implicit ordering guarantees.

A render pass describes the structure of subpasses and attachments independent of any specific
image views for the attachments. The specific image views that will be used for the attachments,
and their dimensions, are specified in VkFramebuffer objects. Framebuffers are created with respect
to a specific render pass that the framebuffer is compatible with (see Render Pass Compatibility).
Collectively, a render pass and a framebuffer define the complete render target state for one or
more subpasses as well as the algorithmic dependencies between the subpasses.

The various pipeline stages of the drawing commands for a given subpass may execute
concurrently and/or out of order, both within and across drawing commands, whilst still respecting
pipeline order. However for a given (x,ylayer,sample) sample location, certain per-sample
operations are performed in rasterization order.

7.1. Render Pass Creation

To create a render pass, call:

VkResult vkCreateRenderPass(

VkDevice device,

const VkRenderPassCreateInfo* pCreatelnfo,
const VkAllocationCallbacks* pAllocator,
VkRenderPass* pRenderPass);

* device is the logical device that creates the render pass.

* pCreatelnfo is a pointer to an instance of the VkRenderPassCreatelnfo structure that describes
the parameters of the render pass.

pAllocator controls host memory allocation as described in the Memory Allocation chapter.

pRenderPass points to a VkRenderPass handle in which the resulting render pass object is
returned.

Valid Usage (Implicit)

e device must be a valid VkDevice handle

pCreateInfo must be a pointer to a valid VkRenderPassCreateInfo structure

If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

* pRenderPass must be a pointer to a VkRenderPass handle

130

Return Codes

Success
o VK_SUCCESS

Failure
o VK_ERROR_OUT_OF HOST_MEMORY
o VK_ERROR _OUT_OF DEVICE MEMORY

The VkRenderPassCreateInfo structure is defined as:

typedef struct VkRenderPassCreateInfo {

VkStructureType sType;

const void* pNext;
VkRenderPassCreateFlags flags;

uint32_ t attachmentCount;
const VkAttachmentDescription* pAttachments;
uint32_ t subpassCount;
const VkSubpassDescription* pSubpasses;
uint32_t dependencyCount;
const VkSubpassDependency* pDependencies;

} VkRenderPassCreateInfo;

* sType is the type of this structure.
» pNext is NULL or a pointer to an extension-specific structure.
o flags is reserved for future use.

 attachmentCount is the number of attachments used by this render pass, or zero indicating no
attachments. Attachments are referred to by zero-based indices in the range [0,attachmentCount).

* pAttachments points to an array of attachmentCount number of VkAttachmentDescription
structures describing properties of the attachments, or NULL if attachmentCount is zero.

* subpassCount is the number of subpasses to create for this render pass. Subpasses are referred to
by zero-based indices in the range [0,subpassCount). A render pass must have at least one
subpass.

* pSubpasses points to an array of subpassCount number of VkSubpassDescription structures
describing properties of the subpasses.

 dependencyCount is the number of dependencies between pairs of subpasses, or zero indicating
no dependencies.

* pDependencies points to an array of dependencyCount number of VkSubpassDependency
structures describing dependencies between pairs of subpasses, or NULL if dependencyCount is
zZero.

131

132

Valid Usage

If any two subpasses operate on attachments with overlapping ranges of the same
VkDeviceMemory object, and at least one subpass writes to that area of VkDeviceMemory, a
subpass dependency must be included (either directly or via some intermediate
subpasses) between them

If the attachment member of any element of pInputAttachments, pColorAttachments,
pResolveAttachments or pDepthStencilAttachment, or the attachment indexed by any
element of pPreserveAttachments in any given element of pSubpasses is bound to a range of
a VkDeviceMemory object that overlaps with any other attachment in any subpass (including
the same subpass), the VkAttachmentDescription structures describing them must include
VK_ATTACHMENT _DESCRIPTION_MAY_ALIAS_BIT in flags

If the attachment member of any element of pInputAttachments, pColorAttachments,
pResolveAttachments or pDepthStencilAttachment, or any element of pPreserveAttachments
in any given element of pSubpasses is not VK_ATTACHMENT_UNUSED, it must be less than
attachmentCount

The value of any element of the pPreserveAttachments member in any given element of
pSubpasses must not be VK_ATTACHMENT_UNUSED

For any member of pAttachments with a 1oadOp equal to VK_ATTACHMENT_LOAD_OP_CLEAR, the
first wuse of that attachment must not specify a layout equal to
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL.

For any element of pDependencies, if the srcSubpass is not VK_SUBPASS_EXTERNAL, all stage
flags included in the srcStageMask member of that dependency must be a pipeline stage
supported by the pipeline identified by the pipelineBindPoint member of the source
subpass.

For any element of pDependencies, if the dstSubpass is not VK_SUBPASS_EXTERNAL, all stage
flags included in the dstStageMask member of that dependency must be a pipeline stage
supported by the pipeline identified by the pipelineBindPoint member of the source
subpass.

Valid Usage (Implicit)

* sType must be VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO
* pNext must be NULL
» flags must be 0

o If attachmentCount is not @, pAttachments must be a pointer to an array of attachmentCount
valid VkAttachmentDescription structures

» pSubpasses must be a pointer to an array of subpassCount valid VkSubpassDescription
structures

« If dependencyCount is not 0, pDependencies must be a pointer to an array of dependencyCount
valid VkSubpassDependency structures

* subpassCount must be greater than 0

The VkAttachmentDescription structure is defined as:

typedef struct VkAttachmentDescription {
VkAttachmentDescriptionFlags flags;

VkFormat format;
VkSampleCountFlagBits samples;
VkAttachmentLoadOp loadOp;
VkAttachmentStoreOp storeOp;
VkAttachmentLoadOp stencilloadOp;
VkAttachmentStoreOp stencilStoreOp;
VkImagelayout initiallayout;
VkImagelayout finallayout;

} VkAttachmentDescription;

» flags is a bitmask of VkAttachmentDescriptionFlagBits specifying additional properties of the
attachment.

o format is a VkFormat value specifying the format of the image that will be used for the
attachment.

* samples is the number of samples of the image as defined in VkSampleCountFlagBits.

* loadOp is a VkAttachmentLoadOp value specifying how the contents of color and depth
components of the attachment are treated at the beginning of the subpass where it is first used.

» storeOp is a VKkAttachmentStoreOp value specifying how the contents of color and depth
components of the attachment are treated at the end of the subpass where it is last used.

» stencilloadOp is a VkAttachmentLoadOp value specifying how the contents of stencil
components of the attachment are treated at the beginning of the subpass where it is first used.

» stencilStoreOp is a VkAttachmentStoreOp value specifying how the contents of stencil
components of the attachment are treated at the end of the last subpass where it is used.

* initiallayout is the layout the attachment image subresource will be in when a render pass

133

instance begins.

o finallayout is the layout the attachment image subresource will be transitioned to when a
render pass instance ends. During a render pass instance, an attachment can use a different
layout in each subpass, if desired.

If the attachment uses a color format, then loadOp and storeOp are used, and stencilloadOp and
stencilStoreOp are ignored. If the format has depth and/or stencil components, 1oadOp and storeOp
apply only to the depth data, while stencilloadOp and stencilStoreOp define how the stencil data is
handled. 1oadOp and stencillLoadOp define the load operations that execute as part of the first
subpass that uses the attachment. storeOp and stencilStoreOp define the store operations that
execute as part of the last subpass that uses the attachment.

The load operation for each value in an attachment used by a subpass happens-before any
command recorded into that subpass reads from that value. Load operations for attachments with
a depth/stencil format execute in the VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT pipeline stage.
Load operations for attachments with a color format execute in the
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_QUTPUT_BIT pipeline stage.

Store operations for each value in an attachment used by a subpass happen-after any command
recorded into that subpass writes to that value. Store operations for attachments with a
depth/stencil format execute in the VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT pipeline stage. Store
operations for attachments with a color format execute in the
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage.

If an attachment is not used by any subpass, then 1oadOp, storeQOp, stencilStoreOp, and stencilloadOp
are ignored, and the attachment’s memory contents will not be modified by execution of a render
pass instance.

During a render pass instance, input/color attachments with color formats that have a component
size of 8, 16, or 32 hits must be represented in the attachment’s format throughout the instance.
Attachments with other floating- or fixed-point color formats, or with depth components may be
represented in a format with a precision higher than the attachment format, but must be
represented with the same range. When such a component is loaded via the loadOp, it will be
converted into an implementation-dependent format used by the render pass. Such components
must be converted from the render pass format, to the format of the attachment, before they are
resolved or stored at the end of a render pass instance via storeOp. Conversions occur as described
in Numeric Representation and Computation and Fixed-Point Data Conversions.

If flags includes VK_ATTACHMENT _DESCRIPTION_MAY_ALIAS_BIT, then the attachment is treated as if it
shares physical memory with another attachment in the same render pass. This information limits
the ability of the implementation to reorder certain operations (like layout transitions and the
loadOp) such that it is not improperly reordered against other uses of the same physical memory via
a different attachment. This is described in more detail below.

Valid Usage

» finallLayout must not be VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED

134

Valid Usage (Implicit)

» flags must be a valid combination of VkAttachmentDescriptionFlagBits values
» format must be a valid VkFormat value

» samples must be a valid VkSampleCountFlagBits value

* loadOp must be a valid VkAttachmentLoadOp value

 store0p must be a valid VkAttachmentStoreOp value

 stencilloadOp must be a valid VkAttachmentLoadOp value

» stencilStoreOp must be a valid VkAttachmentStoreOp value

 initiallayout must be a valid VkImageLayout value

» finallayout must be a valid VkImageLayout value

Bits which can be set in VkAttachmentDescription::flags describing additional properties of the
attachment are:

typedef enum VkAttachmentDescriptionFlagBits {
VK_ATTACHMENT _DESCRIPTION_MAY_ALIAS_BIT = 0x00000001,
} VkAttachmentDescriptionFlagBits;

o VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT specifies that the attachment aliases the same device
memory as other attachments.

Possible values of VkAttachmentDescription::1oad0Op and stencillLoadOp, specifying how the contents

of the attachment are treated, are:

typedef enum VkAttachmentlLoadOp {
VK_ATTACHMENT _LOAD_OP_LOAD = 0,
VK_ATTACHMENT _LOAD_OP_CLEAR = 1,
VK_ATTACHMENT _LOAD_OP_DONT_CARE = 2,
} VkAttachmentLoadOp;

o VK_ATTACHMENT_LOAD_OP_LOAD specifies that the previous contents of the image within the render
area will be preserved. For attachments with a depth/stencil format, this uses the access type
VK_ACCESS_DEPTH_STENCIL ATTACHMENT READ BIT. For attachments with a color format, this uses the
access type VK_ACCESS_COLOR_ATTACHMENT _READ_BIT.

* VK_ATTACHMENT _LOAD_OP_CLEAR specifies that the contents within the render area will be cleared to
a uniform value, which is specified when a render pass instance is begun. For attachments with
a depth/stencil format, this uses the access type VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT.
For attachments with a color format, this uses the access type
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT.

» VK_ATTACHMENT_LOAD_OP_DONT_CARE specifies that the previous contents within the area need not
be preserved; the contents of the attachment will be undefined inside the render area. For

135

attachments with a depth/stencil format, this uses the access type
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT _WRITE_BIT. For attachments with a color format, this uses
the access type VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT.

Possible values of VkAttachmentDescription::storeOp and stencilStoreQOp, specifying how the
contents of the attachment are treated, are:

typedef enum VkAttachmentStoreOp {
VK_ATTACHMENT _STORE_OP_STORE = 0,
VK_ATTACHMENT _STORE_OP_DONT_CARE = 1,
} VkAttachmentStoreOp;

o VK_ATTACHMENT_STORE_OP_STORE specifies the contents generated during the render pass and
within the render area are written to memory. For attachments with a depth/stencil format, this
uses the access type VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT. For attachments with a
color format, this uses the access type VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT.

o VK_ATTACHMENT_STORE_OP_DONT_CARE specifies the contents within the render area are not needed
after rendering, and may be discarded; the contents of the attachment will be undefined inside
the render area. For attachments with a depth/stencil format, this uses the access type
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT. For attachments with a color format, this uses
the access type VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT.

If a render pass uses multiple attachments that alias the same device memory, those attachments
must each include the VK_ATTACHMENT _DESCRIPTION_MAY_ALIAS_BIT bit in their attachment description
flags. Attachments aliasing the same memory occurs in multiple ways:

* Multiple attachments being assigned the same image view as part of framebuffer creation.

» Attachments using distinct image views that correspond to the same image subresource of an
image.

» Attachments using views of distinct image subresources which are bound to overlapping
memory ranges.

Note

Render passes must include subpass dependencies (either directly or via a subpass
dependency chain) between any two subpasses that operate on the same

0 attachment or aliasing attachments and those subpass dependencies must include
execution and memory dependencies separating uses of the aliases, if at least one
of those subpasses writes to one of the aliases. These dependencies must not
include the VK_DEPENDENCY_BY_REGION_BIT if the aliases are views of distinct image
subresources which overlap in memory.

Multiple attachments that alias the same memory must not be used in a single subpass. A given
attachment index must not be used multiple times in a single subpass, with one exception: two
subpass attachments can use the same attachment index if at least one use is as an input
attachment and neither use is as a resolve or preserve attachment. In other words, the same view
can be used simultaneously as an input and color or depth/stencil attachment, but must not be

136

used as multiple color or depth/stencil attachments nor as resolve or preserve attachments. The
precise set of valid scenarios is described in more detail below.

If a set of attachments alias each other, then all except the first to be used in the render pass must
use an initiallayout of VK_IMAGE_LAYOUT_UNDEFINED, since the earlier uses of the other aliases make
their contents undefined. Once an alias has been used and a different alias has been used after it,
the first alias must not be used in any later subpasses. However, an application can assign the same
image view to multiple aliasing attachment indices, which allows that image view to be used
multiple times even if other aliases are used in between.

Note

Once an attachment needs the VK _ATTACHMENT DESCRIPTION_MAY_ALIAS BIT bit, there

ﬂ should be no additional cost of introducing additional aliases, and using these
additional aliases may allow more efficient clearing of the attachments on
multiple uses via VK_ATTACHMENT _LOAD_OP_CLEAR.

The VkSubpassDescription structure is defined as:

typedef struct VkSubpassDescription {

VkSubpassDescriptionFlags flags;
VkPipelineBindPoint pipelineBindPoint;
uint32_t inputAttachmentCount;
const VkAttachmentReference* pInputAttachments;
uint32_t colorAttachmentCount;

const VkAttachmentReference* pColorAttachments;
const VkAttachmentReference* pResolveAttachments;
const VkAttachmentReference* pDepthStencilAttachment;
uint32 t preserveAttachmentCount;
const uint32_t* pPreserveAttachments;

} VkSubpassDescription;

» flags is a bitmask of VkSubpassDescriptionFlagBits specifying usage of the subpass.

* pipelineBindPoint is a VkPipelineBindPoint value specifying whether this is a compute or
graphics subpass. Currently, only graphics subpasses are supported.

* inputAttachmentCount is the number of input attachments.

* pInputAttachments is an array of VkAttachmentReference structures (defined below) that lists
which of the render pass’s attachments can be read in the shader during the subpass, and what
layout each attachment will be in during the subpass. Each element of the array corresponds to
an input attachment unit number in the shader, i.e. if the shader declares an input variable
layout(input_attachment_index=X, set=Y, binding=Z) then it uses the attachment provided in
pInputAttachments[X]. Input attachments must also be bound to the pipeline with a descriptor
set, with the input attachment descriptor written in the location (set=Y, binding=7).

e colorAttachmentCount is the number of color attachments.

* pColorAttachments is an array of colorAttachmentCount VkAttachmentReference structures that
lists which of the render pass’s attachments will be used as color attachments in the subpass,
and what layout each attachment will be in during the subpass. Each element of the array

137

corresponds to a fragment shader output location, i.e. if the shader declared an output variable
layout(location=X) then it uses the attachment provided in pColorAttachments[X].

pResolveAttachments is NULL or an array of colorAttachmentCount VkAttachmentReference
structures that lists which of the render pass’s attachments are resolved to at the end of the
subpass, and what layout each attachment will be in during the multisample resolve operation.
If pResolveAttachments is not NULL, each of its elements corresponds to a color attachment (the
element in pColorAttachments at the same index), and a multisample resolve operation is defined
for each attachment. At the end of each subpass, multisample resolve operations read the
subpass’s color attachments, and resolve the samples for each pixel to the same pixel location in
the corresponding resolve attachments, unless the resolve attachment index is
VK_ATTACHMENT_UNUSED. If the first use of an attachment in a render pass is as a resolve
attachment, then the 1oadOp is effectively ignored as the resolve is guaranteed to overwrite all
pixels in the render area.

pDepthStencilAttachment is a pointer to a VkAttachmentReference specifying which attachment
will be used for depth/stencil data and the layout it will be in during the subpass. Setting the
attachment index to VK_ATTACHMENT_UNUSED or leaving this pointer as NULL indicates that no
depth/stencil attachment will be used in the subpass.

preserveAttachmentCount is the number of preserved attachments.

pPreserveAttachments is an array of preserveAttachmentCount render pass attachment indices
describing the attachments that are not used by a subpass, but whose contents must be
preserved throughout the subpass.

The contents of an attachment within the render area become undefined at the start of a subpass S
if all of the following conditions are true:

The attachment is used as a color, depth/stencil, or resolve attachment in any subpass in the
render pass.

There is a subpass S, that uses or preserves the attachment, and a subpass dependency from S,
to S.

The attachment is not used or preserved in subpass S.

Once the contents of an attachment become undefined in subpass S, they remain undefined for
subpasses in subpass dependency chains starting with subpass S until they are written again.
However, they remain valid for subpasses in other subpass dependency chains starting with
subpass S, if those subpasses use or preserve the attachment.

138

Valid Usage

pipelineBindPoint must be VK_PIPELINE_BIND_POINT_GRAPHICS

colorAttachmentCount must be less than or equal to VkPhysicalDevicelimits
::maxColorAttachments

If the first use of an attachment in this render pass is as an input attachment, and the
attachment is not also used as a color or depth/stencil attachment in the same subpass,
then 10adOp must not be VK_ATTACHMENT_LOAD_OP_CLEAR

If pResolveAttachments is not NULL, for each resolve attachment that does not have the

value VK_ATTACHMENT_UNUSED, the corresponding color attachment must not have the value
VK_ATTACHMENT _UNUSED

If pResolveAttachments is not NULL, the sample count of each element of pColorAttachments
must be anything other than VK_SAMPLE_COUNT_1_BIT

Any given element of pResolveAttachments must have a sample count of
VK_SAMPLE_COUNT_1_BIT

Any given element of pResolveAttachments must have the same VkFormat as its
corresponding color attachment

All attachments in pColorAttachments that are not VK_ATTACHMENT_UNUSED must have the
same sample count

If pDepthStencilAttachment is not VK_ATTACHMENT_UNUSED and any attachments in
pColorAttachments are not VK_ATTACHMENT_UNUSED, they must have the same sample count

If any input attachments are VK_ATTACHMENT_UNUSED, then any pipelines bound during the
subpass must not access those input attachments from the fragment shader

The attachment member of any element of pPreserveAttachments must not be
VK_ATTACHMENT _UNUSED

Any given element of pPreserveAttachments must not also be an element of any other
member of the subpass description

If any attachment is used as both an input attachment and a color or depth/stencil
attachment, then each use must use the same layout

139

Valid Usage (Implicit)

» flags must be a valid combination of VkSubpassDescriptionFlagBits values
* pipelineBindPoint must be a valid VkPipelineBindPoint value

o If inputAttachmentCount is not 0, pInputAttachments must be a pointer to an array of
inputAttachmentCount valid VkAttachmentReference structures

o If colorAttachmentCount is not 0, pColorAttachments must be a pointer to an array of
colorAttachmentCount valid VkAttachmentReference structures

o If colorAttachmentCount is not @, and pResolveAttachments is not NULL, pResolveAttachments
must be a pointer to an array of colorAttachmentCount valid VkAttachmentReference
structures

o If pDepthStencilAttachment is not NULL, pDepthStencilAttachment must be a pointer to a
valid VkAttachmentReference structure

o If preserveAttachmentCount is not @, pPreserveAttachments must be a pointer to an array of
preserveAttachmentCount uint32_t values

Bits which can be set in VkSubpassDescription::flags, specifying usage of the subpass, are:

typedef enum VkSubpassDescriptionFlagBits {
} VkSubpassDescriptionFlagBits;

The VkAttachmentReference structure is defined as:

typedef struct VkAttachmentReference {
uint32 t attachment;
VkImagelayout layout;

} VkAttachmentReference;

 attachment is the index of the attachment of the render pass, and corresponds to the index of the
corresponding element in the pAttachments array of the VkRenderPassCreateInfo structure. If any
color or depth/stencil attachments are VK_ATTACHMENT_UNUSED, then no writes occur for those
attachments.

* layout is a VkImageLayout value specifying the layout the attachment uses during the subpass.

Valid Usage

* layout must not be VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED

140

Valid Usage (Implicit)

* layout must be a valid VkImageLayout value

The VkSubpassDependency structure is defined as:

typedef struct VkSubpassDependency {
uint32 t srcSubpass;
uint32_t dstSubpass;
VkPipelineStageFlags srcStageMask;
VkPipelineStageFlags dstStageMask;

VkAccessFlags srcAccessMask;
VkAccessFlags dstAccessMask;
VkDependencyFlags dependencyFlags;

} VkSubpassDependency;

* srcSubpass is the subpass index of the first subpass in the dependency, or VK_SUBPASS_EXTERNAL.

» dstSubpass is the subpass index of the second subpass in the dependency, or
VK_SUBPASS_EXTERNAL.

» srcStageMask is a bitmask of VkPipelineStageFlagBits specifying the source stage mask.

» dstStageMask is a bitmask of VkPipelineStageFlagBits specifying the destination stage mask
* srcAccessMask is a bitmask of VkAccessFlagBits specifying a source access mask.
 dstAccessMask is a bitmask of VkAccessFlagBits specifying a destination access mask.

» dependencyFlags is a bitmask of VkDependencyFlagBits.

If srcSubpass is equal to dstSubpass then the VkSubpassDependency describes a subpass self-
dependency, and only constrains the pipeline barriers allowed within a subpass instance.
Otherwise, when a render pass instance which includes a subpass dependency is submitted to a
queue, it defines a memory dependency between the subpasses identified by srcSubpass and
dstSubpass.

If srcSubpass is equal to VK_SUBPASS_EXTERNAL, the first synchronization scope includes commands
submitted to the queue before the render pass instance began. Otherwise, the first set of commands
includes all commands submitted as part of the subpass instance identified by srcSubpass and any
load, store or multisample resolve operations on attachments used in srcSubpass. In either case, the
first synchronization scope is limited to operations on the pipeline stages determined by the source
stage mask specified by srcStageMask.

If dstSubpass is equal to VK_SUBPASS_EXTERNAL, the second synchronization scope includes commands
submitted after the render pass instance is ended. Otherwise, the second set of commands includes
all commands submitted as part of the subpass instance identified by dstSubpass and any load, store
or multisample resolve operations on attachments used in dstSubpass. In either case, the second
synchronization scope is limited to operations on the pipeline stages determined by the destination
stage mask specified by dstStageMask.

141

The first access scope is limited to access in the pipeline stages determined by the source stage
mask specified by srcStageMask. It is also limited to access types in the source access mask specified
by srcAccessMask.

The second access scope is limited to access in the pipeline stages determined by the destination
stage mask specified by dstStageMask. It is also limited to access types in the destination access mask
specified by dstAccessMask.

The availability and visibility operations defined by a subpass dependency affect the execution of
image layout transitions within the render pass.

142

Valid Usage

If srcSubpass is not VK_SUBPASS_EXTERNAL, srcStageMask must not include
VK_PIPELINE_STAGE _HOST_BIT

If dstSubpass is not VK_SUBPASS_EXTERNAL, dstStageMask must not include
VK_PIPELINE_STAGE _HOST_BIT

If the geometry shaders feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

If the geometry shaders feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

If the tessellation shaders feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE TESSELLATION_CONTROL_SHADER BIT or
VK_PIPELINE STAGE TESSELLATION EVALUATION_ SHADER BIT

If the tessellation shaders feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE STAGE TESSELLATION EVALUATION SHADER BIT

srcSubpass must be less than or equal to dstSubpass, unless one of them is
VK_SUBPASS_EXTERNAL, to avoid cyclic dependencies and ensure a valid execution order

srcSubpass and dstSubpass must not both be equal to VK_SUBPASS_EXTERNAL

If srcSubpass is equal to dstSubpass, srcStageMask and dstStageMask must only contain one
of VK_PIPELINE_STAGE_TOP_OF PIPE_BIT, VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT,
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_VERTEX_SHADER_BIT,
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT,
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT,
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, or
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT

If srcSubpass is equal to dstSubpass and not all of the stages in srcStageMask and
dstStageMask are framebuffer-space stages, the logically latest pipeline stage in
srcStageMask must be logically earlier than or equal to the logically earliest pipeline stage
in dstStageMask

Any access flag included in srcAccessMask must be supported by one of the pipeline stages
in srcStageMask, as specified in the table of supported access types.

Any access flag included in dstAccessMask must be supported by one of the pipeline stages
in dstStageMask, as specified in the table of supported access types.

143

Valid Usage (Implicit)

» srcStageMask must be a valid combination of VkPipelineStageFlagBits values
* srcStageMask must not be 0

 dstStageMask must be a valid combination of VkPipelineStageFlagBits values
» dstStageMask must not be 0

 srcAccessMask must be a valid combination of VkAccessFlagBits values

* dstAccessMask must be a valid combination of VkAccessFlagBits values

 dependencyFlags must be a valid combination of VkDependencyFlagBits values

If there is no subpass dependency from VK_SUBPASS_EXTERNAL to the first subpass that uses an
attachment, then an implicit subpass dependency exists from VK_SUBPASS_EXTERNAL to the first
subpass it is used in. The subpass dependency operates as if defined with the following parameters:

VkSubpassDependency implicitDependency = {

.srcSubpass = VK_SUBPASS_EXTERNAL;

.dstSubpass = firstSubpass; // First subpass attachment is used in

.srcStageMask = VK_PIPELINE_STAGE_TOP_OF _PIPE_BIT;

.dstStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;

.srcAccessMask = 0;

.dstAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT _WRITE_BIT;

.dependencyFlags = 0;

+

Similarly, if there is no subpass dependency from the last subpass that uses an attachment to
VK_SUBPASS_EXTERNAL, then an implicit subpass dependency exists from the last subpass it is used in
to VK_SUBPASS_EXTERNAL. The subpass dependency operates as if defined with the following
parameters:

144

VkSubpassDependency implicitDependency = {
.srcSubpass = lastSubpass; // Last subpass attachment is used in
.dstSubpass = VK_SUBPASS_EXTERNAL;
.srcStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
.dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
.srcAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT _WRITE_BIT;
.dstAccessMask = 0;
.dependencyFlags = 0;
b

As subpasses may overlap or execute out of order with regards to other subpasses unless a subpass
dependency chain describes otherwise, the layout transitions required between subpasses cannot
be known to an application. Instead, an application provides the layout that each attachment must
be in at the start and end of a renderpass, and the layout it must be in during each subpass it is
used in. The implementation then must execute layout transitions between subpasses in order to
guarantee that the images are in the layouts required by each subpass, and in the final layout at the
end of the render pass.

Automatic layout transitions apply to the entire image subresource attached to the framebuffer.

Automatic layout transitions away from the layout used in a subpass happen-after the availability
operations for all dependencies with that subpass as the srcSubpass.

Automatic layout transitions into the layout used in a subpass happen-before the visibility
operations for all dependencies with that subpass as the dstSubpass.

Automatic layout transitions away from initiallayout happens-after the availability operations for
all dependencies with a srcSubpass equal to VK_SUBPASS_EXTERNAL, where dstSubpass uses the
attachment that will be transitioned. For attachments created with
VK_ATTACHMENT _DESCRIPTION_MAY_ALIAS_BIT, automatic layout transitions away from initiallayout
happen-after the availability operations for all dependencies with a srcSubpass equal to
VK_SUBPASS_EXTERNAL, where dstSubpass uses any aliased attachment.

Automatic layout transitions into finallLayout happens-before the visibility operations for all
dependencies with a dstSubpass equal to VK_SUBPASS_EXTERNAL, where srcSubpass uses the attachment
that will be transitioned. For attachments created with VK _ATTACHMENT DESCRIPTION MAY_ALIAS BIT,
automatic layout transitions into finallayout happen-before the visibility operations for all
dependencies with a dstSubpass equal to VK_SUBPASS_EXTERNAL, where srcSubpass uses any aliased
attachment.

If two subpasses use the same attachment in different layouts, and both layouts are read-only, no
subpass dependency needs to be specified between those subpasses. If an implementation treats
those layouts separately, it must insert an implicit subpass dependency between those subpasses to
separate the uses in each layout. The subpass dependency operates as if defined with the following
parameters:

145

// Used for input attachments
VkPipelineStageFlags inputAttachmentStages = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
VkAccessFlags inputAttachmentAccess = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;

// Used for depth/stencil attachments
VkPipelineStageFlags depthStencilAttachmentStages =
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
VkAccessFlags depthStencilAttachmentAccess =
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT;

VkSubpassDependency implicitDependency = {

.srcSubpass = firstSubpass;

.dstSubpass = secondSubpass;

.srcStageMask = inputAttachmentStages | depthStencilAttachmentStages;
.dstStageMask = inputAttachmentStages | depthStencilAttachmentStages;
.srcAccessMask = inputAttachmentAccess | depthStencilAttachmentAccess;
.dstAccessMask = inputAttachmentAccess | depthStencilAttachmentAccess;
.dependencyFlags = 0;

+

If a subpass uses the same attachment as both an input attachment and either a color attachment
or a depth/stencil attachment, writes via the color or depth/stencil attachment are not automatically
made visible to reads via the input attachment, causing a feedback loop, except in any of the
following conditions:

* If the color components or depth/stencil components read by the input attachment are mutually
exclusive with the components written by the color or depth/stencil attachments, then there is
no feedback loop. This requires the graphics pipelines used by the subpass to disable writes to
color components that are read as inputs via the colorWriteMask, and to disable writes to
depth/stencil components that are read as inputs via depthWriteEnable or stencilTestEnable.

 If the attachment is used as an input attachment and depth/stencil attachment only, and the
depth/stencil attachment is not written to.

» If a memory dependency is inserted between when the attachment is written and when it is
subsequently read by later fragments. Pipeline barriers expressing a subpass self-dependency
are the only way to achieve this, and one must be inserted every time a fragment will read
values at a particular sample (x, y, layer, sample) coordinate, if those values have been written
since the most recent pipeline barrier; or the since start of the subpass if there have been no
pipeline barriers since the start of the subpass.

An attachment used as both an input attachment and a color attachment must be in the
VK_IMAGE _LAYOUT_GENERAL layout. An attachment used as an input attachment and depth/stencil
attachment must be in the VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, or
VK_IMAGE_LAYOUT_GENERAL layout. An attachment must not be used as both a depth/stencil attachment
and a color attachment.

To destroy a render pass, call:

146

void vkDestroyRenderPass(

VkDevice device,
VkRenderPass renderPass,
const VkAllocationCallbacks* pAllocator);

* device is the logical device that destroys the render pass.
 renderPass is the handle of the render pass to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

 All submitted commands that refer to renderPass must have completed execution

 If VkAllocationCallbacks were provided when renderPass was created, a compatible set of
callbacks must be provided here

» If no VkAllocationCallbacks were provided when renderPass was created, pAllocator must
be NULL

Valid Usage (Implicit)

* device must be a valid VkDevice handle
o If renderPass is not VK_NULL_HANDLE, renderPass must be a valid VkRenderPass handle

 If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

e If renderPass is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

» Host access to renderPass must be externally synchronized

7.2. Render Pass Compatibility

Framebuffers and graphics pipelines are created based on a specific render pass object. They must
only be used with that render pass object, or one compatible with it.

Two attachment references are compatible if they have matching format and sample count, or are
both VK_ATTACHMENT _UNUSED or the pointer that would contain the reference is NULL.

Two arrays of attachment references are compatible if all corresponding pairs of attachments are
compatible. If the arrays are of different lengths, attachment references not present in the smaller
array are treated as VK_ATTACHMENT_UNUSED.

147

Two render passes are compatible if their corresponding color, input, resolve, and depth/stencil
attachment references are compatible and if they are otherwise identical except for:

* Initial and final image layout in attachment descriptions
* Load and store operations in attachment descriptions

* Image layout in attachment references

A framebuffer is compatible with a render pass if it was created using the same render pass or a
compatible render pass.

7.3. Framebuffers

Render passes operate in conjunction with framebuffers. Framebuffers represent a collection of
specific memory attachments that a render pass instance uses.

Framebuffers are represented by VkFramebuffer handles:
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkFramebuffer)
To create a framebuffer, call:

VkResult vkCreateFramebuffer(

VkDevice device,

const VkFramebufferCreateInfo* pCreatelnfo,
const VkAllocationCallbacks* pAllocator,
VkFramebuffer* pFramebuffer);

device is the logical device that creates the framebuffer.

* pCreatelnfo points to a VkFramebufferCreateInfo structure which describes additional
information about framebuffer creation.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pFramebuffer points to a VkFramebuffer handle in which the resulting framebuffer object is
returned.

Valid Usage (Implicit)

e device must be a valid VkDevice handle

* pCreateInfo must be a pointer to a valid VkFramebufferCreateInfo structure

If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

pFramebuffer must be a pointer to a VkFramebuffer handle

148

Return Codes

Success
o VK_SUCCESS

Failure
o VK_ERROR_OUT_OF HOST_MEMORY
o VK_ERROR _OUT_OF DEVICE MEMORY

The VkFramebufferCreateInfo structure is defined as:

typedef struct VkFramebufferCreateInfo {

VkStructureType sType;

const void* pNext;
VkFramebufferCreateFlags flags;
VkRenderPass renderPass;
uint32_t attachmentCount;
const VkImageView* pAttachments;
uint32_ t width;

uint32_t height;

uint32_ t layers;

} VkFramebufferCreatelnfo;

* sType is the type of this structure.
» pNext is NULL or a pointer to an extension-specific structure.
o flags is reserved for future use.

* renderPass is a render pass that defines what render passes the framebuffer will be compatible
with. See Render Pass Compatibility for details.

e attachmentCount is the number of attachments.

* pAttachments is an array of VkImageView handles, each of which will be used as the corresponding
attachment in a render pass instance.

* width, height and layers define the dimensions of the framebuffer.

Image subresources used as attachments must not be accessed in any other way for the duration of
a render pass instance.

Note

This restriction means that the render pass has full knowledge of all uses of all of

0 the attachments, so that the implementation is able to make correct decisions
about when and how to perform layout transitions, when to overlap execution of
subpasses, etc.

It is legal for a subpass to use no color or depth/stencil attachments, and rather use shader side
effects such as image stores and atomics to produce an output. In this case, the subpass continues to

149

use the width, height, and layers of the framebuffer to define the dimensions of the rendering area,
and the rasterizationSamples from each pipeline’s VkPipelineMultisampleStateCreateInfo to define
the number of samples used in rasterization; however, if VkPhysicalDeviceFeatures
::variableMultisampleRate is VK_FALSE, then all pipelines to be bound with a given zero-attachment
subpass must have the same value for VkPipelineMultisampleStateCreatelnfo
:rasterizationSamples.

Valid Usage

 attachmentCount must be equal to the attachment count specified in renderPass

* Any given element of pAttachments that is used as a color attachment or resolve

attachment by renderPass must have been created with a usage value including
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

* Any given element of pAttachments that is used as a depth/stencil attachment by renderPass

must have been created with a usage value including
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

* Any given element of pAttachments that is used as an input attachment by renderPass must
have been created with a usage value including VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

* Any given element of pAttachments must have been created with an VkFormat value that

matches the VkFormat specified by the corresponding VkAttachmentDescription in
renderPass

* Any given element of pAttachments must have been created with a samples value that

matches the samples value specified by the corresponding VkAttachmentDescription in
renderPass

* Any given element of pAttachments must have dimensions at least as large as the
corresponding framebuffer dimension

* Any given element of pAttachments must only specify a single mip level

* Any given element of pAttachments must have been created with the identity swizzle
» width must be greater than 0.

» width must be less than or equal to VkPhysicalDevicelimits::maxFramebufferWidth

* height must be greater than 0.

* height must be less than or equal to VkPhysicalDevicelLimits::maxFramebufferHeight

* layers must be greater than 0.

* layers must be less than or equal to VkPhysicalDevicelLimits::maxFramebufferLayers

150

Valid Usage (Implicit)

* sType must be VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO
* pNext must be NULL

» flags must be 0

* renderPass must be a valid VkRenderPass handle

o If attachmentCount is not @, pAttachments must be a pointer to an array of attachmentCount
valid VkImageView handles

» Both of renderPass, and the elements of pAttachments that are valid handles must have
been created, allocated, or retrieved from the same VkDevice

To destroy a framebuffer, call:

void vkDestroyFramebuffer(

VkDevice device,
VkFramebuffer framebuffer,
const VkAllocationCallbacks* pAllocator);

* device is the logical device that destroys the framebuffer.
o framebuffer is the handle of the framebuffer to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

 All submitted commands that refer to framebuffer must have completed execution

» If VkAllocationCallbacks were provided when framebuffer was created, a compatible set of
callbacks must be provided here

* If no VkAllocationCallbacks were provided when framebuffer was created, pAllocator
must be NULL

Valid Usage (Implicit)

e device must be a valid VkDevice handle
o If framebuffer is not VK NULL_HANDLE, framebuffer must be a valid VkFramebuffer handle

o If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

o If framebuffer is a valid handle, it must have been created, allocated, or retrieved from
device

151

Host Synchronization

» Host access to framebuffer must be externally synchronized

7.4. Render Pass Commands

An application records the commands for a render pass instance one subpass at a time, by
beginning a render pass instance, iterating over the subpasses to record commands for that

subpass, and then ending the render pass instance.

To begin a render pass instance, call:

void vkCmdBeginRenderPass(

VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo* pRenderPassBegin,
VkSubpassContents contents);

e commandBuffer is the command buffer in which to record the command.

* pRenderPassBegin is a pointer to a VkRenderPassBeginInfo structure (defined below) which
indicates the render pass to begin an instance of, and the framebuffer the instance uses.

* contents is a VkSubpassContents value specifying how the commands in the first subpass will be

provided.

After beginning a render pass instance, the command buffer is ready to record the commands for
the first subpass of that render pass.

152

Valid Usage

If any of the initiallayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL then the corresponding attachment image
subresource of the framebuffer specified in the framebuffer member of pRenderPassBegin
must have been created with VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT set

If any of the initiallayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT _OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL then the corresponding attachment
image subresource of the framebuffer specified in the framebuffer member of
pRenderPassBegin must have been created with
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT set

If any of the initiallayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL then the corresponding attachment image
subresource of the framebuffer specified in the framebuffer member of pRenderPassBegin
must have been created with VK_IMAGE _USAGE_SAMPLED BIT or
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT set

If any of the initiallayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL then the corresponding attachment image
subresource of the framebuffer specified in the framebuffer member of pRenderPassBegin
must have been created with VK_IMAGE USAGE TRANSFER SRC BIT set

If any of the initiallayout or finallLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL then the corresponding attachment image
subresource of the framebuffer specified in the framebuffer member of pRenderPassBegin
must have been created with VK_IMAGE USAGE TRANSFER DST BIT set

If any of the initiallayout members of the VkAttachmentDescription structures specified
when creating the render pass specified in the renderPass member of pRenderPassBegin is
not VK_IMAGE _LAYOUT_UNDEFINED, then each such initiallLayout must be equal to the current
layout of the corresponding attachment image subresource of the framebuffer specified
in the framebuffer member of pRenderPassBegin

The srcStageMask and dstStageMask members of any element of the pDependencies member
of VKkRenderPassCreateInfo used to create renderpass must be supported by the
capabilities of the queue family identified by the queueFamilyIndex member of the
VkCommandPoolCreateInfo used to create the command pool which commandBuffer was
allocated from.

153

Valid Usage (Implicit)

» commandBuffer must be a valid VkCommandBuffer handle

* pRenderPassBegin must be a pointer to a valid VkRenderPassBeginInfo structure
» contents must be a valid VkSubpassContents value

» commandBuffer must be in the recording state

* The VkCommandPool that commandBuffer was allocated from must support graphics
operations

» This command must only be called outside of a render pass instance

» commandBuffer must be a primary VkCommandBuffer

Host Synchronization

* Host access to commandBuffer must be externally synchronized

» Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer Render Pass Scope Supported Queue Pipeline Type
Levels Types

Primary Outside Graphics Graphics

The VkRenderPassBeginInfo structure is defined as:

typedef struct VkRenderPassBeginInfo {

VkStructureType sType;

const void* pNext;
VkRenderPass renderPass;
VkFramebuffer framebuffer;
VkRect2D renderArea;
uint32_t clearValueCount;

const VkClearValue* pClearValues;
} VkRenderPassBeginInfo;

* sType is the type of this structure.

pNext is NULL or a pointer to an extension-specific structure.
* renderPass is the render pass to begin an instance of.

» framebuffer is the framebuffer containing the attachments that are used with the render pass.

154

* renderArea is the render area that is affected by the render pass instance, and is described in
more detail below.

* clearValueCount is the number of elements in pClearValues.

» pClearValues is an array of VkClearValue structures that contains clear values for each
attachment, if the attachment uses a loadOp value of VK_ATTACHMENT_LOAD_OP_CLEAR or if the
attachment has a depth/stencil format and wuses a stencilloadOp value of
VK_ATTACHMENT_LOAD_OP_CLEAR. The array is indexed by attachment number. Only elements
corresponding to cleared attachments are used. Other elements of pClearValues are ignored.

renderArea is the render area that is affected by the render pass instance. The effects of attachment
load, store and multisample resolve operations are restricted to the pixels whose X and y
coordinates fall within the render area on all attachments. The render area extends to all layers of
framebuffer. The application must ensure (using scissor if necessary) that all rendering is contained
within the render area, otherwise the pixels outside of the render area become undefined and
shader side effects may occur for fragments outside the render area. The render area must be
contained within the framebuffer dimensions.

Note

0 There may be a performance cost for using a render area smaller than the
framebuffer, unless it matches the render area granularity for the render pass.

Valid Usage

» clearValueCount must be greater than the largest attachment index in renderPass that

specifies a loadOp (or stencilloadOp, if the attachment has a depth/stencil format) of
VK_ATTACHMENT _LOAD_OP_CLEAR

o If clearValueCount is not @, pClearValues must be a pointer to an array of clearValueCount
valid VkClearValue unions

* renderPass must be compatible with the renderPass member of the
VkFramebufferCreateInfo structure specified when creating framebuffer.

Valid Usage (Implicit)

* sType must be VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO
* pNext must be NULL

 renderPass must be a valid VkRenderPass handle

» framebuffer must be a valid VkFramebuffer handle

« Both of framebuffer, and renderPass must have been created, allocated, or retrieved from
the same VkDevice

Possible values of vkCmdBeginRenderPass::contents, specifying how the commands in the first
subpass will be provided, are:

155

typedef enum VkSubpassContents {

}

VK_SUBPASS_CONTENTS_INLINE = 0,
VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS = 1,
VkSubpassContents;

VK_SUBPASS_CONTENTS_INLINE specifies that the contents of the subpass will be recorded inline in
the primary command buffer, and secondary command buffers must not be executed within
the subpass.

VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS specifies that the contents are recorded in
secondary command buffers that will be called from the primary command buffer, and
vkCmdExecuteCommands is the only valid command on the command buffer until
vkCmdNextSubpass or vkCmdEndRenderPass.

To query the render area granularity, call:

void vkGetRenderAreaGranularity(

VkDevice device,
VkRenderPass renderPass,
VkExtent2D* pGranularity);

device is the logical device that owns the render pass.
renderPass is a handle to a render pass.

pGranularity points to a VkExtent2D structure in which the granularity is returned.

The conditions leading to an optimal renderArea are:

the offset.x member in renderArea is a multiple of the width member of the returned
VkExtent2D (the horizontal granularity).

the offset.y member in renderArea is a multiple of the height of the returned VkExtent2D (the
vertical granularity).

either the offset.width member in renderArea is a multiple of the horizontal granularity or
offset.x+offset.width is equal to the width of the framebuffer in the VkRenderPassBeginInfo.

either the offset.height member in renderArea is a multiple of the vertical granularity or
offset.y+offset.height is equal to the height of the framebuffer in the VkRenderPassBeginInfo.

Subpass dependencies are not affected by the render area, and apply to the entire image
subresources attached to the framebuffer as specified in the description of automatic layout
transitions. Similarly, pipeline barriers are valid even if their effect extends outside the render
area.

156

Valid Usage (Implicit)

* device must be a valid VkDevice handle
* renderPass must be a valid VkRenderPass handle
* pGranularity must be a pointer to a VkExtent2D structure

* renderPass must have been created, allocated, or retrieved from device

To transition to the next subpass in the render pass instance after recording the commands for a
subpass, call:

void vkCmdNextSubpass(
VkCommandBuffer commandBuffer,
VkSubpassContents contents);

e commandBuffer is the command buffer in which to record the command.

* contents specifies how the commands in the next subpass will be provided, in the same fashion
as the corresponding parameter of vkCmdBeginRenderPass.

The subpass index for a render pass begins at zero when vkCmdBeginRenderPass is recorded, and
increments each time vkCmdNextSubpass is recorded.

Moving to the next subpass automatically performs any multisample resolve operations in the
subpass being ended. End-of-subpass multisample resolves are treated as color attachment writes
for the purposes of synchronization. That is, they are considered to execute in the
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage and their writes are synchronized
with VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between rendering within a subpass
and any resolve operations at the end of the subpass occurs automatically, without need for explicit
dependencies or pipeline barriers. However, if the resolve attachment is also used in a different
subpass, an explicit dependency is needed.

After transitioning to the next subpass, the application can record the commands for that subpass.

Valid Usage

» The current subpass index must be less than the number of subpasses in the render pass
minus one

157

Valid Usage (Implicit)

» commandBuffer must be a valid VkCommandBuffer handle
» contents must be a valid VkSubpassContents value
» commandBuffer must be in the recording state

* The VkCommandPool that commandBuffer was allocated from must support graphics
operations

* This command must only be called inside of a render pass instance

» commandBuffer must be a primary VkCommandBuffer

Host Synchronization

» Host access to commandBuffer must be externally synchronized

» Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer Render Pass Scope Supported Queue Pipeline Type
Levels Types

Primary Inside Graphics Graphics

To record a command to end a render pass instance after recording the commands for the last
subpass, call:

void vkCmdEndRenderPass(
VkCommandBuffer commandBuffer);

» commandBuffer is the command buffer in which to end the current render pass instance.

Ending a render pass instance performs any multisample resolve operations on the final subpass.

Valid Usage

» The current subpass index must be equal to the number of subpasses in the render pass
minus one

158

Valid Usage (Implicit)

o commandBuffer must be a valid VkCommandBuffer handle
» commandBuffer must be in the recording state

* The VkCommandPool that commandBuffer was allocated from must support graphics
operations

* This command must only be called inside of a render pass instance

» commandBuffer must be a primary VkCommandBuffer

Host Synchronization

* Host access to commandBuffer must be externally synchronized

» Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer Render Pass Scope Supported Queue Pipeline Type
Levels Types

Primary Inside Graphics Graphics

159

Chapter 8. Shaders

A shader specifies programmable operations that execute for each vertex, control point, tessellated
verteX, primitive, fragment, or workgroup in the corresponding stage(s) of the graphics and
compute pipelines.

Graphics pipelines include vertex shader execution as a result of primitive assembly, followed, if
enabled, by tessellation control and evaluation shaders operating on patches, geometry shaders, if
enabled, operating on primitives, and fragment shaders, if present, operating on fragments
generated by Rasterization. In this specification, vertex, tessellation control, tessellation evaluation
and geometry shaders are collectively referred to as vertex processing stages and occur in the
logical pipeline before rasterization. The fragment shader occurs logically after rasterization.

Only the compute shader stage is included in a compute pipeline. Compute shaders operate on
compute invocations in a workgroup.

Shaders can read from input variables, and read from and write to output variables. Input and
output variables can be used to transfer data between shader stages, or to allow the shader to
interact with values that exist in the execution environment. Similarly, the execution environment
provides constants that describe capabilities.

Shader variables are associated with execution environment-provided inputs and outputs using
built-in decorations in the shader. The available decorations for each stage are documented in the
following subsections.

8.1. Shader Modules

Shader modules contain shader code and one or more entry points. Shaders are selected from a
shader module by specifying an entry point as part of pipeline creation. The stages of a pipeline can
use shaders that come from different modules. The shader code defining a shader module must be
in the SPIR-V format, as described by the Vulkan Environment for SPIR-V appendix.

Shader modules are represented by VkShaderModule handles:
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkShaderModule)
To create a shader module, call:

VkResult vkCreateShaderModule(

VkDevice device,

const VkShaderModuleCreateInfo* pCreatelnfo,
const VkAllocationCallbacks* pAllocator,
VkShaderModule* pShaderModule);

* device is the logical device that creates the shader module.

 pCreateInfo parameter is a pointer to an instance of the VkShaderModuleCreateInfo structure.

160

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

 pShaderModule points to a VkShaderModule handle in which the resulting shader module object is
returned.

Once a shader module has been created, any entry points it contains can be used in pipeline shader
stages as described in Compute Pipelines and Graphics Pipelines.
Valid Usage (Implicit)

e device must be a valid VkDevice handle

pCreateInfo must be a pointer to a valid VkShaderModuleCreateInfo structure

If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

pShaderModule must be a pointer to a VkShaderModule handle

Return Codes

Success
o VK_SUCCESS

Failure
« VK_ERROR_QUT_OF HOST_MEMORY
« VK_ERROR_OUT_OF DEVICE MEMORY

The VkShaderModuleCreateInfo structure is defined as:

typedef struct VkShaderModuleCreateInfo {

VkStructureType sType;
const void* pNext;
VkShaderModuleCreateFlags flags;
size t codeSize;
const uint32_t* pCode;

} VkShaderModuleCreatelInfo;

* sType is the type of this structure.

* pNext is NULL or a pointer to an extension-specific structure.
» flags is reserved for future use.

* codeSize is the size, in bytes, of the code pointed to by pCode.

* pCode points to code that is used to create the shader module. The type and format of the code is
determined from the content of the memory addressed by pCode.

161

Valid Usage

 codeSize must be greater than 0
* codeSize must be a multiple of 4

* pCode must point to valid SPIR-V code, formatted and packed as described by the Khronos
SPIR-V Specification

» pCode must adhere to the validation rules described by the Validation Rules within a
Module section of the SPIR-V Environment appendix

* pCode must declare the Shader capability for SPIR-V code

» pCode must not declare any capability that is not supported by the API, as described by the
Capabilities section of the SPIR-V Environment appendix

o If pCode declares any of the capabilities that are listed as not required by the
implementation, the relevant feature must be enabled, as listed in the SPIR-V
Environment appendix

Valid Usage (Implicit)

* sType must be VK_STRUCTURE_TYPE_SHADER_MODULE _CREATE_INFO
* pNext must be NULL
» flags must be 0

« pCode must be a pointer to an array of codeSizz yint32_t values

To destroy a shader module, call:

void vkDestroyShaderModule(

VkDevice device,
VkShaderModule shaderModule,
const VkAllocationCallbacks* pAllocator);

* device is the logical device that destroys the shader module.
* shaderModule is the handle of the shader module to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

A shader module can be destroyed while pipelines created using its shaders are still in use.

162

Valid Usage
o If VkAllocationCallbacks were provided when shaderModule was created, a compatible set
of callbacks must be provided here

» If no VkAllocationCallbacks were provided when shaderModule was created, pAllocator
must be NULL

Valid Usage (Implicit)

e device must be a valid VkDevice handle

o If shaderModule is not VK NULL HANDLE, shaderModule must be a valid VkShaderModule
handle

o If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

o If shaderModule is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

* Host access to shaderModule must be externally synchronized

8.2. Shader Execution

At each stage of the pipeline, multiple invocations of a shader may execute simultaneously. Further,
invocations of a single shader produced as the result of different commands may execute
simultaneously. The relative execution order of invocations of the same shader type is undefined.
Shader invocations may complete in a different order than that in which the primitives they
originated from were drawn or dispatched by the application. However, fragment shader outputs
are written to attachments in rasterization order.

The relative order of invocations of different shader types is largely undefined. However, when
invoking a shader whose inputs are generated from a previous pipeline stage, the shader
invocations from the previous stage are guaranteed to have executed far enough to generate input
values for all required inputs.

8.3. Shader Memory Access Ordering

The order in which image or buffer memory is read or written by shaders is largely undefined. For
some shader types (vertex, tessellation evaluation, and in some cases, fragment), even the number
of shader invocations that may perform loads and stores is undefined.

In particular, the following rules apply:

163

» Vertex and tessellation evaluation shaders will be invoked at least once for each unique vertex,
as defined in those sections.

* Fragment shaders will be invoked zero or more times, as defined in that section.

» The relative order of invocations of the same shader type are undefined. A store issued by a
shader when working on primitive B might complete prior to a store for primitive A, even if
primitive A is specified prior to primitive B. This applies even to fragment shaders; while
fragment shader outputs are always written to the framebuffer in rasterization order, stores
executed by fragment shader invocations are not.

» The relative order of invocations of different shader types is largely undefined.

Note

The above limitations on shader invocation order make some forms of

O synchronization between shader invocations within a single set of primitives
unimplementable. For example, having one invocation poll memory written by
another invocation assumes that the other invocation has been launched and will
complete its writes in finite time.

Stores issued to different memory locations within a single shader invocation may not be visible to
other invocations, or may not become visible in the order they were performed.

The OpMemoryBarrier instruction can be used to provide stronger ordering of reads and writes
performed by a single invocation. OpMemoryBarrier guarantees that any memory transactions issued
by the shader invocation prior to the instruction complete prior to the memory transactions issued
after the instruction. Memory barriers are needed for algorithms that require multiple invocations
to access the same memory and require the operations to be performed in a partially-defined
relative order. For example, if one shader invocation does a series of writes, followed by an
OpMemoryBarrier instruction, followed by another write, then the results of the series of writes
before the barrier become visible to other shader invocations at a time earlier or equal to when the
results of the final write become visible to those invocations. In practice it means that another
invocation that sees the results of the final write would also see the previous writes. Without the
memory barrier, the final write may be visible before the previous writes.

Writes that are the result of shader stores through a variable decorated with Coherent automatically
have available writes to the same buffer, buffer view, or image view made visible to them, and are
themselves automatically made available to access by the same buffer, buffer view, or image view.
Reads that are the result of shader loads through a variable decorated with Coherent automatically
have available writes to the same buffer, buffer view, or image view made visible to them. The
order that coherent writes to different locations become available is undefined, unless enforced by
a memory barrier instruction or other memory dependency.

Note

0 Explicit memory dependencies must still be used to guarantee availability and
visibility for access via other buffers, buffer views, or image views.

The built-in atomic memory transaction instructions can be used to read and write a given memory
address atomically. While built-in atomic functions issued by multiple shader invocations are

164

executed in undefined order relative to each other, these functions perform both a read and a write
of a memory address and guarantee that no other memory transaction will write to the underlying
memory between the read and write. Atomic operations ensure automatic availability and visibility
for writes and reads in the same way as those to Coherent variables.

Example 1. Note

Memory accesses performed on different resource descriptors with the same memory backing
may not be well-defined even with the Coherent decoration or via atomics, due to things such
as image layouts or ownership of the resource - as described in the Synchronization and Cache
Control chapter.

Note

0 Atomics allow shaders to use shared global addresses for mutual exclusion or as
counters, among other uses.

8.4. Shader Inputs and Outputs

Data is passed into and out of shaders using variables with input or output storage class,
respectively. User-defined inputs and outputs are connected between stages by matching their
Location decorations. Additionally, data can be provided by or communicated to special functions
provided by the execution environment using BuiltIn decorations.

In many cases, the same BuiltIn decoration can be used in multiple shader stages with similar
meaning. The specific behavior of variables decorated as BuiltIn is documented in the following
sections.

8.5. Vertex Shaders

Each vertex shader invocation operates on one vertex and its associated vertex attribute data, and
outputs one vertex and associated data. Graphics pipelines must include a vertex shader, and the
vertex shader stage is always the first shader stage in the graphics pipeline.

8.5.1. Vertex Shader Execution

A vertex shader must be executed at least once for each vertex specified by a draw command.
During execution, the shader is presented with the index of the vertex and instance for which it has
been invoked. Input variables declared in the vertex shader are filled by the implementation with
the values of vertex attributes associated with the invocation being executed.

If the same vertex is specified multiple times in a draw command (e.g. by including the same index
value multiple times in an index buffer) the implementation may reuse the results of vertex
shading if it can statically determine that the vertex shader invocations will produce identical
results.

165

Note

It is implementation-dependent when and if results of vertex shading are reused,

0 and thus how many times the vertex shader will be executed. This is true also if
the vertex shader contains stores or atomic operations (see
vertexPipelineStoresAndAtomics).

8.6. Tessellation Control Shaders

The tessellation control shader is used to read an input patch provided by the application and to
produce an output patch. Each tessellation control shader invocation operates on an input patch
(after all control points in the patch are processed by a vertex shader) and its associated data, and
outputs a single control point of the output patch and its associated data, and can also output
additional per-patch data. The input patch is sized according to the patchControlPoints member of
VkPipelineTessellationStateCreateInfo, as part of input assembly. The size of the output patch is
controlled by the OpExecutionMode OutputVertices specified in the tessellation control or tessellation
evaluation shaders, which must be specified in at least one of the shaders. The size of the input and
output patches must each be greater than zero and less than or equal to VkPhysicalDevicelLimits
::maxTessellationPatchSize.

8.6.1. Tessellation Control Shader Execution
A tessellation control shader is invoked at least once for each output vertex in a patch.

Inputs to the tessellation control shader are generated by the vertex shader. Each invocation of the
tessellation control shader can read the attributes of any incoming vertices and their associated
data. The invocations corresponding to a given patch execute logically in parallel, with undefined
relative execution order. However, the OpControlBarrier instruction can be used to provide limited
control of the execution order by synchronizing invocations within a patch, effectively dividing
tessellation control shader execution into a set of phases. Tessellation control shaders will read
undefined values if one invocation reads a per-vertex or per-patch attribute written by another
invocation at any point during the same phase, or if two invocations attempt to write different
values to the same per-patch output in a single phase.

8.7. Tessellation Evaluation Shaders

The Tessellation Evaluation Shader operates on an input patch of control points and their
associated data, and a single input barycentric coordinate indicating the invocation’s relative
position within the subdivided patch, and outputs a single vertex and its associated data.

8.7.1. Tessellation Evaluation Shader Execution

A tessellation evaluation shader is invoked at least once for each unique vertex generated by the
tessellator.

166

8.8. Geometry Shaders

The geometry shader operates on a group of vertices and their associated data assembled from a
single input primitive, and emits zero or more output primitives and the group of vertices and their
associated data required for each output primitive.

8.8.1. Geometry Shader Execution

A geometry shader is invoked at least once for each primitive produced by the tessellation stages,
or at least once for each primitive generated by primitive assembly when tessellation is not in use.
The number of geometry shader invocations per input primitive is determined from the invocation
count of the geometry shader specified by the OpExecutionMode Invocations in the geometry shader.
If the invocation count is not specified, then a default of one invocation is executed.

8.9. Fragment Shaders

Fragment shaders are invoked as the result of rasterization in a graphics pipeline. Each fragment
shader invocation operates on a single fragment and its associated data. With few exceptions,
fragment shaders do not have access to any data associated with other fragments and are
considered to execute in isolation of fragment shader invocations associated with other fragments.

8.9.1. Fragment Shader Execution

For each fragment generated by rasterization, a fragment shader may be invoked. A fragment
shader must not be invoked if the Early Per-Fragment Tests cause it to have no coverage.

Furthermore, if it is determined that a fragment generated as the result of rasterizing a first
primitive will have its outputs entirely overwritten by a fragment generated as the result of
rasterizing a second primitive in the same subpass, and the fragment shader used for the fragment
has no other side effects, then the fragment shader may not be executed for the fragment from the
first primitive.

Relative ordering of execution of different fragment shader invocations is not defined.
The number of fragment shader invocations produced per-pixel is determined as follows:

* If per-sample shading is enabled, the fragment shader is invoked once per covered sample.

* Otherwise, the fragment shader is invoked at least once per fragment but no more than once
per covered sample.

In addition to the conditions outlined above for the invocation of a fragment shader, a fragment
shader invocation may be produced as a helper invocation. A helper invocation is a fragment
shader invocation that is created solely for the purposes of evaluating derivatives for use in non-
helper fragment shader invocations. Stores and atomics performed by helper invocations must not
have any effect on memory, and values returned by atomic instructions in helper invocations are
undefined.

167

8.9.2. Early Fragment Tests

An explicit control is provided to allow fragment shaders to enable early fragment tests. If the
fragment shader specifies the EarlyFragmentTests OpExecutionMode, the per-fragment tests described
in Early Fragment Test Mode are performed prior to fragment shader execution. Otherwise, they
are performed after fragment shader execution.

8.10. Compute Shaders

Compute shaders are invoked via vkCmdDispatch and vkCmdDispatchIndirect commands. In
general, they have access to similar resources as shader stages executing as part of a graphics
pipeline.

Compute workloads are formed from groups of work items called workgroups and processed by the
compute shader in the current compute pipeline. A workgroup is a collection of shader invocations
that execute the same shader, potentially in parallel. Compute shaders execute in global
workgroups which are divided into a number of local workgroups with a size that can be set by
assigning a value to the LocalSize execution mode or via an object decorated by the WorkgroupSize
decoration. An invocation within a local workgroup can share data with other members of the local
workgroup through shared variables and issue memory and control flow barriers to synchronize
with other members of the local workgroup.

8.11. Interpolation Decorations

Interpolation decorations control the behavior of attribute interpolation in the fragment shader
stage. Interpolation decorations can be applied to Input storage class variables in the fragment
shader stage’s interface, and control the interpolation behavior of those variables.

Inputs that could be interpolated can be decorated by at most one of the following decorations:

* Flat: no interpolation
* NoPerspective: linear interpolation (for lines and polygons).

Fragment input variables decorated with neither Flat nor NoPerspective use perspective-correct
interpolation (for lines and polygons).

The presence of and type of interpolation is controlled by the above interpolation decorations as
well as the auxiliary decorations Centroid and Sample.

A variable decorated with Flat will not be interpolated. Instead, it will have the same value for
every fragment within a triangle. This value will come from a single provoking vertex. A variable
decorated with Flat can also be decorated with Centroid or Sample, which will mean the same thing
as decorating it only as Flat.

For fragment shader input variables decorated with neither Centroid nor Sample, the assigned
variable may be interpolated anywhere within the pixel and a single value may be assigned to each
sample within the pixel.

Centroid and Sample can be used to control the location and frequency of the sampling of the

168

decorated fragment shader input. If a fragment shader input is decorated with Centroid, a single
value may be assigned to that variable for all samples in the pixel, but that value must be
interpolated to a location that lies in both the pixel and in the primitive being rendered, including
any of the pixel’s samples covered by the primitive. Because the location at which the variable is
interpolated may be different in neighboring pixels, and derivatives may be computed by
computing differences between neighboring pixels, derivatives of centroid-sampled inputs may be
less accurate than those for non-centroid interpolated variables. If a fragment shader input is
decorated with Sample, a separate value must be assigned to that variable for each covered sample
in the pixel, and that value must be sampled at the location of the individual sample. When
rasterizationSamples is VK_SAMPLE_COUNT_1_BIT, the pixel center must be used for Centroid, Sample,
and undecorated attribute interpolation.

Fragment shader inputs that are signed or unsigned integers, integer vectors, or any double-
precision floating-point type must be decorated with Flat.

8.12. Static Use

A SPIR-V module declares a global object in memory using the OpVariable instruction, which results
in a pointer x to that object. A specific entry point in a SPIR-V module is said to statically use that
object if that entry point’s call tree contains a function that contains a memory instruction or image
instruction with x as an id operand. See the “Memory Instructions” and “Image Instructions”
subsections of section 3 “Binary Form” of the SPIR-V specification for the complete list of SPIR-V
memory instructions.

Static use is not used to control the behavior of variables with Input and Output storage. The effects
of those variables are applied based only on whether they are present in a shader entry point’s
interface.

8.13. Invocation and Derivative Groups

An invocation group (see the subsection “Control Flow” of section 2 of the SPIR-V specification) for a
compute shader is the set of invocations in a single local workgroup. For graphics shaders, an
invocation group is an implementation-dependent subset of the set of shader invocations of a given
shader stage which are produced by a single drawing command. For indirect drawing commands
with drawCount greater than one, invocations from separate draws are in distinct invocation groups.

Note

0 Because the partitioning of invocations into invocation groups is implementation-
dependent and not observable, applications generally need to assume the worst
case of all invocations in a draw belonging to a single invocation group.

A derivative group (see the subsection “Control Flow” of section 2 of the SPIR-V 1.00 Revision 4
specification) for a fragment shader is the set of invocations generated by a single primitive (point,
line, or triangle), including any helper invocations generated by that primitive. Derivatives are
undefined for a sampled image instruction if the instruction is in flow control that is not uniform
across the derivative group.

169

Chapter 9. Pipelines

The following figure shows a block diagram of the Vulkan pipelines. Some Vulkan commands
specify geometric objects to be drawn or computational work to be performed, while others specify
state controlling how objects are handled by the various pipeline stages, or control data transfer
between memory organized as images and buffers. Commands are effectively sent through a
processing pipeline, either a graphics pipeline or a compute pipeline.

The first stage of the graphics pipeline (Input Assembler) assembles vertices to form geometric
primitives such as points, lines, and triangles, based on a requested primitive topology. In the next
stage (Vertex Shader) vertices can be transformed, computing positions and attributes for each
vertex. If tessellation and/or geometry shaders are supported, they can then generate multiple
primitives from a single input primitive, possibly changing the primitive topology or generating
additional attribute data in the process.

The final resulting primitives are clipped to a clip volume in preparation for the next stage,
Rasterization. The rasterizer produces a series of framebuffer addresses and values using a two-
dimensional description of a point, line segment, or triangle. Each fragment so produced is fed to
the next stage (Fragment Shader) that performs operations on individual fragments before they
finally alter the framebuffer. These operations include conditional updates into the framebuffer
based on incoming and previously stored depth values (to effect depth buffering), blending of
incoming fragment colors with stored colors, as well as masking, stenciling, and other logical
operations on fragment values.

Framebuffer operations read and write the color and depth/stencil attachments of the framebuffer
for a given subpass of a render pass instance. The attachments can be used as input attachments in
the fragment shader in a later subpass of the same render pass.

The compute pipeline is a separate pipeline from the graphics pipeline, which operates on one-,
two-, or three-dimensional workgroups which can read from and write to buffer and image
memory.

This ordering is meant only as a tool for describing Vulkan, not as a strict rule of how Vulkan is
implemented, and we present it only as a means to organize the various operations of the pipelines.
Actual ordering guarantees between pipeline stages are explained in detail in the synchronization
chapter.

170

] o s Indirect Buffer Binding >~ e :
- B

- Input Assembler - Compute Assembler -
- Vertex Shader <> A Compute Shader -

l <e— Push Constants —
- Tessellation Assembler - R XX RTT L TS .
: Descriptor Sets :

= Tessellation Control Shader «€&>l€—= Sampled Image -—)

= Tessellation Primitive Generator »

= Tessellation Evaluation Shader <&

- Geometry Assembler -

- Geometry Shader <>

- Primitive Assembler -

- Rasterization -

- Pre-Fragment Operations € | Legend

- Fragment Assembler - = Fixed Function Stage m
: Framebuffer :

- Fragment Shader Lﬁ Input Attachment

= Programmable Stage =

= Post-Fragment Operations <% Depth/ Stencil Attachment —
. | | L
= Color/ Blending Operations e Color Attachment = . Constants .

Figure 1. Block diagram of the Vulkan pipeline

Each pipeline is controlled by a monolithic object created from a description of all of the shader
stages and any relevant fixed-function stages. Linking the whole pipeline together allows the
optimization of shaders based on their input/outputs and eliminates expensive draw time state
validation.

A pipeline object is bound to the device state in command buffers. Any pipeline object state that is
marked as dynamic is not applied to the device state when the pipeline is bound. Dynamic state not
set by binding the pipeline object can be modified at any time and persists for the lifetime of the
command buffer, or until modified by another dynamic state command or another pipeline bind.
No state, including dynamic state, is inherited from one command buffer to another. Only dynamic
state that is required for the operations performed in the command buffer needs to be set. For
example, if blending is disabled by the pipeline state then the dynamic color blend constants do not
need to be specified in the command buffer, even if this state is marked as dynamic in the pipeline
state object. If a new pipeline object is bound with state not marked as dynamic after a previous

171

pipeline object with that same state as dynamic, the new pipeline object state will override the
dynamic state. Modifying dynamic state that is not set as dynamic by the pipeline state object will
lead to undefined results.

Compute and graphics pipelines are each represented by VkPipeline handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkPipeline)

9.1. Compute Pipelines

Compute pipelines consist of a single static compute shader stage and the pipeline layout.

The compute pipeline represents a compute shader and is created by calling
vkCreateComputePipelines with module and pName selecting an entry point from a shader module,
where that entry point defines a valid compute shader, in the VkPipelineShaderStageCreateInfo
structure contained within the VkComputePipelineCreateInfo structure.

To create compute pipelines, call:

VkResult vkCreateComputePipelines(

VkDevice device,
VkPipelineCache pipelineCache,
uint32 t createInfoCount,
const VkComputePipelineCreateInfo* pCreatelnfos,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipelines);

* device is the logical device that creates the compute pipelines.

» pipelineCache is either VK_NULL_HANDLE, indicating that pipeline caching is disabled; or the
handle of a valid pipeline cache object, in which case use of that cache is enabled for the
duration of the command.

» createInfoCount is the length of the pCreateInfos and pPipelines arrays.
» pCreatelnfos is an array of VkComputePipelineCreateInfo structures.
* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pPipelinesis a pointer to an array in which the resulting compute pipeline objects are returned.

172

Valid Usage

o If the flags member of any given element of pCreateInfos contains the
VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and the basePipelineIndex member of that same
element is not -1, basePipelineIndex must be less than the index into pCreateInfos that
corresponds to that element

o If the flags member of any given element of pCreatelnfos contains the
VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, the base pipeline must have been created with
the VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT flag set

Valid Usage (Implicit)

e device must be a valid VkDevice handle

o If pipelineCache is not VK_NULL_HANDLE, pipelineCache must be a valid VkPipelineCache
handle

* pCreateInfos must be a pointer to an array of createInfoCount wvalid
VkComputePipelineCreatelInfo structures

o If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

» pPipelines must be a pointer to an array of createInfoCount VkPipeline handles
» createInfoCount must be greater than 0

 If pipelineCache is a valid handle, it must have been created, allocated, or retrieved from
device

Return Codes

Success
o VK_SUCCESS

Failure
o VK _ERROR_OUT _OF HOST_MEMORY
o VK _ERROR_OUT _OF DEVICE_MEMORY

The VkComputePipelineCreateInfo structure is defined as:

173

typedef struct VkComputePipelineCreateInfo {

}

VkStructureType sType;
const void* pNext;
VkPipelineCreateFlags flags;
VkPipelineShaderStageCreatelnfo stage;
VkPipelinelLayout layout;
VkPipeline basePipelineHandle;
int32_t basePipelinelIndex;

VkComputePipelineCreateInfo;

sType is the type of this structure.

pNext is NULL or a pointer to an extension-specific structure.

flags is a bitmask of VkPipelineCreateFlagBits specifying how the pipeline will be generated.
stage is a VkPipelineShaderStageCreateInfo describing the compute shader.

layout is the description of binding locations used by both the pipeline and descriptor sets used
with the pipeline.

basePipelineHandle is a pipeline to derive from

basePipelinelndex is an index into the pCreateInfos parameter to use as a pipeline to derive
from

The parameters basePipelineHandle and basePipelineIndex are described in more detail in Pipeline
Derivatives.

stage points to a structure of type VkPipelineShaderStageCreateInfo.

174

Valid Usage

o If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineIndex is -1,
basePipelineHandle must be a valid handle to a compute VkPipeline

 If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineHandle is
VK_NULL_HANDLE, basePipelineIndex must be a valid index into the calling command’s
pCreateInfos parameter

o If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineIndex is not
-1, basePipelineHandle must be VK_NULL_HANDLE

o If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineHandle is not
VK_NULL_HANDLE, basePipelineIndex must be -1

* The stage member of stage must be VK_SHADER_STAGE_COMPUTE_BIT

» The shader code for the entry point identified by stage and the rest of the state identified
by this structure must adhere to the pipeline linking rules described in the Shader
Interfaces chapter

* layout must be consistent with the layout of the compute shader specified in stage

Valid Usage (Implicit)

* sType must be VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO

* pNext must be NULL

» flags must be a valid combination of VkPipelineCreateFlagBits values
* stage must be a valid VkPipelineShaderStageCreateInfo structure

* layout must be a valid VkPipelinelLayout handle

» Both of basePipelineHandle, and layout that are valid handles must have been created,
allocated, or retrieved from the same VkDevice

The VkPipelineShaderStageCreateInfo structure is defined as:

typedef struct VkPipelineShaderStageCreateInfo {

VkStructureType sType;
const void* pNext;
VkPipelineShaderStageCreateFlags flags;
VkShaderStageFlagBits stage;
VkShaderModule module;
const char* pName;
const VkSpecializationInfo* pSpecializationInfo;

} VkPipelineShaderStageCreatelInfo;

* sType is the type of this structure.

» pNext is NULL or a pointer to an extension-specific structure.

» flags is reserved for future use.

* stage is a VkShaderStageFlagBits value specifying a single pipeline stage.
* module is a VkShaderModule object that contains the shader for this stage.

* pName is a pointer to a null-terminated UTF-8 string specifying the entry point name of the
shader for this stage.

* pSpecializationInfo is a pointer to VkSpecializationInfo, as described in Specialization
Constants, and can be NULL.

175

176

Valid Usage

If the geometry shaders feature is not enabled, stage must not be
VK_SHADER_STAGE_GEOMETRY_BIT

If the tessellation shaders feature is not enabled, stage must not be
VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT or
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT

stage must not be VK_SHADER_STAGE_ALL_GRAPHICS, or VK_SHADER_STAGE_ALL

pName must be the name of an OpEntryPoint in module with an execution model that
matches stage

If the identified entry point includes any variable in its interface that is declared with the
ClipDistance BuiltIn decoration, that variable must not have an array size greater than
VkPhysicalDevicelLimits::maxClipDistances

If the identified entry point includes any variable in its interface that is declared with the
CullDistance BuiltIn decoration, that variable must not have an array size greater than
VkPhysicalDevicelLimits::maxCullDistances

If the identified entry point includes any variables in its interface that are declared with
the ClipDistance or CullDistance BuiltIn decoration, those variables must not have array
sizes which sum to more than VkPhysicalDevicelimits::maxCombinedC1lipAndCullDistances

If the identified entry point includes any variable in its interface that is declared with the
SampleMask BuiltIn decoration, that variable must not have an array size greater than
VkPhysicalDevicelimits::maxSampleMaskWords

If stage is VK_SHADER_STAGE_VERTEX_BIT, the identified entry point must not include any
input variable in its interface that is decorated with CullDistance

If stage is VK_SHADER_STAGE _TESSELLATION_CONTROL_BIT or
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, and the identified entry point has an
OpExecutionMode instruction that specifies a patch size with OutputVertices, the patch size
must be greater than @ and less than or equal to VkPhysicalDevicelimits
::maxTessellationPatchSize

If stage is VK_SHADER_STAGE_GEOMETRY_BIT, the identified entry point must have an
OpExecutionMode instruction that specifies a maximum output vertex count that is greater
than @ and less than or equal to VkPhysicalDevicelimits::maxGeometryOutputVertices

If stage is VK_SHADER_STAGE_GEOMETRY_BIT, the identified entry point must have an
OpExecutionMode instruction that specifies an invocation count that is greater than ¢ and
less than or equal to VkPhysicalDevicelimits::maxGeometryShaderInvocations

If stage is VK_SHADER_STAGE_GEOMETRY_BIT, and the identified entry point writes to Layer for
any primitive, it must write the same value to Layer for all vertices of a given primitive

If stage is VK_SHADER_STAGE_GEOMETRY_BIT, and the identified entry point writes to
ViewportIndex for any primitive, it must write the same value to ViewportIndex for all
vertices of a given primitive

If stage is VK_SHADER_STAGE_FRAGMENT_BIT, the identified entry point must not include any
output variables in its interface decorated with CullDistance

o If stage is VK_SHADER_STAGE_FRAGMENT_BIT, and the identified entry point writes to FragDepth
in any execution path, it must write to FragDepth in all execution paths

Valid Usage (Implicit)

 sType must be VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO
e pNext must be NULL

» flags must be 0

» stage must be a valid VkShaderStageFlagBits value

» module must be a valid VkShaderModule handle

* pName must be a null-terminated UTF-8 string

o If pSpecializationInfo is not NULL, pSpecializationInfo must be a pointer to a valid
VkSpecializationInfo structure

Commands and structures which need to specify one or more shader stages do so using a bitmask
whose bits correspond to stages. Bits which can be set to specify shader stages are:

typedef enum VkShaderStageFlagBits {
VK_SHADER_STAGE _VERTEX_BIT = 0x00000001,
VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT = 0x00000002,
VK_SHADER_STAGE _TESSELLATION_EVALUATION_BIT = 0x00000004,
VK_SHADER_STAGE_GEOMETRY_BIT = 0x00000008,
VK_SHADER_STAGE_FRAGMENT_BIT = 0x00000010,
VK_SHADER_STAGE _COMPUTE_BIT = 0x00000020,
VK_SHADER_STAGE_ALL_GRAPHICS = 0x0000001F,
VK_SHADER_STAGE_ALL = @x7FFFFFFF,

} VkShaderStageFlagBits;

» VK_SHADER_STAGE_VERTEX_BIT specifies the vertex stage.

 VK_SHADER_STAGE _TESSELLATION_CONTROL_BIT specifies the tessellation control stage.

» VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT specifies the tessellation evaluation stage.
» VK_SHADER_STAGE_GEOMETRY_BIT specifies the geometry stage.

» VK_SHADER_STAGE_FRAGMENT _BIT specifies the fragment stage.
 VK_SHADER_STAGE_COMPUTE_BIT specifies the compute stage.

» VK_SHADER_STAGE_ALL_GRAPHICS is a combination of bits used as shorthand to specify all graphics
stages defined above (excluding the compute stage).

» VK_SHADER_STAGE_ALL is a combination of bits used as shorthand to specify all shader stages
supported by the device, including all additional stages which are introduced by extensions.

177

9.2. Graphics Pipelines

Graphics pipelines consist of multiple shader stages, multiple fixed-function pipeline stages, and a
pipeline layout.

To create graphics pipelines, call:

VkResult vkCreateGraphicsPipelines(

VkDevice device,
VkPipelineCache pipelineCache,
uint32 t createInfoCount,
const VkGraphicsPipelineCreateInfo* pCreatelnfos,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipelines);

* device is the logical device that creates the graphics pipelines.

» pipelineCache is either VK_NULL_HANDLE, indicating that pipeline caching is disabled; or the
handle of a valid pipeline cache object, in which case use of that cache is enabled for the
duration of the command.

» createInfoCount is the length of the pCreateInfos and pPipelines arrays.

» pCreatelnfosis an array of VkGraphicsPipelineCreateInfo structures.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

» pPipelinesis a pointer to an array in which the resulting graphics pipeline objects are returned.
The VkGraphicsPipelineCreateInfo structure includes an array of shader create info structures

containing all the desired active shader stages, as well as creation info to define all relevant fixed-
function stages, and a pipeline layout.

Valid Usage

o If the flags member of any given element of pCreatelnfos contains the
VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and the basePipelineIndex member of that same
element is not -1, basePipelineIndex must be less than the index into pCreateInfos that
corresponds to that element

o If the flags member of any given element of pCreatelnfos contains the
VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, the base pipeline must have been created with
the VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT flag set

178

Valid Usage (Implicit)

* device must be a valid VkDevice handle

o If pipelineCache is not VK_NULL_HANDLE, pipelineCache must be a valid VkPipelineCache
handle

» pCreateInfos must be a pointer to an array of createInfoCount valid
VkGraphicsPipelineCreateInfo structures

o If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

» pPipelines must be a pointer to an array of createInfoCount VkPipeline handles
» createInfoCount must be greater than 0

» If pipelineCache is a valid handle, it must have been created, allocated, or retrieved from
device

Return Codes

Success
o VK_SUCCESS

Failure
« VK_ERROR_OUT_OF HOST_MEMORY
« VK_ERROR_OUT_OF DEVICE MEMORY

The VkGraphicsPipelineCreateInfo structure is defined as:

179

typedef struct VkGraphicsPipelineCreateInfo {

}

180

VkStructureType sType;

const void* pNext;
VkPipelineCreateFlags flags;

uint32_ t stageCount;

const VkPipelineShaderStageCreateInfo* pStages;

const VkPipelineVertexInputStateCreateInfo* pVertexInputState;
const VkPipelineInputAssemblyStateCreateInfo* pInputAssemblyState;
const VkPipelineTessellationStateCreateInfo* pTessellationState;
const VkPipelineViewportStateCreateInfo* pViewportState;
const VkPipelineRasterizationStateCreateInfo* pRasterizationState;
const VkPipelineMultisampleStateCreateInfo* pMultisampleState;
const VkPipelineDepthStencilStateCreateInfo* pDepthStencilState;
const VkPipelineColorBlendStateCreateInfo* pColorBlendState;
const VkPipelineDynamicStateCreateInfo* pDynamicState;
VkPipelinelLayout layout;

VkRenderPass renderPass;

uint32_t subpass;

VkPipeline basePipelineHandle;
int32_t basePipelinelIndex;

VkGraphicsPipelineCreatelnfo;

sType is the type of this structure.

pNext is NULL or a pointer to an extension-specific structure.

flags is a bitmask of VkPipelineCreateFlagBits specifying how the pipeline will be generated.
stageCount is the number of entries in the pStages array.

pStages is an array of size stageCount structures of type VkPipelineShaderStageCreatelnfo
describing the set of the shader stages to be included in the graphics pipeline.

pVertexInputState is a pointer to an instance of the VkPipelineVertexInputStateCreateInfo
structure.

pInputAssemblyState is a pointer to an instance of the VkPipelineInputAssemblyStateCreatelnfo
structure which determines input assembly behavior, as described in Drawing Commands.

pTessellationState is a pointer to an instance of the VkPipelineTessellationStateCreateInfo
structure, and is ignored if the pipeline does not include a tessellation control shader stage and
tessellation evaluation shader stage.

pViewportState is a pointer to an instance of the VkPipelineViewportStateCreateInfo structure,
and is ignored if the pipeline has rasterization disabled.

pRasterizationState is a pointer to an instance of the VkPipelineRasterizationStateCreateInfo
structure.

pMultisampleState is a pointer to an instance of the VkPipelineMultisampleStateCreatelnfo, and
is ignored if the pipeline has rasterization disabled.

pDepthStencilState is a pointer to an instance of the VkPipelineDepthStencilStateCreateInfo
structure, and is ignored if the pipeline has rasterization disabled or if the subpass of the render
pass the pipeline is created against does not use a depth/stencil attachment.

* pColorBlendState is a pointer to an instance of the VkPipelineColorBlendStateCreateInfo
structure, and is ignored if the pipeline has rasterization disabled or if the subpass of the render
pass the pipeline is created against does not use any color attachments.

* pDynamicState is a pointer to VkPipelineDynamicStateCreateInfo and is used to indicate which
properties of the pipeline state object are dynamic and can be changed independently of the
pipeline state. This can be NULL, which means no state in the pipeline is considered dynamic.

* layout is the description of binding locations used by both the pipeline and descriptor sets used
with the pipeline.

* renderPass is a handle to a render pass object describing the environment in which the pipeline
will be used; the pipeline must only be used with an instance of any render pass compatible
with the one provided. See Render Pass Compatibility for more information.

* subpass is the index of the subpass in the render pass where this pipeline will be used.
* basePipelineHandle is a pipeline to derive from.
* basePipelinelndex is an index into the pCreateInfos parameter to use as a pipeline to derive

from.

The parameters basePipelineHandle and basePipelineIndex are described in more detail in Pipeline
Derivatives.

pStages points to an array of VkPipelineShaderStageCreatelnfo structures, which were previously
described in Compute Pipelines.

pDynamicState points to a structure of type VkPipelineDynamicStateCreatelnfo.

181

182

Valid Usage

If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineIndex is -1,
basePipelineHandle must be a valid handle to a graphics VkPipeline

If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineHandle is
VK_NULL_HANDLE, basePipelineIndex must be a valid index into the calling command’s
pCreateInfos parameter

If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineIndex is not
-1, basePipelineHandle must be VK_NULL_HANDLE

If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineHandle is not
VK_NULL_HANDLE, basePipelineIndex must be -1

The stage member of each element of pStages must be unique
The stage member of one element of pStages must be VK_SHADER_STAGE_VERTEX_BIT

The stage member of any given element of pStages must not be
VK_SHADER_STAGE _COMPUTE_BIT

If pStages includes a tessellation control shader stage, it must include a tessellation
evaluation shader stage

If pStages includes a tessellation evaluation shader stage, it must include a tessellation
control shader stage

If pStages includes a tessellation control shader stage and a tessellation evaluation shader
stage, pTessellationState must be a pointer to a valid
VkPipelineTessellationStateCreateInfo structure

If pStages includes tessellation shader stages, the shader code of at least one stage must
contain an OpExecutionMode instruction that specifies the type of subdivision in the
pipeline

If pStages includes tessellation shader stages, and the shader code of both stages contain
an OpExecutionMode instruction that specifies the type of subdivision in the pipeline, they
must both specify the same subdivision mode

If pStages includes tessellation shader stages, the shader code of at least one stage must
contain an OpExecutionMode instruction that specifies the output patch size in the pipeline

If pStages includes tessellation shader stages, and the shader code of both contain an
OpExecutionMode instruction that specifies the out patch size in the pipeline, they must
both specify the same patch size

If pStages includes tessellation shader stages, the topology member of pInputAssembly
must be VK_PRIMITIVE_TOPOLOGY_PATCH_LIST

If the topology member of pInputAssembly is VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, pStages
must include tessellation shader stages

If pStages includes a geometry shader stage, and does not include any tessellation shader
stages, its shader code must contain an OpExecutionMode instruction that specifies an input
primitive type that is compatible with the primitive topology specified in pInputAssembly

If pStages includes a geometry shader stage, and also includes tessellation shader stages,

its shader code must contain an OpExecutionMode instruction that specifies an input
primitive type that is compatible with the primitive topology that is output by the
tessellation stages

If pStages includes a fragment shader stage and a geometry shader stage, and the
fragment shader code reads from an input variable that is decorated with PrimitivelD,
then the geometry shader code must write to a matching output variable, decorated with
PrimitivelD, in all execution paths

If pStages includes a fragment shader stage, its shader code must not read from any input
attachment that is defined as VK_ATTACHMENT _UNUSED in subpass

The shader code for the entry points identified by pStages, and the rest of the state
identified by this structure must adhere to the pipeline linking rules described in the
Shader Interfaces chapter

If rasterization is not disabled and subpass uses a depth/stencil attachment in renderpass
that has a layout of VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL in the
VkAttachmentReference defined by subpass, the depthWriteEnable member of
pDepthStencilState must be VK_FALSE

If rasterization is not disabled and subpass uses a depth/stencil attachment in renderpass
that has a layout of VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL in the
VkAttachmentReference defined by subpass, the failOp, passOp and depthFailOp members of
each of the front and back members of pDepthStencilState must be VK_STENCIL_OP_KEEP

If rasterization is not disabled and the subpass uses color attachments, then for each color
attachment in the subpass the blendEnable member of the corresponding element of the
pAttachment member of pColorBlendState must be VK_FALSE if the format of the attachment
does not support color blend operations, as specified by the
VK_FORMAT_FEATURE _COLOR_ATTACHMENT_BLEND_BIT flag in VkFormatProperties
:linearTilingFeatures or VkFormatProperties::optimalTilingFeatures returned by
vkGetPhysicalDeviceFormatProperties

If rasterization is not disabled and the subpass uses color attachments, the
attachmentCount member of pColorBlendState must be equal to the colorAttachmentCount
used to create subpass

If no element of the pDynamicStates member of pDynamicState is VK_DYNAMIC_STATE_VIEWPORT,
the pViewports member of pViewportState must be a pointer to an array of pViewportState
::viewportCount VkViewport structures

If no element of the pDynamicStates member of pDynamicState is VK_DYNAMIC_STATE_SCISSOR,
the pScissors member of pViewportState must be a pointer to an array of pViewportState
::iscissorCount VkRect2D structures

If the wide lines feature is not enabled, and no element of the pDynamicStates member of
pDynamicState is VK_DYNAMIC_STATE_LINE_WIDTH, the 1lineWidth member of
pRasterizationState must be 1.0

If the rasterizerDiscardEnable member of pRasterizationState is VK_FALSE, pViewportState
must be a pointer to a valid VkPipelineViewportStateCreateInfo structure

If the rasterizerDiscardEnable member of pRasterizationState is VK_FALSE,
pMultisampleState must be a pointer to a valid VkPipelineMultisampleStateCreateInfo

183

184

structure

If the rasterizerDiscardEnable member of pRasterizationState is VK_FALSE, and subpass
uses a depth/stencil attachment, pDepthStencilState must be a pointer to a valid
VkPipelineDepthStencilStateCreateInfo structure

If the rasterizerDiscardEnable member of pRasterizationState is VK_FALSE, and subpass
uses color attachments, pColorBlendState must be a pointer to a valid
VkPipelineColorBlendStateCreateInfo structure

If the depth bias clamping feature is not enabled, no element of the pDynamicStates
member of pDynamicState is VK_DYNAMIC_STATE_DEPTH_BIAS, and the depthBiasEnable
member of pDepthStencil is VK_TRUE, the depthBiasClamp member of pDepthStencil must be
0.0

If no element of the pDynamicStates member of pDynamicState is
VK_DYNAMIC_STATE_DEPTH_BOUNDS, and the depthBoundsTestEnable member of pDepthStencil is
VK_TRUE, the minDepthBounds and maxDepthBounds members of pDepthStencil must be
between 0.0 and 1.0, inclusive

layout must be consistent with all shaders specified in pStages

If subpass uses color and/or depth/stencil attachments, then the rasterizationSamples
member of pMultisampleState must be the same as the sample count for those subpass
attachments

If subpass does not use any color and/or depth/stencil attachments, then the
rasterizationSamples member of pMultisampleState must follow the rules for a zero-
attachment subpass

subpass must be a valid subpass within renderpass

Valid Usage (Implicit)

* sType must be VK_STRUCTURE _TYPE_GRAPHICS_PIPELINE_CREATE_INFO
* pNext must be NULL
» flags must be a valid combination of VkPipelineCreateFlagBits values

» pStages must be a pointer to an array of stageCount valid VkPipelineShaderStageCreateInfo
structures

» pVertexInputState must be a pointer to a valid VkPipelineVertexInputStateCreateInfo
structure

» pInputAssemblyState must be a pointer to a valid VkPipelineInputAssemblyStateCreateInfo
structure

* pRasterizationState must be a pointer to a valid VkPipelineRasterizationStateCreateInfo
structure

o If pDynamicState is not NULL, pDynamicState must be a pointer to a valid
VkPipelineDynamicStateCreateInfo structure

* layout must be a valid VkPipelinelLayout handle
* renderPass must be a valid VkRenderPass handle
» stageCount must be greater than 0

» Each of basePipelineHandle, layout, and renderPass that are valid handles must have been
created, allocated, or retrieved from the same VkDevice

Possible values of the flags member of VkGraphicsPipelineCreateInfo and
VkComputePipelineCreatelnfo, specifying how a pipeline is created, are:

typedef enum VkPipelineCreateFlagBits {
VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT = 0x00000001,
VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT = 0x00000002,
VK_PIPELINE_CREATE_DERIVATIVE_BIT = 0x00000004,

} VkPipelineCreateFlagBits;

* VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT specifies that the created pipeline will not be
optimized. Using this flag may reduce the time taken to create the pipeline.

o VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT specifies that the pipeline to be created is allowed to
be the parent of a pipeline that will be created in a subsequent call to
vKkCreateGraphicsPipelines or vkCreateComputePipelines.

» VK_PIPELINE_CREATE_DERIVATIVE_BIT specifies that the pipeline to be created will be a child of a

previously created parent pipeline.

It is valid to set both VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT and
VK_PIPELINE_CREATE_DERIVATIVE_BIT. This allows a pipeline to be both a parent and possibly a child
in a pipeline hierarchy. See Pipeline Derivatives for more information.

185

The VkPipelineDynamicStateCreateInfo structure is defined as:

typedef struct VkPipelineDynamicStateCreateInfo {

VkStructureType sType;

const void* pNext;
VkPipelineDynamicStateCreateFlags flags;

uint32_ t dynamicStateCount;
const VkDynamicState* pDynamicStates;

+ VkPipelineDynamicStateCreateInfo;

* sType is the type of this structure.

* pNext is NULL or a pointer to an extension-specific structure.

» flags is reserved for future use.

» dynamicStateCount is the number of elements in the pDynamicStates array.

* pDynamicStates is an array of VkDynamicState values specifying which pieces of pipeline state
will use the values from dynamic state commands rather than from pipeline state creation info.

Valid Usage

» Each element of pDynamicStates must be unique

Valid Usage (Implicit)

* sType must be VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO
* pNext must be NULL
e flags must be 0

» pDynamicStates must be a pointer to an array of dynamicStateCount valid VkDynamicState
values

* dynamicStateCount must be greater than 0

The source of different pieces of dynamic state is specified by the
VkPipelineDynamicStateCreateInfo::pDynamicStates property of the currently active pipeline, each
of whose elements must be one of the values:

186

typedef enum VkDynamicState {
VK_DYNAMIC_STATE_VIEWPORT = 0,
VK_DYNAMIC_STATE_SCISSOR = 1
VK_DYNAMIC_STATE_LINE_WIDTH = 2,
VK_DYNAMIC_STATE_DEPTH_BIAS = 3,
VK_DYNAMIC_STATE_BLEND_CONSTANTS = 4,
VK_DYNAMIC_STATE_DEPTH_BOUNDS = 5,
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK = 6,
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK = 7,
VK_DYNAMIC_STATE_STENCIL_REFERENCE = 8,

} VkDynamicState;

1~

* VK_DYNAMIC_STATE_VIEWPORT specifies that the pViewports state in
VkPipelineViewportStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetViewport before any draw commands. The number of viewports used by a pipeline is
still specified by the viewportCount member of VkPipelineViewportStateCreatelInfo.

* VK_DYNAMIC_STATE_SCISSOR specifies that the pScissors state in VkPipelineViewportStateCreateInfo
will be ignored and must be set dynamically with vkCmdSetScissor before any draw
commands. The number of scissor rectangles used by a pipeline is still specified by the
scissorCount member of VkPipelineViewportStateCreateInfo.

* VK_DYNAMIC_STATE_LINE_WIDTH specifies that the LlineWidth state in
VkPipelineRasterizationStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetLineWidth before any draw commands that generate line primitives for the
rasterizer.

» VK_DYNAMIC_STATE_DEPTH_BIAS specifies that the depthBiasConstantFactor, depthBiasClamp and
depthBiasSlopeFactor states in VkPipelineRasterizationStateCreateInfo will be ignored and must
be set dynamically with vkCmdSetDepthBias before any draws are performed with
depthBiasEnable in VkPipelineRasterizationStateCreateInfo set to VK_TRUE.

e VK_DYNAMIC_STATE_BLEND_CONSTANTS specifies that the blendConstants state in
VkPipelineColorBlendStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetBlendConstants before any draws are performed with a pipeline state with
VkPipelineColorBlendAttachmentState member blendEnable set to VK_TRUE and any of the blend
functions using a constant blend color.

» VK_DYNAMIC_STATE_DEPTH_BOUNDS specifies that the minDepthBounds and maxDepthBounds states of
VkPipelineDepthStencilStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetDepthBounds before any draws are performed with a pipeline state with
VkPipelineDepthStencilStateCreateInfo member depthBoundsTestEnable set to VK_TRUE.

* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK specifies that the compareMask state in
VkPipelineDepthStencilStateCreateInfo for both front and back will be ignored and must be set
dynamically with vkCmdSetStencilCompareMask before any draws are performed with a
pipeline state with VkPipelineDepthStencilStateCreateInfo member stencilTestEnable set to
VK_TRUE

o VK_DYNAMIC_STATE_STENCIL_WRITE_MASK specifies that the writeMask state in
VkPipelineDepthStencilStateCreateInfo for both front and back will be ignored and must be set
dynamically with vkCmdSetStencilWriteMask before any draws are performed with a pipeline

187

state with VkPipelineDepthStencilStateCreateInfo member stencilTestEnable set to VK_TRUE

e VK_DYNAMIC_STATE_STENCIL_REFERENCE specifies that the reference state in
VkPipelineDepthStencilStateCreateInfo for both front and back will be ignored and must be set
dynamically with vkCmdSetStencilReference before any draws are performed with a pipeline
state with VkPipelineDepthStencilStateCreateInfo member stencilTestEnable set to VK_TRUE

9.2.1. Valid Combinations of Stages for Graphics Pipelines

If tessellation shader stages are omitted, the tessellation shading and fixed-function stages of the
pipeline are skipped.

If a geometry shader is omitted, the geometry shading stage is skipped.

If a fragment shader is omitted, the results of fragment processing are undefined. Specifically, any
fragment color outputs are considered to have undefined values, and the fragment depth is
considered to be unmodified. This can be useful for depth-only rendering.

Presence of a shader stage in a pipeline is indicated by including a wvalid
VkPipelineShaderStageCreateInfo with module and pName selecting an entry point from a shader
module, where that entry point is valid for the stage specified by stage.

Presence of some of the fixed-function stages in the pipeline is implicitly derived from enabled
shaders and provided state. For example, the fixed-function tessellator is always present when the
pipeline has valid Tessellation Control and Tessellation Evaluation shaders.

For example:

* Depth/stencil-only rendering in a subpass with no color attachments
o Active Pipeline Shader Stages
= Vertex Shader
o Required: Fixed-Function Pipeline Stages
= VKPipelineVertexInputStateCreateInfo
= VKkPipelineInputAssemblyStateCreateInfo
= VkPipelineViewportStateCreateInfo
= VKkPipelineRasterizationStateCreateInfo
= VKPipelineMultisampleStateCreateInfo
= VkPipelineDepthStencilStateCreateInfo
* Color-only rendering in a subpass with no depth/stencil attachment
o Active Pipeline Shader Stages
= Vertex Shader
= Fragment Shader
o Required: Fixed-Function Pipeline Stages

= VKkPipelineVertexInputStateCreateInfo

188

= VkPipelineInputAssemblyStateCreateInfo
= VkPipelineViewportStateCreateInfo
= VKkPipelineRasterizationStateCreateInfo
= VkPipelineMultisampleStateCreateInfo
= VkPipelineColorBlendStateCreateInfo
* Rendering pipeline with tessellation and geometry shaders
o Active Pipeline Shader Stages
» Vertex Shader
= Tessellation Control Shader
= Tessellation Evaluation Shader
= Geometry Shader
= Fragment Shader
o Required: Fixed-Function Pipeline Stages
= VkPipelineVertexInputStateCreateInfo
= VKPipelineInputAssemblyStateCreateInfo
= VKkPipelineTessellationStateCreateInfo
= VkPipelineViewportStateCreateInfo
= VkPipelineRasterizationStateCreateInfo
= VKPipelineMultisampleStateCreateInfo
= VkPipelineDepthStencilStateCreateInfo

= VkPipelineColorBlendStateCreateInfo

9.3. Pipeline destruction

To destroy a graphics or compute pipeline, call:

void vkDestroyPipeline(

VkDevice device,
VkPipeline pipeline,
const VkAllocationCallbacks* pAllocator);

* device is the logical device that destroys the pipeline.
» pipeline is the handle of the pipeline to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

189

Valid Usage

» All submitted commands that refer to pipeline must have completed execution

 If VkAllocationCallbacks were provided when pipeline was created, a compatible set of
callbacks must be provided here

* If no VkAllocationCallbacks were provided when pipeline was created, pAllocator must
be NULL

Valid Usage (Implicit)

* device must be a valid VkDevice handle
o If pipeline is not VK_NULL_HANDLE, pipeline must be a valid VkPipeline handle

o If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

» If pipeline is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

» Host access to pipeline must be externally synchronized

9.4. Multiple Pipeline Creation

Multiple pipelines can be created simultaneously by passing an array of
VkGraphicsPipelineCreatelnfo or VkComputePipelineCreateInfo structures into the
vkCreateGraphicsPipelines and vkCreateComputePipelines commands, respectively. Applications
can group together similar pipelines to be created in a single call, and implementations are
encouraged to look for reuse opportunities within a group-create.

When an application attempts to create many pipelines in a single command, it is possible that
some subset may fail creation. In that case, the corresponding entries in the pPipelines output
array will be filled with VK_NULL_HANDLE values. If any pipeline fails creation (for example, due
to out of memory errors), the vkCreate*Pipelines commands will return an error code. The
implementation will attempt to create all pipelines, and only return VK_NULL_HANDLE values for
those that actually failed.

9.5. Pipeline Derivatives

A pipeline derivative is a child pipeline created from a parent pipeline, where the child and parent
are expected to have much commonality. The goal of derivative pipelines is that they be cheaper to
create using the parent as a starting point, and that it be more efficient (on either host or device) to
switch/bind between children of the same parent.

190

A derivative pipeline is created by setting the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag in the
Vk*PipelineCreateInfo structure. If this is set, then exactly one of basePipelineHandle or
basePipelineIndex members of the structure must have a valid handle/index, and indicates the
parent pipeline. If basePipelineHandle is used, the parent pipeline must have already been created.
If basePipelinelndex is used, then the parent is being created in the same command.
VK_NULL_HANDLE acts as the invalid handle for basePipelineHandle, and -1 is the invalid index for
basePipelinelIndex. If basePipelineIndex is used, the base pipeline must appear earlier in the array.
The base pipeline must have been created with the VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT flag
set.

9.6. Pipeline Cache

Pipeline cache objects allow the result of pipeline construction to be reused between pipelines and
between runs of an application. Reuse between pipelines is achieved by passing the same pipeline
cache object when creating multiple related pipelines. Reuse across runs of an application is
achieved by retrieving pipeline cache contents in one run of an application, saving the contents,
and using them to preinitialize a pipeline cache on a subsequent run. The contents of the pipeline
cache objects are managed by the implementation. Applications can manage the host memory
consumed by a pipeline cache object and control the amount of data retrieved from a pipeline
cache object.

Pipeline cache objects are represented by VkPipelineCache handles:
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkPipelineCache)
To create pipeline cache objects, call:

VkResult vkCreatePipelineCache(

VkDevice device,

const VkPipelineCacheCreateInfo* pCreatelnfo,
const VkAllocationCallbacks* pAllocator,
VkPipelineCache* pPipelineCache);

» device is the logical device that creates the pipeline cache object.

* pCreatelnfo is a pointer to a VkPipelineCacheCreateInfo structure that contains the initial
parameters for the pipeline cache object.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pPipelineCache is a pointer to a VkPipelineCache handle in which the resulting pipeline cache
object is returned.

191

Note

Applications can track and manage the total host memory size of a pipeline cache

ﬂ object using the pAllocator. Applications can limit the amount of data retrieved
from a pipeline cache object in vkGetPipelineCacheData. Implementations should
not internally limit the total number of entries added to a pipeline cache object or
the total host memory consumed.

Once created, a pipeline cache can be passed to the vkCreateGraphicsPipelines and
vkCreateComputePipelines commands. If the pipeline cache passed into these commands is not
VK_NULL_HANDLE, the implementation will query it for possible reuse opportunities and update it
with new content. The use of the pipeline cache object in these commands is internally
synchronized, and the same pipeline cache object can be used in multiple threads simultaneously.

Note

Implementations should make every effort to limit any critical sections to the

O actual accesses to the cache, which is expected to be significantly shorter than the
duration of the vkCreateGraphicsPipelines and vkCreateComputePipelines
commands.

Valid Usage (Implicit)

e device must be a valid VkDevice handle

» pCreateInfo must be a pointer to a valid VkPipelineCacheCreateInfo structure

If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

pPipelineCache must be a pointer to a VkPipelineCache handle

Return Codes

Success
o VK_SUCCESS

Failure
« VK_ERROR_OUT_OF HOST_MEMORY
« VK_ERROR_OUT_OF DEVICE MEMORY

The VkPipelineCacheCreateInfo structure is defined as:

192

typedef struct VkPipelineCacheCreateInfo {

VkStructureType sType;

const void* pNext;
VkPipelineCacheCreateFlags flags;

size t initialDataSize;
const void* pInitialData;

} VkPipelineCacheCreateInfo;

* sType is the type of this structure.
* pNext is NULL or a pointer to an extension-specific structure.
» flags is reserved for future use.

* initialDataSize is the number of bytes in pInitialData. If initialDataSize is zero, the pipeline
cache will initially be empty.

» pInitialData is a pointer to previously retrieved pipeline cache data. If the pipeline cache data is
incompatible (as defined below) with the device, the pipeline cache will be initially empty. If
initialDataSize is zero, pInitialData is ignored.

Valid Usage

« If initialDataSize is not @, it must be equal to the size of pInitialData, as returned by
vkGetPipelineCacheData when pInitialData was originally retrieved

» If initialDataSize is not @, pInitialData must have been retrieved from a previous call to
vkGetPipelineCacheData

Valid Usage (Implicit)

* sType must be VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO
* pNext must be NULL
* flags must be 0

» If initialDataSize is not @, pInitialData must be a pointer to an array of initialDataSize
bytes

Pipeline cache objects can be merged using the command:

VkResult vkMergePipelineCaches(

VkDevice device,
VkPipelineCache dstCache,
uint32_t srcCacheCount,
const VkPipelineCache* pSrcCaches);

* device is the logical device that owns the pipeline cache objects.

193

 dstCache is the handle of the pipeline cache to merge results into.
» srcCacheCount is the length of the pSrcCaches array.

» pSrcCaches is an array of pipeline cache handles, which will be merged into dstCache. The
previous contents of dstCache are included after the merge.

Note

0 The details of the merge operation are implementation dependent, but
implementations should merge the contents of the specified pipelines and prune
duplicate entries.

Valid Usage

 dstCache must not appear in the list of source caches

Valid Usage (Implicit)

* device must be a valid VkDevice handle

» dstCache must be a valid VkPipelineCache handle

 pSrcCaches must be a pointer to an array of srcCacheCount valid VkPipelineCache handles
* srcCacheCount must be greater than 0

» dstCache must have been created, allocated, or retrieved from device

» Each element of pSrcCaches must have been created, allocated, or retrieved from device

Host Synchronization

» Host access to dstCache must be externally synchronized

Return Codes

Success
o VK_SUCCESS

Failure
« VK_ERROR_OUT_OF HOST_MEMORY
« VK_ERROR_OUT_OF DEVICE MEMORY

Data can be retrieved from a pipeline cache object using the command:

194

VkResult vkGetPipelineCacheData(

VkDevice device,
VkPipelineCache pipelineCache,
size t* pDataSize,
void* pData);

device is the logical device that owns the pipeline cache.
* pipelineCache is the pipeline cache to retrieve data from.

» pDataSize is a pointer to a value related to the amount of data in the pipeline cache, as described
below.

* pData is either NULL or a pointer to a buffer.

If pData is NULL, then the maximum size of the data that can be retrieved from the pipeline cache, in
bytes, is returned in pDataSize. Otherwise, pDataSize must point to a variable set by the user to the
size of the buffer, in bytes, pointed to by pData, and on return the variable is overwritten with the
amount of data actually written to pData.

If pDataSize is less than the maximum size that can be retrieved by the pipeline cache, at most
pDataSize bytes will be written to pData, and vkGetPipelineCacheData will return VK_INCOMPLETE. Any
data written to pData is valid and can be provided as the pInitialData member of the
VkPipelineCacheCreateInfo structure passed to vkCreatePipelineCache.

Two calls to vkGetPipelineCacheData with the same parameters must retrieve the same data unless a
command that modifies the contents of the cache is called between them.

Applications can store the data retrieved from the pipeline cache, and use these data, possibly in a
future run of the application, to populate new pipeline cache objects. The results of pipeline
compiles, however, may depend on the vendor ID, device ID, driver version, and other details of
the device. To enable applications to detect when previously retrieved data is incompatible with the
device, the initial bytes written to pData must be a header consisting of the following members:

Table 7. Layout for pipeline cache header version \K_PIPELINE_CACHE_HEADER_VERSION_ONE

Offse Size Meaning

t

0 4 length in bytes of the entire pipeline cache header written
as a stream of bytes, with the least significant byte first

4 4 a VKkPipelineCacheHeaderVersion value written as a
stream of bytes, with the least significant byte first

8 4 a vendor ID equal to VkPhysicalDeviceProperties::vendorID
written as a stream of bytes, with the least significant byte
first

12 4 a device ID equal to VkPhysicalDeviceProperties::devicelD
written as a stream of bytes, with the least significant byte
first

16 VK_UUID_SIZE a pipeline cache ID equal to VkPhysicalDeviceProperties
::;pipelineCacheUUID

195

The first four bytes encode the length of the entire pipeline header, in bytes. This value includes all
fields in the header including the pipeline cache version field and the size of the length field.

The next four Dbytes encode the pipeline cache version, as described for
VkPipelineCacheHeaderVersion. A consumer of the pipeline cache should use the cache version to
interpret the remainder of the cache header.

If pDataSize is less than what is necessary to store this header, nothing will be written to pData and
zero will be written to pDataSize.

Valid Usage (Implicit)

» device must be a valid VkDevice handle
* pipelineCache must be a valid VkPipelineCache handle

» pDataSize must be a pointer to a size_t value

If the value referenced by pDataSize is not 0, and pData is not NULL, pData must be a pointer
to an array of pDataSize bytes

* pipelineCache must have been created, allocated, or retrieved from device

Return Codes

Success
o VK_SUCCESS
o VK _INCOMPLETE

Failure
« VK_ERROR_OUT_OF HOST_MEMORY
« VK_ERROR_OUT_OF DEVICE MEMORY

Possible values of the second group of four bytes in the header returned by
vkGetPipelineCacheData, encoding the pipeline cache version, are:

typedef enum VkPipelineCacheHeaderVersion {
VK_PIPELINE_CACHE_HEADER_VERSION_ONE = 1,
} VkPipelineCacheHeaderVersion;

o VK_PIPELINE_CACHE_HEADER_VERSION_ONE specifies version one of the pipeline cache.

To destroy a pipeline cache, call:

196

void vkDestroyPipelineCache(

VkDevice device,
VkPipelineCache pipelineCache,
const VkAllocationCallbacks* pAllocator);

 device is the logical device that destroys the pipeline cache object.
* pipelineCache is the handle of the pipeline cache to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

o If VkAllocationCallbacks were provided when pipelineCache was created, a compatible set
of callbacks must be provided here

* If no VkAllocationCallbacks were provided when pipelineCache was created, pAllocator
must be NULL

Valid Usage (Implicit)

e device must be a valid VkDevice handle

 If pipelineCache is not VK_NULL_HANDLE, pipelineCache must be a valid VkPipelineCache
handle

o If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

» If pipelineCache is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

» Host access to pipelineCache must be externally synchronized

9.7. Specialization Constants

Specialization constants are a mechanism whereby constants in a SPIR-V module can have their
constant value specified at the time the VkPipeline is created. This allows a SPIR-V module to have
constants that can be modified while executing an application that uses the Vulkan API.

Note

O Specialization constants are useful to allow a compute shader to have its local
workgroup size changed at runtime by the user, for example.

Each instance of the VkPipelineShaderStageCreateInfo structure contains a parameter

197

pSpecializationInfo, which can be NULL to indicate no specialization constants, or point to a
VkSpecializationInfo structure.

The VkSpecializationInfo structure is defined as:

typedef struct VkSpecializationInfo {

uint32_t mapEntryCount;
const VkSpecializationMapEntry* pMapEntries;
size t dataSize;
const void* pData;

} VkSpecializationInfo;

mapEntryCount is the number of entries in the pMapEntries array.

pMapEntries is a pointer to an array of VkSpecializationMapEntry which maps constant IDs to
offsets in pData.

dataSize is the byte size of the pData buffer.

pData contains the actual constant values to specialize with.

pMapEntries points to a structure of type VkSpecializationMapEntry.

Valid Usage

The offset member of any given element of pMapEntries must be less than dataSize

» For any given element of pMapEntries, size must be less than or equal to dataSize minus
offset

 If mapEntryCount is not 0, pMapEntries must be a pointer to an array of mapEntryCount valid
VkSpecializationMapEntry structures

Valid Usage (Implicit)

If dataSize is not @, pData must be a pointer to an array of dataSize bytes

The VkSpecializationMapEntry structure is defined as:

typedef struct VkSpecializationMapEntry {
uint32_t constantID;
uint32 t offset;
size_ t size;

} VkSpecializationMapEntry;

» constantID is the ID of the specialization constant in SPIR-V.
» offset is the byte offset of the specialization constant value within the supplied data buffer.

* size is the byte size of the specialization constant value within the supplied data buffer.

198

If a constantID value is not a specialization constant ID used in the shader, that map entry does not
affect the behavior of the pipeline.

Valid Usage

» For a constantID specialization constant declared in a shader, size must match the byte
size of the constantID. If the specialization constant is of type boolean, size must be the
byte size of VkBool32

In human readable SPIR-V:

OpDecorate %x SpecId 13 ; decorate .x component of WorkgroupSize with ID 13
OpDecorate %y Specld 42 ; decorate .y component of WorkgroupSize with ID 42
OpDecorate %z SpecId 3 ; decorate .z component of WorkgroupSize with ID 3
OpDecorate %wgsize BuiltIn WorkgroupSize ; decorate WorkgroupSize onto constant
%132 = OpTypelnt 32 @ ; declare an unsigned 32-bit type

%uvec3 = OpTypeVector %i32 3 ; declare a 3 element vector type of unsigned 32-bit
OpSpecConstant %132 1 ; declare the .x component of WorkgroupSize
OpSpecConstant %i32 1 ; declare the .y component of WorkgroupSize
OpSpecConstant %132 1 ; declare the .z component of WorkgroupSize

%swgsize = OpSpecConstantComposite %uvec3 %x %y %z ; declare WorkgroupSize

of of
~< X
I 1

o
N
1

From the above we have three specialization constants, one for each of the X, y & z elements of the
WorkgroupSize vector.

Now to specialize the above via the specialization constants mechanism:

199

const VkSpecializationMapEntry entries[]

{
{
13,
0 * sizeof(uint32_ t),
sizeof(uint32_t)
Iy
{
42,
1 * sizeof(uint32_t),
sizeof(uint32_t)
Iy,
{
3,
2 * sizeof(uint32_t),
sizeof(uint32_t)
}
s

// constantID
// offset
// size

// constantID
// offset
// size

// constantID
// offset
// size

const uint32_t data[] = { 16, 8, 4 }; // our workgroup size is 16x8x4

const VkSpecializationInfo info =
{

3,

entries,

3 * sizeof(uint32_t),

data,
}

// mapEntryCount
// pMapEntries
// dataSize

// pData

Then when calling vkCreateComputePipelines, and passing the VkSpecializationInfo we defined as
the pSpecializationInfo parameter of VkPipelineShaderStageCreatelnfo, we will create a compute
pipeline with the runtime specified local workgroup size.

Another example would be that an application has a SPIR-V module that has some platform-

dependent constants they wish to use.

In human readable SPIR-V:

OpDecorate %1 SpecId @ ; decorate our signed 32-bit integer constant
OpDecorate %2 SpecId 12 ; decorate our 32-bit floating-point constant
%132 = OpTypelnt 32 1 ; declare a signed 32-bit type

%float = OpTypeFloat 32 ; declare a 32-bit floating-point type

0

of

o

2

1 = OpSpecConstant %i32 -1 ; some signed 32-bit integer constant
OpSpecConstant %float 0.5 ; some 32-bit floating-point constant

From the above we have two specialization constants, one is a signed 32-bit integer and the second

is a 32-bit floating-point.

200

Now to specialize the above via the specialization constants mechanism:

struct SpecializationData {
int32_t datal;
float datal;

b
const VkSpecializationMapEntry entries[] =
{
{
0, // constantID
offsetof(SpecializationData, data@d), // offset
sizeof(SpecializationData::data@) // size
I
{
12, // constantID
offsetof(SpecializationData, datal), // offset
sizeof(SpecializationData::datal) // size
}
b

SpecializationData data;
data.datad = -42; // set the data for the 32-bit integer
data.datal = 42.0f; // set the data for the 32-bit floating-point

const VkSpecializationInfo info =

{
2, // mapEntryCount
entries, // pMapEntries
sizeof(data), // dataSize
&data, // pData

b

It is legal for a SPIR-V module with specializations to be compiled into a pipeline where no
specialization info was provided. SPIR-V specialization constants contain default values such that if
a specialization is not provided, the default value will be used. In the examples above, it would be
valid for an application to only specialize some of the specialization constants within the SPIR-V
module, and let the other constants use their default values encoded within the OpSpecConstant
declarations.

9.8. Pipeline Binding

Once a pipeline has been created, it can be bound to the command buffer using the command:

201

void vkCmdBindPipeline(

VkCommandBuffer commandBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipeline pipeline);

 commandBuffer is the command buffer that the pipeline will be bound to.

* pipelineBindPoint is a VkPipelineBindPoint value specifying whether to bind to the compute or
graphics bind point. Binding one does not disturb the other.

* pipeline is the pipeline to be bound.

Once bound, a pipeline binding affects subsequent graphics or compute commands in the
command buffer until a different pipeline is bound to the bind point. The pipeline bound to
VK_PIPELINE_BIND_POINT_COMPUTE controls the behavior of vkCmdDispatch and
vkCmdDispatchIndirect. The pipeline bound to VK_PIPELINE_BIND_POINT_GRAPHICS controls the
behavior of vkCmdDraw, vkCmdDrawlIndexed, vkCmdDrawlIndirect, and
vkCmdDrawIndexedIndirect. No other commands are affected by the pipeline state.

Valid Usage

o If pipelineBindPoint is VK_PIPELINE_BIND_POINT_COMPUTE, the VkCommandPool that
commandBuffer was allocated from must support compute operations

o If pipelineBindPoint is VK_PIPELINE_BIND_POINT_GRAPHICS, the VkCommandPool that
commandBuffer was allocated from must support graphics operations

» If pipelineBindPoint is VK_PIPELINE_BIND_POINT_COMPUTE, pipeline must be a compute
pipeline

o If pipelineBindPoint is VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline must be a graphics
pipeline

o If the variable multisample rate feature is not supported, pipeline is a graphics pipeline,
the current subpass has no attachments, and this is not the first call to this function with a
graphics pipeline after transitioning to the current subpass, then the sample count
specified by this pipeline must match that set in the previous pipeline

202

Valid Usage (Implicit)

» commandBuffer must be a valid VkCommandBuffer handle

» pipelineBindPoint must be a valid VkPipelineBindPoint value
» pipeline must be a valid VkPipeline handle

» commandBuffer must be in the recording state

* The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

* Both of commandBuffer, and pipeline must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

* Host access to commandBuffer must be externally synchronized

» Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer Render Pass Scope Supported Queue Pipeline Type

Levels Types
Primary Both Graphics
Secondary compute

Possible values of vkCmdBindPipeline::pipelineBindPoint, specifying the bind point of a pipeline
object, are:

typedef enum VkPipelineBindPoint {
VK_PIPELINE_BIND_POINT_GRAPHICS = 0,
VK_PIPELINE_BIND_POINT_COMPUTE = 1,
} VkPipelineBindPoint;

» VK_PIPELINE_BIND_POINT_COMPUTE specifies binding as a compute pipeline.
o VK_PIPELINE_BIND_POINT_GRAPHICS specifies binding as a graphics pipeline.

203

Chapter 10. Memory Allocation

Vulkan memory is broken up into two categories, host memory and device memory.

10.1. Host Memory

Host memory is memory needed by the Vulkan implementation for non-device-visible storage. This
storage may be used for e.g. internal software structures.

Vulkan provides applications the opportunity to perform host memory allocations on behalf of the
Vulkan implementation. If this feature is not used, the implementation will perform its own
memory allocations. Since most memory allocations are off the critical path, this is not meant as a
performance feature. Rather, this can be useful for certain embedded systems, for debugging
purposes (e.g. putting a guard page after all host allocations), or for memory allocation logging.

Allocators are provided by the application as a pointer to a VkAllocationCallbacks structure:

typedef struct VkAllocationCallbacks {

}

204

void* pUserData;
PFEN_vkAllocationFunction pfnAllocation;
PFN_vkReallocationFunction pfnReallocation;
PFN_vkFreeFunction pfnFree;
PFN_vkInternalAllocationNotification pfnInternalAllocation;
PFN_vkInternalFreeNotification pfnInternalFree;

VkAllocationCallbacks;

pUserData is a value to be interpreted by the implementation of the callbacks. When any of the
callbacks in VkAllocationCallbacks are called, the Vulkan implementation will pass this value as
the first parameter to the callback. This value can vary each time an allocator is passed into a
command, even when the same object takes an allocator in multiple commands.

pfnAllocation is a pointer to an application-defined memory allocation function of type
PFN _vkAllocationFunction.

pfnReallocation is a pointer to an application-defined memory reallocation function of type
PFN_vkReallocationFunction.

pfnFree is a pointer to an application-defined memory free function of type
PFN_vkFreeFunction.

pfnInternalAllocation is a pointer to an application-defined function that is called by the
implementation when the implementation makes internal allocations, and it is of type
PFN_vkiInternalAllocationNotification.

pfnInternalFree is a pointer to an application-defined function that is called by the
implementation when the implementation frees internal allocations, and it is of type
PFN_vkInternalFreeNotification.

Valid Usage

pfnAllocation must be a pointer to a valid user-defined PFN_vkAllocationFunction
» pfnReallocation must be a pointer to a valid user-defined PFN_vkReallocationFunction

» pfnFree must be a pointer to a valid user-defined PFN_vkFreeFunction

If either of pfnInternalAllocation or pfnInternalFree is not NULL, both must be valid
callbacks

The type of pfnAllocation is:

typedef void* (VKAPI_PTR *PFN_vkAllocationFunction)(

void* pUserData,

size_t size,

size t alignment,
VkSystemAllocationScope allocationScope);

* pUserData is the value specified for VkAllocationCallbacks::pUserData in the allocator specified by
the application.

* size is the size in bytes of the requested allocation.
* alignment is the requested alignment of the allocation in bytes and must be a power of two.

* allocationScope is a VkSystemAllocationScope value specifying the allocation scope of the
lifetime of the allocation, as described here.

If pfnAllocation is unable to allocate the requested memory, it must return NULL. If the allocation
was successful, it must return a valid pointer to memory allocation containing at least size bytes,
and with the pointer value being a multiple of alignment.

Note

Correct Vulkan operation cannot be assumed if the application does not follow
these rules.

For example, pfnAllocation (or pfnReallocation) could cause termination of

0 running Vulkan instance(s) on a failed allocation for debugging purposes, either
directly or indirectly. In these circumstances, it cannot be assumed that any part
of any affected VkInstance objects are going to operate correctly (even
vkDestroyInstance), and the application must ensure it cleans up properly via
other means (e.g. process termination).

If pfnAllocation returns NULL, and if the implementation is unable to continue correct processing of
the current command without the requested allocation, it must treat this as a run-time error, and
generate VK_ERROR_OUT_OF_HOST_MEMORY at the appropriate time for the command in which the
condition was detected, as described in Return Codes.

If the implementation is able to continue correct processing of the current command without the

205

requested allocation, then it may do so, and must not generate VK_ERROR_OUT_OF_HOST_MEMORY as a
result of this failed allocation.

The type of pfnReallocation is:

typedef void* (VKAPI_PTR *PFN_vkReallocationFunction)(

void* pUserData,

void* pOriginal,

size t size,

size t alignment,
VkSystemAllocationScope allocationScope);

* pUserData is the value specified for VkAllocationCallbacks::pUserData in the allocator specified by
the application.

* pOriginal must be either NULL or a pointer previously returned by pfnReallocation or
pfnAllocation of the same allocator.

* size is the size in bytes of the requested allocation.
» alignment is the requested alignment of the allocation in bytes and must be a power of two.
* allocationScope is a VkSystemAllocationScope value specifying the allocation scope of the

lifetime of the allocation, as described here.

pfnReallocation must return an allocation with enough space for size bytes, and the contents of the
original allocation from bytes zero to min(original size, new size) - 1 must be preserved in the
returned allocation. If size is larger than the old size, the contents of the additional space are
undefined. If satisfying these requirements involves creating a new allocation, then the old
allocation should be freed.

If pOriginal is NULL, then pfnReallocation must behave equivalently to a call to
PFN_vkAllocationFunction with the same parameter values (without pOriginal).

If size is zero, then pfnReallocation must behave equivalently to a call to PFN_vkFreeFunction with
the same pUserData parameter value, and pMemory equal to pOriginal.

If pOriginal is non-NULL, the implementation must ensure that alignment is equal to the alignment
used to originally allocate pOriginal.

If this function fails and pOriginal is non-NULL the application must not free the old allocation.
pfnReallocation must follow the same rules for return values as PFN_vkAllocationFunction.

The type of pfnFree is:

typedef void (VKAPI_PTR *PFN_vkFreeFunction)(
void* pUserData,
void* pMemory);

 pUserData is the value specified for VkAllocationCallbacks::pUserData in the allocator specified by

206

the application.

* pMemory is the allocation to be freed.

pMemory may be NULL, which the callback must handle safely. If pMemory is non-NULL, it must be a
pointer previously allocated by pfnAllocation or pfnReallocation. The application should free this
memory.

The type of pfnInternalAllocation is:

typedef void (VKAPI_PTR *PFN_vkInternalAllocationNotification)(

void* pUserData,

size_t size,
VkInternalAllocationType allocationType,
VkSystemAllocationScope allocationScope);

* pUserData is the value specified for VkAllocationCallbacks::pUserData in the allocator specified by
the application.

* size is the requested size of an allocation.

* allocationType is a VkInternalAllocationType value specifying the requested type of an
allocation.

* allocationScope is a VkSystemAllocationScope value specifying the allocation scope of the
lifetime of the allocation, as described here.

This is a purely informational callback.

The type of pfnInternalFree is:

typedef void (VKAPI_PTR *PFN_vkInternalFreeNotification)(

void* pUserData,

size t size,
VkInternalAllocationType allocationType,
VkSystemAllocationScope allocationScope);

* pUserData is the value specified for VkAllocationCallbacks::pUserData in the allocator specified by
the application.

* size is the requested size of an allocation.

* allocationType is a VkInternalAllocationType value specifying the requested type of an
allocation.

* allocationScope is a VkSystemAllocationScope value specifying the allocation scope of the

lifetime of the allocation, as described here.

Each allocation has an allocation scope which defines its lifetime and which object it is associated
with. Possible values passed to the allocationScope parameter of the callback functions specified by
VkAllocationCallbacks, indicating the allocation scope, are:

207

typedef enum VkSystemAllocationScope {

}

VK_SYSTEM_ALLOCATION_SCOPE_COMMAND = 0,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT = 1,
VK_SYSTEM_ALLOCATION_SCOPE_CACHE = 2,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE = 3,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE = 4,
VkSystemAllocationScope;

VK_SYSTEM_ALLOCATION_SCOPE_COMMAND specifies that the allocation is scoped to the duration of the
Vulkan command.

VK_SYSTEM_ALLOCATION_SCOPE_OBIJECT specifies that the allocation is scoped to the lifetime of the
Vulkan object that is being created or used.

VK_SYSTEM_ALLOCATION_SCOPE_CACHE specifies that the allocation is scoped to the lifetime of a
VkPipelineCache object.

VK_SYSTEM_ALLOCATION_SCOPE_DEVICE specifies that the allocation is scoped to the lifetime of the
Vulkan device.

VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE specifies that the allocation is scoped to the lifetime of the
Vulkan instance.

Most Vulkan commands operate on a single object, or there is a sole object that is being created or
manipulated. When an allocation uses an allocation scope of VK_SYSTEM_ALLOCATION_SCOPE_OBJECT or
VK_SYSTEM_ALLOCATION_SCOPE_CACHE, the allocation is scoped to the object being created or
manipulated.

When an implementation requires host memory, it will make callbacks to the application using the
most specific allocator and allocation scope available:

208

If an allocation is scoped to the duration of a command, the allocator will use the
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND allocation scope. The most specific allocator available is
used: if the object being created or manipulated has an allocator, that object’s allocator will be
used, else if the parent VkDevice has an allocator it will be used, else if the parent VkInstance has
an allocator it will be used. Else,

If an allocation is associated with an object of type VkPipelineCache, the allocator will use the
VK_SYSTEM_ALLOCATION_SCOPE_CACHE allocation scope. The most specific allocator available is used
(pipeline cache, else device, else instance). Else,

If an allocation is scoped to the lifetime of an object, that object is being created or manipulated
by the command, and that object’s type is not VkDevice or VkInstance, the allocator will use an
allocation scope of VK_SYSTEM_ALLOCATION_SCOPE_OBJECT. The most specific allocator available is
used (object, else device, else instance). Else,

If an allocation is scoped to the lifetime of a device, the allocator will use an allocation scope of
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE. The most specific allocator available is used (device, else
instance). Else,

If the allocation is scoped to the lifetime of an instance and the instance has an allocator, its
allocator will be used with an allocation scope of VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE.

* Otherwise an implementation will allocate memory through an alternative mechanism that is
unspecified.

Objects that are allocated from pools do not specify their own allocator. When an implementation
requires host memory for such an object, that memory is sourced from the object’s parent pool’s
allocator.

The application is not expected to handle allocating memory that is intended for execution by the
host due to the complexities of differing security implementations across multiple platforms. The
implementation will allocate such memory internally and invoke an application provided
informational callback when these internal allocations are allocated and freed. Upon allocation of
executable memory, pfnInternalAllocation will be called. Upon freeing executable memory,
pfnInternalFree will be called. An implementation will only call an informational callback for
executable memory allocations and frees.

The allocationType parameter to the pfnInternalAllocation and pfnInternalFree functions may be
one of the following values:

typedef enum VkInternalAllocationType {
VK_INTERNAL_ALLOCATION_TYPE_EXECUTABLE = 0,
} VkInternalAllocationType;

* VK_INTERNAL_ALLOCATION_TYPE_EXECUTABLE specifies that the allocation is intended for execution
by the host.

An implementation must only make calls into an application-provided allocator during the
execution of an API command. An implementation must only make calls into an application-
provided allocator from the same thread that called the provoking API command. The
implementation should not synchronize calls to any of the callbacks. If synchronization is needed,
the callbacks must provide it themselves. The informational callbacks are subject to the same
restrictions as the allocation callbacks.

If an implementation intends to make calls through an VkAllocationCallbacks structure between the
time a vkCreate* command returns and the time a corresponding vkDestroy* command begins, that
implementation must save a copy of the allocator before the vkCreate* command returns. The
callback functions and any data structures they rely upon must remain valid for the lifetime of the
object they are associated with.

If an allocator is provided to a vkCreate* command, a compatible allocator must be provided to the
corresponding vkDestroy* command. Two VkAllocationCallbacks structures are compatible if
memory allocated with pfnAllocation or pfnReallocation in each can be freed with pfnReallocation
or pfnFree in the other. An allocator must not be provided to a vkDestroy* command if an allocator
was not provided to the corresponding vkCreate* command.

If a non-NULL allocator is used, the pfnAllocation, pfnReallocation and pfnFree members must be
non-NULL and point to valid implementations of the callbacks. An application can choose to not
provide informational callbacks by setting both pfnInternalAllocation and pfnInternalFree to NULL.
pfnInternalAllocation and pfnInternalFree must either both be NULL or both be non-NULL.

209

If pfnAllocation or pfnReallocation fail, the implementation may fail object creation and/or
generate an VK_ERROR_OUT_OF _HOST_MEMORY error, as appropriate.

Allocation callbacks must not call any Vulkan commands.

The following sets of rules define when an implementation is permitted to call the allocator
callbacks.

pfnAllocation or pfnReallocation may be called in the following situations:

* Allocations scoped to a VkDevice or VkInstance may be allocated from any API command.
* Allocations scoped to a command may be allocated from any API command.

* Allocations scoped to a VkPipelineCache may only be allocated from:
- vkCreatePipelineCache

o vkMergePipelineCaches for dstCache
o vkCreateGraphicsPipelines for pPipelineCache
o vkCreateComputePipelines for pPipelineCache
» Allocations scoped to a VkDescriptorPool may only be allocated from:
- any command that takes the pool as a direct argument

o vkAllocateDescriptorSets for the descriptorPool member of its pAllocateInfo parameter
» vkCreateDescriptorPool

* Allocations scoped to a VkCommandPool may only be allocated from:

- any command that takes the pool as a direct argument
o vkCreateCommandPool

o vkAllocateCommandBuffers for the commandPool member of its pAllocateInfo parameter
o any vkCmd* command whose commandBuffer was allocated from that VkCommandPool
* Allocations scoped to any other object may only be allocated in that object’s vkCreate*
command.

pfnFree may be called in the following situations:

* Allocations scoped to a VkDevice or VkInstance may be freed from any API command.

* Allocations scoped to a command must be freed by any API command which allocates such
memory.

 Allocations scoped to a VkPipelineCache may be freed from vkDestroyPipelineCache.
* Allocations scoped to a VkDescriptorPool may be freed from
o any command that takes the pool as a direct argument
» Allocations scoped to a VkCommandPool may be freed from:
- any command that takes the pool as a direct argument
o vkResetCommandBuffer whose commandBuffer was allocated from that VkCommandPool

* Allocations scoped to any other object may be freed in that object’s vkDestroy* command.

210

* Any command that allocates host memory may also free host memory of the same scope.

10.2. Device Memory

Device memory is memory that is visible to the device, for example the contents of opaque images
that can be natively used by the device, or uniform buffer objects that reside in on-device memory.

Memory properties of a physical device describe the memory heaps and memory types available.

To query memory properties, call:

void vkGetPhysicalDeviceMemoryProperties(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties* pMemoryProperties);

» physicalDevice is the handle to the device to query.

* pMemoryProperties points to an instance of VkPhysicalDeviceMemoryProperties structure in which
the properties are returned.

Valid Usage (Implicit)

* physicalDevice must be a valid VkPhysicalDevice handle

* pMemoryProperties must be a pointer to a VkPhysicalDeviceMemoryProperties structure
The VkPhysicalDeviceMemoryProperties structure is defined as:

typedef struct VkPhysicalDeviceMemoryProperties {

uint32_t memoryTypeCount;
VkMemoryType memoryTypes[VK_MAX_MEMORY_TYPES];
uint32_t memoryHeapCount;

VkMemoryHeap memoryHeaps[VK_MAX_MEMORY_HEAPS];
} VkPhysicalDeviceMemoryProperties;

» memoryTypeCount is the number of valid elements in the memoryTypes array.

* memoryTypes is an array of VkMemoryType structures describing the memory types that can be
used to access memory allocated from the heaps specified by memoryHeaps.

» memoryHeapCount is the number of valid elements in the memoryHeaps array.
* memoryHeaps is an array of VkMemoryHeap structures describing the memory heaps from which

memory can be allocated.

The VkPhysicalDeviceMemoryProperties structure describes a number of memory heaps as well as a
number of memory types that can be used to access memory allocated in those heaps. Each heap
describes a memory resource of a particular size, and each memory type describes a set of memory
properties (e.g. host cached vs uncached) that can be used with a given memory heap. Allocations

211

using a particular memory type will consume resources from the heap indicated by that memory
type’s heap index. More than one memory type may share each heap, and the heaps and memory
types provide a mechanism to advertise an accurate size of the physical memory resources while
allowing the memory to be used with a variety of different properties.

The number of memory heaps is given by memoryHeapCount and is less than or equal to
VK_MAX_MEMORY_HEAPS. Each heap is described by an element of the memoryHeaps array, as a
VkMemoryHeap structure. The number of memory types available across all memory heaps is given by
memoryTypeCount and is less than or equal to VK_MAX_MEMORY_TYPES. Each memory type is described by
an element of the memoryTypes array, as a VkMemoryType structure.

At least one heap must include VK_MEMORY_HEAP_DEVICE_LOCAL_BIT in VkMemoryHeap::flags. If there
are multiple heaps that all have similar performance characteristics, they may all include
VK_MEMORY_HEAP_DEVICE_LOCAL_BIT. In a unified memory architecture (UMA) system, there is often
only a single memory heap which is considered to be equally “local” to the host and to the device,
and such an implementation must advertise the heap as device-local.

Each memory type returned by vkGetPhysicalDeviceMemoryProperties must have its propertyFlags
set to one of the following values:

e 0

* VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

* VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT

e VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

o VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT

* VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

* VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT

* VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |

VK_MEMORY_PROPERTY_HOST_CACHED_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
 VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT
There must be at least one memory type with both the VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT and

VK_MEMORY_PROPERTY_HOST_COHERENT_BIT bits set in its propertyFlags. There must be at least one
memory type with the VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT bit set in its propertyFlags.

The memory types are sorted according to a preorder which serves to aid in easily selecting an
appropriate memory type. Given two memory types X and Y, the preorder defines X <Y if:

 the memory property bits set for X are a strict subset of the memory property bits set for Y. Or,

* the memory property bits set for X are the same as the memory property bits set for Y, and X
uses a memory heap with greater or equal performance (as determined in an implementation-
specific manner).

Memory types are ordered in the list such that X is assigned a lesser memoryTypeIndex than Y if (X <

212

Y) A = (Y < X) according to the preorder. Note that the list of all allowed memory property flag
combinations above satisfies this preorder, but other orders would as well. The goal of this
ordering is to enable applications to use a simple search loop in selecting the proper memory type,
along the lines of:

// Find a memory type in "memoryTypeBits" that includes all of "properties”
int32_t FindProperties(uint32_t memoryTypeBits, VkMemoryPropertyFlags properties)

{
for (int32_t i = 0; i < memoryTypeCount; ++i)

{
if ((memoryTypeBits & (1 << i)) &&
((memoryTypes[i].propertyFlags & properties) == properties))
return i;
}
return -1;

}

// Try to find an optimal memory type, or if it does not exist
// find any compatible memory type
VkMemoryRequirements memoryRequirements;
vkGetImageMemoryRequirements(device, image, &memoryRequirements);
int32_t memoryType = FindProperties(memoryRequirements.memoryTypeBits,
optimalProperties);
if (memoryType == -1)

memoryType = FindProperties(memoryRequirements.memoryTypeBits,
requiredProperties);

The loop will find the first supported memory type that has all bits requested in properties set. If
there is no exact match, it will find a closest match (i.e. a memory type with the fewest additional
bits set), which has some additional bits set but which are not detrimental to the behaviors
requested by properties. The application can first search for the optimal properties, e.g. a memory
type that is device-local or supports coherent cached accesses, as appropriate for the intended
usage, and if such a memory type is not present can fallback to searching for a less optimal but
guaranteed set of properties such as "0" or "host-visible and coherent".

The VkMemoryHeap structure is defined as:

typedef struct VkMemoryHeap {
VkDeviceSize size;
VkMemoryHeapFlags flags;
} VkMemoryHeap;

* size is the total memory size in bytes in the heap.

« flags is a bitmask of VkMemoryHeapFlagBits specifying attribute flags for the heap.

Bits which may be set in VkMemoryHeap::flags, indicating attribute flags for the heap, are:

213

typedef enum VkMemoryHeapFlagBits {
VK_MEMORY_HEAP_DEVICE_LOCAL_BIT = 0x00000001,
} VkMemoryHeapFlagBits;

» VK_MEMORY_HEAP_DEVICE_LOCAL_BIT indicates that the heap corresponds to device local memory.
Device local memory may have different performance characteristics than host local memory,
and may support different memory property flags.

The VkMemoryType structure is defined as:

typedef struct VkMemoryType {
VkMemoryPropertyFlags propertyFlags;
uint32 t heapIndex;

} VkMemoryType;

* heapIndex describes which memory heap this memory type corresponds to, and must be less
than memoryHeapCount from the VkPhysicalDeviceMemoryProperties structure.

» propertyFlags is a bitmask of VkMemoryPropertyFlagBits of properties for this memory type.

Bits which may be set in VkMemoryType::propertyFlags, indicating properties of a memory heap,
are:

typedef enum VkMemoryPropertyFlagBits {

VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT = 0x00000001,
VK_MEMORY_PROPERTY_HOST _VISIBLE_BIT = 0x00000002,

VK_MEMORY_PROPERTY_HOST_COHERENT_BIT = 0x00000004,

VK_MEMORY_PROPERTY_HOST_CACHED_BIT = 0x00000008,

VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT = 0x00000010,
} VkMemoryPropertyFlagBits;

» VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT bit indicates that memory allocated with this type is the
most efficient for device access. This property will only be set for memory types belonging to
heaps with the VK_MEMORY_HEAP_DEVICE_LOCAL_BIT set.

» VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT bit indicates that memory allocated with this type can be
mapped for host access using vkMapMemory.

» VK_MEMORY_PROPERTY_HOST_COHERENT_BIT bit indicates that the host cache management commands
vkFlushMappedMemoryRanges and vkInvalidateMappedMemoryRanges are not needed to
flush host writes to the device or make device writes visible to the host, respectively.

» VK_MEMORY_PROPERTY_HOST_CACHED_BIT bit indicates that memory allocated with this type is cached
on the host. Host memory accesses to uncached memory are slower than to cached memory,
however uncached memory is always host coherent.

» VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT bit indicates that the memory type only allows device
access to the memory. Memory types must not have both
VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT and VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT set.

214

Additionally, the object’s backing memory may be provided by the implementation lazily as
specified in Lazily Allocated Memory.

A Vulkan device operates on data in device memory via memory objects that are represented in the
API by a VkDeviceMemory handle.

Memory objects are represented by VkDeviceMemory handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkDeviceMemory)

To allocate memory objects, call:

VkResult vkAllocateMemory(

VkDevice device,

const VkMemoryAllocateInfo* pAllocatelnfo,
const VkAllocationCallbacks* pAllocator,
VkDeviceMemory* pMemory);

* device is the logical device that owns the memory.

* pAllocatelnfo is a pointer to an instance of the VkMemoryAllocateInfo structure describing
parameters of the allocation. A successful returned allocation must use the requested
parameters — no substitution is permitted by the implementation.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pMemory is a pointer to a VkDeviceMemory handle in which information about the allocated
memory is returned.

Allocations returned by vkAllocateMemory are guaranteed to meet any alignment requirement by the
implementation. For example, if an implementation requires 128 byte alignment for images and 64
byte alignment for buffers, the device memory returned through this mechanism would be 128-
byte aligned. This ensures that applications can correctly suballocate objects of different types
(with potentially different alignment requirements) in the same memory object.

When memory is allocated, its contents are undefined.

There is an implementation-dependent maximum number of memory allocations which can be
simultaneously created on a device. This is specified by the maxMemoryAllocationCount member of
the VkPhysicalDevicelimits structure. If maxMemoryAllocationCount is exceeded, vkAllocateMemory will
return VK_ERROR_TOO0_MANY_OBJECTS.

Note

Some platforms may have a limit on the maximum size of a single allocation. For

O example, certain systems may fail to create allocations with a size greater than or
equal to 4GB. Such a limit is implementation-dependent, and if such a failure
occurs then the error VK_ERROR_OUT_OF _DEVICE_MEMORY should be returned.

215

Valid Usage

* The number of currently valid memory objects, allocated from device, must be less than
VkPhysicalDevicelimits::maxMemoryAllocationCount

Valid Usage (Implicit)

* device must be a valid VkDevice handle

pAllocateInfo must be a pointer to a valid VkMemoryAllocateInfo structure

If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

* pMemory must be a pointer to a VkDeviceMemory handle

Return Codes

Success
o VK_SUCCESS

Failure
o VK_ERROR_OUT_OF_HOST_MEMORY
« VK_ERROR_OUT_OF _DEVICE_MEMORY
o VK_ERROR_TOO_MANY_OBJECTS

The VkMemoryAllocateInfo structure is defined as:

typedef struct VkMemoryAllocateInfo {
VkStructureType sType;

const void* pNext;
VkDeviceSize allocationSize;
uint32_t memoryTypeIndex;

} VkMemoryAllocatelInfo;

* sType is the type of this structure.

pNext is NULL or a pointer to an extension-specific structure.
* allocationSize is the size of the allocation in bytes

» memoryTypelndex is the memory type index, which selects the properties of the memory to be
allocated, as well as the heap the memory will come from.

216

Valid Usage

* allocationSize must be less than or equal to the amount of memory available to the
VkMemoryHeap specified by memoryTypeIndex and the calling command’s VkDevice

* allocationSize must be greater than 0

Valid Usage (Implicit)

* sType must be VK_STRUCTURE_TYPE_MEMORY _ALLOCATE_INFO
* pNext must be NULL

To free a memory object, call:

void vkFreeMemory (

VkDevice device,
VkDeviceMemory memory,
const VkAllocationCallbacks* pAllocator);

* device is the logical device that owns the memory.
* memory is the VkDeviceMemory object to be freed.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Before freeing a memory object, an application must ensure the memory object is no longer in use
by the device—for example by command buffers queued for execution. The memory can remain
bound to images or buffers at the time the memory object is freed, but any further use of them (on
host or device) for anything other than destroying those objects will result in undefined behavior. If
there are still any bound images or buffers, the memory may not be immediately released by the
implementation, but must be released by the time all bound images and buffers have been
destroyed. Once memory is released, it is returned to the heap from which it was allocated.

How memory objects are bound to Images and Buffers is described in detail in the Resource
Memory Association section.

If a memory object is mapped at the time it is freed, it is implicitly unmapped.

Note

0 As described below, host writes are not implicitly flushed when the memory object
is unmapped, but the implementation must guarantee that writes that have not
been flushed do not affect any other memory.

217

Valid Usage

 All submitted commands that refer to memory (via images or buffers) must have completed
execution

Valid Usage (Implicit)

* device must be a valid VkDevice handle
o If memory is not VK_NULIL_HANDLE, memory must be a valid VkDeviceMemory handle

o If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

o If memory is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

» Host access to memory must be externally synchronized

10.2.1. Host Access to Device Memory Objects
Memory objects created with vkAllocateMemory are not directly host accessible.

Memory objects created with the memory property VK _MEMORY_PROPERTY_HOST_VISIBLE BIT are
considered mappable. Memory objects must be mappable in order to be successfully mapped on
the host.

To retrieve a host virtual address pointer to a region of a mappable memory object, call:

VkResult vkMapMemory/(

VkDevice device,
VkDeviceMemory memory,
VkDeviceSize offset,
VkDeviceSize size,
VkMemoryMapFlags flags,
void** ppData);

 device is the logical device that owns the memory.
* memory is the VkDeviceMemory object to be mapped.
» offset is a zero-based byte offset from the beginning of the memory object.

* size is the size of the memory range to map, or VK_WHOLE_SIZE to map from offset to the end of
the allocation.

» flags is reserved for future use.

218

» ppData points to a pointer in which is returned a host-accessible pointer to the beginning of the
mapped range. This pointer minus offset must be aligned to at least VkPhysicalDevicelimits
::minMemoryMapAlignment.

It is an application error to call vkMapMemory on a memory object that is already mapped.

Note

vkMapMemory will fail if the implementation is unable to allocate an appropriately
sized contiguous virtual address range, e.g. due to virtual address space

9 fragmentation or platform limits. In such cases, vkMapMemory must return
VK_ERROR_MEMORY_MAP_FAILED. The application can improve the likelihood of success
by reducing the size of the mapped range and/or removing unneeded mappings
using VkUnmapMemory.

vkMapMemory does not check whether the device memory is currently in use before returning the
host-accessible pointer. The application must guarantee that any previously submitted command
that writes to this range has completed before the host reads from or writes to that range, and that
any previously submitted command that reads from that range has completed before the host
writes to that region (see here for details on fulfilling such a guarantee). If the device memory was
allocated without the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT set, these guarantees must be made for
an extended range: the application must round down the start of the range to the nearest multiple
of VkPhysicalDevicelLimits::nonCoherentAtomSize, and round the end of the range up to the nearest
multiple of VkPhysicalDevicelLimits::nonCoherentAtomSize.

While a range of device memory is mapped for host access, the application is responsible for
synchronizing both device and host access to that memory range.

Note

0 It is important for the application developer to become meticulously familiar with
all of the mechanisms described in the chapter on Synchronization and Cache
Control as they are crucial to maintaining memory access ordering.

Valid Usage

* memory must not currently be mapped
» offset must be less than the size of memory
* If size is not equal to VK_WHOLE_SIZE, size must be greater than 0

 If size is not equal to VK_WHOLE_SIZE, size must be less than or equal to the size of the
memory minus offset

* memory must have Dbeen created with a memory type that reports
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT

219

Valid Usage (Implicit)

* device must be a valid VkDevice handle

» memory must be a valid VkDeviceMemory handle
» flags must be 0

 ppData must be a pointer to a pointer

» memory must have been created, allocated, or retrieved from device

Host Synchronization

* Host access to memory must be externally synchronized

Return Codes

Success
o VK_SUCCESS

Failure
o VK_ERROR_OUT_OF_HOST_MEMORY
o VK_ERROR_OUT_OF _DEVICE_MEMORY
o VK_ERROR_MEMORY_MAP_FAILED

Two commands are provided to enable applications to work with non-coherent memory
allocations: vkFlushMappedMemoryRanges and vkInvalidateMappedMemoryRanges.

Note
If the memory object was created with the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
0 set, vkFlushMappedMemoryRanges = and vkInvalidateMappedMemoryRanges are

unnecessary and may have a performance cost. However, availability and
visibility operations still need to be managed on the device. See the description of
host access types for more information.

To flush ranges of non-coherent memory from the host caches, call:

VkResult vkFlushMappedMemoryRanges(

VkDevice device,
uint32_t memoryRangeCount,
const VkMappedMemoryRange* pMemoryRanges);

* device is the logical device that owns the memory ranges.

» memoryRangeCount is the length of the pMemoryRanges array.

220

* pMemoryRanges is a pointer to an array of VkMappedMemoryRange structures describing the
memory ranges to flush.

vkFlushMappedMemoryRanges guarantees that host writes to the memory ranges described by
pMemoryRanges can be made available to device access, via availability operations from the
VK_ACCESS_HOST_WRITE_BIT access type.

Unmapping non-coherent memory does not implicitly flush the mapped memory, and host writes
that have not been flushed may not ever be visible to the device. However, implementations must
ensure that writes that have not been flushed do not become visible to any other memory.

Note

The above guarantee avoids a potential memory corruption in scenarios where

0 host writes to a mapped memory object have not been flushed before the memory
is unmapped (or freed), and the virtual address range is subsequently reused for a
different mapping (or memory allocation).

Valid Usage (Implicit)

e device must be a valid VkDevice handle

* pMemoryRanges must be a pointer to an array of memoryRangeCount valid VkMappedMemoryRange
structures

» memoryRangeCount must be greater than 0

Return Codes

Success
o VK_SUCCESS

Failure
« VK_ERROR_OUT_OF HOST_MEMORY
o VK_ERROR_OUT_OF DEVICE MEMORY

To invalidate ranges of non-coherent memory from the host caches, call:

VkResult vkInvalidateMappedMemoryRanges(

VkDevice device,
uint32 t memoryRangeCount,
const VkMappedMemoryRange* pMemoryRanges);

* device is the logical device that owns the memory ranges.
» memoryRangeCount is the length of the pMemoryRanges array.

* pMemoryRanges is a pointer to an array of VkMappedMemoryRange structures describing the
memory ranges to invalidate.

221

vkInvalidateMappedMemoryRanges guarantees that device writes to the memory ranges described by
pMemoryRanges, which have been made visible to the VK_ACCESS_HOST_WRITE_BIT and
VK_ACCESS_HOST_READ_BIT access types, are made visible to the host. If a range of non-coherent
memory is written by the host and then invalidated without first being flushed, its contents are
undefined.

Note

ﬂ Mapping non-coherent memory does not implicitly invalidate the mapped
memory, and device writes that have not been invalidated must be made visible
before the host reads or overwrites them.

Valid Usage (Implicit)

e device must be a valid VkDevice handle

* pMemoryRanges must be a pointer to an array of memoryRangeCount valid VkMappedMemoryRange
structures

» memoryRangeCount must be greater than 0

Return Codes

Success
o VK_SUCCESS

Failure
o VK_ERROR_OUT_OF HOST_MEMORY

o VK_ERROR_OUT_OF _DEVICE_MEMORY
The VkMappedMemoryRange structure is defined as:

typedef struct VkMappedMemoryRange {
VkStructureType sType;

const void* pNext;
VkDeviceMemory memory;
VkDeviceSize offset;
VkDeviceSize size;

} VkMappedMemoryRange;

* sType is the type of this structure.

* pNext is NULL or a pointer to an extension-specific structure.

* memory is the memory object to which this range belongs.

» offset is the zero-based byte offset from the beginning of the memory object.

* size is either the size of range, or VK_WHOLE_SIZE to affect the range from offset to the end of the
current mapping of the allocation.

222

Valid Usage

* memory must currently be mapped

» If size is not equal to VK_WHOLE_SIZE, offset and size must specify a range contained
within the currently mapped range of memory

 If size is equal to VK_WHOLE_SIZE, offset must be within the currently mapped range of
memory

o If size is equal to VK_WHOLE_SIZE, the end of the current mapping of memory must be a
multiple of VkPhysicalDeviceLimits::nonCoherentAtomSize bytes from the beginning of the
memory object.

» offset must be a multiple of VkPhysicalDevicelLimits::nonCoherentAtomSize

o If size is not equal to VK_WHOLE_SIZE, size must either be a multiple of
VkPhysicalDevicelLimits::nonCoherentAtomSize, or offset plus size must equal the size of
memory.

Valid Usage (Implicit)

* sType must be VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE
* pNext must be NULL

» memory must be a valid VkDeviceMemory handle

To unmap a memory object once host access to it is no longer needed by the application, call:

void vkUnmapMemory (
VkDevice device,
VkDeviceMemory memory);

* device is the logical device that owns the memory.

* memory is the memory object to be unmapped.

Valid Usage

* memory must currently be mapped

Valid Usage (Implicit)

» device must be a valid VkDevice handle
» memory must be a valid VkDeviceMemory handle

» memory must have been created, allocated, or retrieved from device

223

Host Synchronization

* Host access to memory must be externally synchronized

10.2.2. Lazily Allocated Memory

If the memory object is allocated from a heap with the VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT bit
set, that object’s backing memory may be provided by the implementation lazily. The actual
committed size of the memory may initially be as small as zero (or as large as the requested size),
and monotonically increases as additional memory is needed.

A memory type with this flag set is only allowed to be bound to a VkImage whose usage flags include
VK_IMAGE_USAGE _TRANSIENT_ATTACHMENT_BIT.

Note

ﬁ Using lazily allocated memory objects for framebuffer attachments that are not
needed once a render pass instance has completed may allow some
implementations to never allocate memory for such attachments.

To determine the amount of lazily-allocated memory that is currently committed for a memory
object, call:

void vkGetDeviceMemoryCommitment(

VkDevice device,
VkDeviceMemory memory,
VkDeviceSize* pCommittedMemoryInBytes);

* device is the logical device that owns the memory.
* memory is the memory object being queried.

* pCommittedMemoryInBytes is a pointer to a VkDeviceSize value in which the number of bytes
currently committed is returned, on success.

The implementation may update the commitment at any time, and the value returned by this query
may be out of date.

The implementation guarantees to allocate any committed memory from the heapIndex indicated
by the memory type that the memory object was created with.

Valid Usage

* memory must have been created with a memory type that reports
VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT

224

Valid Usage (Implicit)

device must be a valid VkDevice handle
memory must be a valid VkDeviceMemory handle
pCommittedMemoryInBytes must be a pointer to a VkDeviceSize value

memory must have been created, allocated, or retrieved from device

225

Chapter 11. Resource Creation

Vulkan supports two primary resource types: buffers and images. Resources are views of memory
with associated formatting and dimensionality. Buffers are essentially unformatted arrays of bytes
whereas images contain format information, can be multidimensional and may have associated
metadata.

11.1. Buffers

Buffers represent linear arrays of data which are used for various purposes by binding them to a
graphics or compute pipeline via descriptor sets or via certain commands, or by directly specifying
them as parameters to certain commands.

Buffers are represented by VkBuffer handles:
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkBuffer)
To create buffers, call:

VkResult vkCreateBuffer(

VkDevice device,
const VkBufferCreateInfo* pCreatelnfo,
const VkAllocationCallbacks* pAllocator,
VkBuffer* pBuffer);

« device is the logical device that creates the buffer object.

pCreateInfo is a pointer to an instance of the VkBufferCreateInfo structure containing
parameters affecting creation of the buffer.

pAllocator controls host memory allocation as described in the Memory Allocation chapter.

 pBuffer points to a VkBuffer handle in which the resulting buffer object is returned.

Valid Usage

o If the flags member of pCreateInfo includes VK_BUFFER_CREATE_SPARSE_BINDING_BIT,
creating this VkBuffer must not cause the total required sparse memory for all currently
valid sparse resources on the device to exceed VkPhysicalDevicelLimits
::sparseAddressSpaceSize

226

Valid Usage (Implicit)

* device must be a valid VkDevice handle

» pCreateInfo must be a pointer to a valid VkBufferCreateInfo structure

If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

» pBuffer must be a pointer to a VkBuffer handle

Return Codes

Success
o VK_SUCCESS

Failure
« VK_ERROR_OUT_OF HOST_MEMORY
« VK_ERROR_OUT_OF DEVICE MEMORY

The VkBufferCreateInfo structure is defined as:

typedef struct VkBufferCreateInfo {

VkStructureType sType;

const void* pNext;
VkBufferCreateFlags flags;

VkDeviceSize size;
VkBufferUsageFlags usage;

VkSharingMode sharingMode;

uint32_t queueFamilyIndexCount;
const uint32_t* pQueueFamilyIndices;

} VkBufferCreateInfo;

* sType is the type of this structure.

» pNext is NULL or a pointer to an extension-specific structure.

» flags is a bitmask of VkBufferCreateFlagBits specifying additional parameters of the buffer.
* size is the size in bytes of the buffer to be created.

* usage is a bitmask of VkBufferUsageFlagBits specifying allowed usages of the buffer.

* sharingMode is a VkSharingMode value specifying the sharing mode of the buffer when it will be
accessed by multiple queue families.

* queueFamilyIndexCount is the number of entries in the pQueueFamilyIndices array.

* pQueueFamilyIndices is a list of queue families that will access this buffer (ignored if sharingMode
is not VK_SHARING_MODE_CONCURRENT).

227

Valid Usage

size must be greater than 0

If sharingMode is VK_SHARING_MODE _CONCURRENT, pQueueFamilyIndices must be a pointer to an
array of queueFamilyIndexCount uint32_t values

If sharingMode is VK_SHARING_MODE_CONCURRENT, queueFamilyIndexCount must be greater than
1

If sharingMode is VK_SHARING_MODE_CONCURRENT, each element of pQueueFamilyIndices must be
unique and must be less than pQueueFamilyPropertyCount returned by
vkGetPhysicalDeviceQueueFamilyProperties for the physicalDevice that was used to
create device

If the sparse bindings feature is not enabled, flags must not contain
VK_BUFFER_CREATE _SPARSE_BINDING_BIT

If the sparse buffer residency feature is not enabled, flags must not contain
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT

If the sparse aliased residency feature is not enabled, flags must not contain
VK_BUFFER_CREATE _SPARSE_ALIASED_BIT

If flags contains VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT or

VK_BUFFER_CREATE_SPARSE_ALIASED BIT, it must also contain
VK_BUFFER_CREATE_SPARSE_BINDING_BIT

Valid Usage (Implicit)

sType must be VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO

pNext must be NULL

flags must be a valid combination of VkBufferCreateFlagBits values
usage must be a valid combination of VkBufferUsageFlagBits values
usage must not be 0

sharingMode must be a valid VkSharingMode value

Bits which can be set in VkBufferCreateInfo::usage, specifying usage behavior of a buffer, are:

228

typedef enum VkBufferUsageFlagBits {
VK_BUFFER_USAGE_TRANSFER_SRC_BIT = 0x00000001,
VK_BUFFER_USAGE_TRANSFER_DST_BIT = 0x00000002,
VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT = 0x00000004,
VK_BUFFER_USAGE_STORAGE _TEXEL_BUFFER_BIT = 0x00000008,
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT = 0x00000010,
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT = 0x00000020,
VK_BUFFER_USAGE_INDEX_BUFFER_BIT = 0x00000040,
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT = 0x00000080,
VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT = 0x00000100,

} VkBufferUsageFlagBits;

» VK_BUFFER_USAGE_TRANSFER_SRC_BIT specifies that the buffer can be used as the source of a
transfer command (see the definition of VK_PIPELINE_STAGE_TRANSFER_BIT).

» VK_BUFFER_USAGE_TRANSFER_DST_BIT specifies that the buffer can be used as the destination of a
transfer command.

» VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT specifies that the buffer can be used to create a
VkBufferView suitable for occupying a VkDescriptorSet slot of type
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER.

* VK_BUFFER_USAGE_STORAGE _TEXEL_BUFFER_BIT specifies that the buffer can be used to create a
VkBufferView suitable for occupying a VkDescriptorSet slot of type
VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER.

» VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT specifies that the buffer can be wused in a
VkDescriptorBufferInfo suitable for occupying a VkDescriptorSet slot either of type
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC.

* VK_BUFFER_USAGE_STORAGE_BUFFER_BIT specifies that the buffer can be wused in a
VkDescriptorBufferInfo suitable for occupying a VkDescriptorSet slot either of type
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC.

» VK_BUFFER_USAGE_INDEX_BUFFER_BIT specifies that the buffer is suitable for passing as the buffer
parameter to vkCmdBindIndexBuffer.

» VK_BUFFER_USAGE_VERTEX_BUFFER_BIT specifies that the buffer is suitable for passing as an element
of the pBuffers array to vkCmdBindVertexBuffers.

» VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT specifies that the buffer is suitable for passing as the
buffer parameter to vkCmdDrawIndirect, vkCmdDrawIndexedIndirect, or vkCmdDispatchIndirect.

Bits which can be set in VkBufferCreateInfo::flags, specifying additional parameters of a buffer,
are:

typedef enum VkBufferCreateFlagBits {
VK_BUFFER_CREATE_SPARSE_BINDING_BIT = 0x00000001,
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT = 0x00000002,
VK_BUFFER_CREATE_SPARSE_ALIASED_BIT = 0x00000004,

} VkBufferCreateFlagBits;

229

» VK_BUFFER_CREATE_SPARSE_BINDING_BIT specifies that the buffer will be backed using sparse
memory binding.

» VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT specifies that the buffer can be partially backed using
sparse memory binding. Buffers created with this flag must also be created with the
VK_BUFFER_CREATE_SPARSE_BINDING_BIT flag.

» VK_BUFFER_CREATE_SPARSE_ALIASED_BIT specifies that the buffer will be backed using sparse
memory binding with memory ranges that might also simultaneously be backing another buffer
(or another portion of the same buffer). Buffers created with this flag must also be created with
the VK_BUFFER_CREATE_SPARSE_BINDING_BIT flag.

See Sparse Resource Features and Physical Device Features for details of the sparse memory
features supported on a device.

To destroy a buffer, call:

void vkDestroyBuffer(

VkDevice device,
VkBuffer buffer,
const VkAllocationCallbacks* pAllocator);

» device is the logical device that destroys the buffer.
» buffer is the buffer to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

 All submitted commands that refer to buffer, either directly or via a VkBufferView, must
have completed execution

» If VkAllocationCallbacks were provided when buffer was created, a compatible set of
callbacks must be provided here

 If no VkAllocationCallbacks were provided when buffer was created, pAllocator must be
NULL

Valid Usage (Implicit)
e device must be a valid VkDevice handle

o If buffer is not VK NULL HANDLE, buffer must be a valid VkBuffer handle

o If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

o If buffer is a valid handle, it must have been created, allocated, or retrieved from device

230

Host Synchronization

* Host access to buffer must be externally synchronized

11.2. Buffer Views

A buffer view represents a contiguous range of a buffer and a specific format to be used to interpret
the data. Buffer views are used to enable shaders to access buffer contents interpreted as formatted
data. In order to create a valid buffer view, the buffer must have been created with at least one of
the following usage flags:

« VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT
« VK_BUFFER_USAGE_STORAGE _TEXEL_BUFFER_BIT

Buffer views are represented by VkBufferView handles:
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkBufferView)
To create a buffer view, call:

VkResult vkCreateBufferView(

VkDevice device,
const VkBufferViewCreateInfo* pCreatelnfo,
const VkAllocationCallbacks* pAllocator,
VkBufferView* pView);

* device is the logical device that creates the buffer view.

* pCreatelnfo is a pointer to an instance of the VkBufferViewCreateInfo structure containing
parameters to be used to create the buffer.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pView points to a VkBufferView handle in which the resulting buffer view object is returned.

Valid Usage (Implicit)

e device must be a valid VkDevice handle

» pCreateInfo must be a pointer to a valid VkBufferViewCreateInfo structure

If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

 pView must be a pointer to a VkBufferView handle

231

Return Codes

Success
o VK_SUCCESS

Failure
o VK_ERROR_OUT_OF HOST_MEMORY
o VK_ERROR _OUT_OF DEVICE MEMORY

The VkBufferViewCreateInfo structure is defined as:

typedef struct VkBufferViewCreateInfo {

VkStructureType sType;
const void* pNext;
VkBufferViewCreateFlags flags;
VkBuffer buffer;
VkFormat format;
VkDeviceSize offset;
VkDeviceSize range;

} VkBufferViewCreateInfo;

* sType is the type of this structure.

* pNext is NULL or a pointer to an extension-specific structure.

» flags is reserved for future use.

» buffer is a VkBuffer on which the view will be created.

» format is a VkFormat describing the format of the data elements in the buffer.

» offset is an offset in bytes from the base address of the buffer. Accesses to the buffer view from
shaders use addressing that is relative to this starting offset.

* range is a size in bytes of the buffer view. If range is equal to VK_WHOLE_SIZE, the range from
offset to the end of the buffer is used. If VK_WHOLE_SIZE is used and the remaining size of the
buffer is not a multiple of the element size of format, then the nearest smaller multiple is used.

232

Valid Usage

» offset must be less than the size of buffer
» offset must be a multiple of VkPhysicalDeviceLimits::minTexelBufferOffsetAlignment
» If range is not equal to VK_WHOLE_SIZE, range must be greater than 0

* If range is not equal to VK_WHOLE_SIZE, range must be a multiple of the element size of
format

* If range is not equal to VK_WHOLE_SIZE, range divided by the element size of format must be
less than or equal to VkPhysicalDevicelimits::maxTexelBufferElements

o If range is not equal to VK_WHOLE_SIZE, the sum of offset and range must be less than or
equal to the size of buffer

* buffer must have been created with a usage value containing at least one of
VK_BUFFER_USAGE _UNIFORM_TEXEL_BUFFER_BIT or VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT

o If buffer was created with usage containing VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT,
format must be supported for uniform texel buffers, as specified by the
VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT flag in VkFormatProperties::bufferFeatures
returned by vkGetPhysicalDeviceFormatProperties

o If buffer was created with usage containing VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT,
format must be supported for storage texel buffers, as specified by the
VK_FORMAT_FEATURE_STORAGE _TEXEL_BUFFER_BIT flag in VkFormatProperties::bufferFeatures
returned by vkGetPhysicalDeviceFormatProperties

o If buffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

Valid Usage (Implicit)

* sType must be VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO
* pNext must be NULL

* flags must be 0

» buffer must be a valid VkBuffer handle

* format must be a valid VkFormat value

To destroy a buffer view, call:

void vkDestroyBufferView(

VkDevice device,
VkBufferView bufferView,
const VkAllocationCallbacks* pAllocator);

* device is the logical device that destroys the buffer view.

233

» bufferViewis the buffer view to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

+ All submitted commands that refer to bufferView must have completed execution

 If VkAllocationCallbacks were provided when bufferView was created, a compatible set of
callbacks must be provided here

» If no VkAllocationCallbacks were provided when bufferView was created, pAllocator must
be NULL

Valid Usage (Implicit)

* device must be a valid VkDevice handle
o If bufferViewis not VK_NULL _HANDLE, bufferView must be a valid VkBufferView handle

o If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

o If bufferView is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

* Host access to bufferView must be externally synchronized

11.3. Images

Images represent multidimensional - up to 3 - arrays of data which can be used for various
purposes (e.g. attachments, textures), by binding them to a graphics or compute pipeline via
descriptor sets, or by directly specifying them as parameters to certain commands.

Images are represented by VkImage handles:
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkImage)
To create images, call:

VkResult vkCreateImage(

VkDevice device,
const VkImageCreateInfo* pCreatelnfo,
const VkAllocationCallbacks* pAllocator,
VkImage* pImage);

234

 device is the logical device that creates the image.

» pCreatelnfo is a pointer to an instance of the VkImageCreateInfo structure containing parameters
to be used to create the image.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pImage points to a VkImage handle in which the resulting image object is returned.

Valid Usage

o If the flags member of pCreateInfo includes VK_IMAGE_CREATE_SPARSE_BINDING_BIT, creating
this VkImage must not cause the total required sparse memory for all currently valid
sparse resources on the device to exceed VkPhysicalDevicelLimits::sparseAddressSpaceSize

Valid Usage (Implicit)

» device must be a valid VkDevice handle
» pCreateInfo must be a pointer to a valid VkImageCreateInfo structure

o If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

» pImage must be a pointer to a VkImage handle

Return Codes

Success
o VK_SUCCESS

Failure
o VK_ERROR_OUT_OF HOST_MEMORY
o VK_ERROR_OUT_OF DEVICE MEMORY

The VkImageCreateInfo structure is defined as:

235

typedef struct VkImageCreateInfo {

}

236

VkStructureType sType;

const void* pNext;

VkImageCreateFlags flags;

VkImageType imageType;

VkFormat format;

VkExtent3D extent;

uint32_t mipLevels;

uint32_t arraylayers;

VkSampleCountFlagBits samples;

VkImageTiling tiling;

VkImageUsageFlags usage;

VkSharingMode sharingMode;

uint32_ t queueFamilyIndexCount;

const uint32_t* pQueueFamilyIndices;

VkImagelayout initiallayout;
VkImageCreatelnfo;

sType is the type of this structure.
pNext is NULL or a pointer to an extension-specific structure.
flags is a bitmask of VkImageCreateFlagBits describing additional parameters of the image.

imageType is a VkImageType value specifying the basic dimensionality of the image. Layers in
array textures do not count as a dimension for the purposes of the image type.

format is a VkFormat describing the format and type of the data elements that will be contained
in the image.

extent is a VkExtent3D describing the number of data elements in each dimension of the base
level.

mipLevels describes the number of levels of detail available for minified sampling of the image.
arraylayers is the number of layers in the image.

samples is the number of sub-data element samples in the image as defined in
VkSampleCountFlagBits. See Multisampling.

tiling is a VkImageTiling value specifying the tiling arrangement of the data elements in
memory.

usage is a bitmask of VkImageUsageFlagBits describing the intended usage of the image.

sharingMode is a VkSharingMode value specifying the sharing mode of the image when it will be
accessed by multiple queue families.

queueFamilyIndexCount is the number of entries in the pQueueFamilyIndices array.

pQueueFamilyIndices is a list of queue families that will access this image (ignored if sharingMode
is not VK_SHARING_MODE_CONCURRENT).

initiallayout is a VkImageLayout value specifying the initial VkImageLayout of all image
subresources of the image. See Image Layouts.

Images created with tiling equal to VK_IMAGE_TILING_LINEAR have further restrictions on their limits
and capabilities compared to images created with tiling equal to VK_IMAGE_TILING_OPTIMAL. Creation
of images with tiling VK_IMAGE_TILING_LINEAR may not be supported unless other parameters meet
all of the constraints:

 imageType is VK_IMAGE_TYPE_2D

» format is not a depth/stencil format

* mipLevelsis1

e arraylayersis1

e samples is VK_SAMPLE_COUNT_1_BIT

* usage only includes VK_IMAGE_USAGE_TRANSFER_SRC_BIT and/or VK_IMAGE_USAGE_TRANSFER_DST_BIT

Implementations may support additional limits and capabilities beyond those listed above.

To query an implementation’s specific capabilities for a given combination of format, imageType,
tiling, usage, and flags, call vkGetPhysicalDevicelmageFormatProperties. The return value
indicates whether that combination of image settings is supported. On success, the
VkImageFormatProperties output parameter indicates the set of valid samples bits and the limits for
extent, mipLevels, and arraylayers.

To determine the set of wvalid usage bits for a given format, call
vkGetPhysicalDeviceFormatProperties.

237

238

Valid Usage

The combination of format, imageType, tiling, usage, and flags must be supported, as
indicated by a VK_SUCCESS return value from vkGetPhysicalDeviceImageFormatProperties
invoked with the same values passed to the corresponding parameters.

If sharingMode is VK_SHARING_MODE_CONCURRENT, pQueueFamilyIndices must be a pointer to an
array of queueFamilyIndexCount uint32_t values

If sharingMode is VK_SHARING_MODE_CONCURRENT, queueFamilyIndexCount must be greater than
1

If sharingMode is VK_SHARING_MODE_CONCURRENT, each element of pQueueFamilyIndices must be
unique and must be less than pQueueFamilyPropertyCount returned by
vkGetPhysicalDeviceQueueFamilyProperties for the physicalDevice that was used to
create device

format must not be VK_FORMAT_UNDEFINED
extent::width must be greater than 0.
extent::height must be greater than 0.
extent::depth must be greater than 0.
mipLevels must be greater than 0
arraylLayers must be greater than 0

If flags contains VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT, imageType must be
VK_IMAGE_TYPE_2D

If imageType is VK_IMAGE_TYPE_1D, extent.width must be less than or equal to
VkPhysicalDevicelimits::maxImageDimension1D, or VkImageFormatProperties::maxExtent.width
(as returned by vkGetPhysicalDeviceImageFormatProperties with format, imageType, tiling,
usage, and flags equal to those in this structure) - whichever is higher

If imageType is VK_IMAGE_TYPE_2D and flags does not contain
VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT, extent.width and extent.height must be less than or
equal to VkPhysicalDevicelLimits::maxImageDimension2D, or VkImageFormatProperties
mmaxExtent.width/height (as returned by vkGetPhysicalDeviceImageFormatProperties with
format, imageType, tiling, usage, and flags equal to those in this structure) - whichever is
higher

If imageType is VK_IMAGE_TYPE_2D and flags contains VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT,
extent.width and extent.height must be less than or equal to VkPhysicalDevicelimits
::maxImageDimensionCube, or VkImageFormatProperties::maxExtent.width/height (as returned
by vkGetPhysicalDeviceImageFormatProperties with format, imageType, tiling, usage, and
flags equal to those in this structure) - whichever is higher

If imageType is VK_IMAGE_TYPE_2D and flags contains VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT,
extent.width and extent.height must be equal and arraylLayers must be greater than or
equal to 6

If imageType is VK_IMAGE_TYPE_3D, extent.width, extent.height and extent.depth must be less
than or equal to VkPhysicalDevicelLimits::maxImageDimension3D, or VkImageFormatProperties
::maxExtent.width/height/depth (as returned by vkGetPhysicalDeviceImageFormatProperties

with format, imageType, tiling, usage, and flags equal to those in this structure) -
whichever is higher

If imageType is VK_IMAGE_TYPE_1D, both extent.height and extent.depth must be 1
If imageType is VK_IMAGE_TYPE_2D, extent.depth must be 1

mipLevels must be less than or equal to log,(max(extent.width, extent.height,
extent.depth)) +1.

If any of extent.width, extent.height, or extent.depth are greater than the equivalently
named members of VkPhysicalDevicelimits::maxImageDimension3D, mipLevels must be less
than or equal to VkImageFormatProperties::maxMipLevels (as returned by
vkGetPhysicalDeviceImageFormatProperties with format, imageType, tiling, usage, and flags
equal to those in this structure)

arraylayers must be less than or equal to VkImageFormatProperties::maxArraylayers (as
returned by vkGetPhysicalDeviceImageFormatProperties with format, imageType, tiling,
usage, and flags equal to those in this structure)

If imageType is VK_IMAGE_TYPE_3D, arraylLayers must be 1.

If samples is not VK_SAMPLE_COUNT_1_BIT, imageType must be VK_IMAGE_TYPE_2D, flags must
not contain VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT, tiling must be VK_IMAGE_TILING_OPTIMAL,
and mipLevels must be equal to 1

If usage includes VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT, then bits other than
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, and
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT must not be set

If usage includes VK_IMAGE _USAGE _COLOR_ATTACHMENT _BIT,
VK_IMAGE _USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT,
or VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT, extent.width must be less than or equal to
VkPhysicalDevicelimits::maxFramebufferWidth

If usage includes VK_IMAGE _USAGE _COLOR_ATTACHMENT _BIT,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT,
or VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT, extent.height must be less than or equal to
VkPhysicalDevicelimits::maxFramebufferHeight

If usage includes VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT, usage must also contain at
least one of VK_IMAGE _USAGE _COLOR_ATTACHMENT BIT,
VK_IMAGE_USAGE_DEPTH_STENCIL ATTACHMENT BIT, or VK_IMAGE USAGE_INPUT_ATTACHMENT BIT.

samples must be a bit value that is set in VkImageFormatProperties::sampleCounts returned
by vkGetPhysicalDeviceImageFormatProperties with format, imageType, tiling, usage, and
flags equal to those in this structure

If the multisampled storage images feature is not enabled, and usage contains
VK_IMAGE_USAGE_STORAGE_BIT, samples must be VK_SAMPLE_COUNT_1_BIT

If the sparse bindings feature is not enabled, flags must not contain
VK_IMAGE_CREATE_SPARSE_BINDING_BIT

If imageType is VK_IMAGE _TYPE 1D, flags must not contain
VK_IMAGE _CREATE_SPARSE_RESIDENCY_BIT

If the sparse residency for 2D images feature is not enabled, and imageType is

239

240

VK_IMAGE_TYPE_2D, flags must not contain VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

If the sparse residency for 3D images feature is not enabled, and imageType is
VK_IMAGE_TYPE_3D, flags must not contain VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

If the sparse residency for images with 2 samples feature is not enabled, imageType is

VK_IMAGE_TYPE_2D, and samples is VK_SAMPLE_COUNT_2_BIT, flags must not contain
VK_IMAGE _CREATE_SPARSE_RESIDENCY BIT

If the sparse residency for images with 4 samples feature is not enabled, imageType is
VK_IMAGE_TYPE_2D, and samples is VK_SAMPLE_COUNT_4_BIT, flags must not contain
VK_IMAGE _CREATE_SPARSE_RESIDENCY_BIT

If the sparse residency for images with 8 samples feature is not enabled, imageType is
VK_IMAGE_TYPE_2D, and samples is VK_SAMPLE_COUNT_8_BIT, flags must not contain
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

If the sparse residency for images with 16 samples feature is not enabled, imageType is
VK_IMAGE_TYPE_2D, and samples is VK_SAMPLE_COUNT_16_BIT, flags must not contain
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

If tiling is VK_IMAGE_TILING_LINEAR, format must be a format that has at least one
supported feature bit present in the value of VkFormatProperties::linearTilingFeatures
returned by vkGetPhysicalDeviceFormatProperties with the same value of format

If tiling is VK_IMAGE_TILING_LINEAR, and VkFormatProperties::linearTilingFeatures (as
returned by vkGetPhysicalDeviceFormatProperties with the same value of format) does not

include VK_FORMAT_FEATURE _SAMPLED_IMAGE BIT, usage must not contain
VK_IMAGE _USAGE_SAMPLED_BIT

If tiling is VK_IMAGE_TILING_LINEAR, and VkFormatProperties::linearTilingFeatures (as
returned by vkGetPhysicalDeviceFormatProperties with the same value of format) does not
include VK_FORMAT_FEATURE_STORAGE _IMAGE_BIT, usage must not contain
VK_IMAGE _USAGE_STORAGE _BIT

If tiling is VK_IMAGE_TILING_LINEAR, and VkFormatProperties::linearTilingFeatures (as
returned by vkGetPhysicalDeviceFormatProperties with the same value of format) does not
include VK_FORMAT_FEATURE _COLOR_ATTACHMENT _BIT, usage must not contain
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

If tiling is VK_IMAGE_TILING_LINEAR, and VkFormatProperties::linearTilingFeatures (as
returned by vkGetPhysicalDeviceFormatProperties with the same value of format) does not
include VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT, wusage must not contain
VK_IMAGE _USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

If tiling is VK_IMAGE_TILING_OPTIMAL, format must be a format that has at least one
supported feature bit present in the value of VkFormatProperties::optimalTilingFeatures
returned by vkGetPhysicalDeviceFormatProperties with the same value of format

If tiling is VK_IMAGE_TILING_OPTIMAL, and VkFormatProperties::optimalTilingFeatures (as
returned by vkGetPhysicalDeviceFormatProperties with the same value of format) does not
include VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT, usage must not contain
VK_IMAGE _USAGE_SAMPLED_BIT

If tiling is VK_IMAGE_TILING_OPTIMAL, and VkFormatProperties::optimalTilingFeatures (as
returned by vkGetPhysicalDeviceFormatProperties with the same value of format) does not

include VK_FORMAT_FEATURE _STORAGE_IMAGE BIT, usage must not contain
VK_IMAGE _USAGE_STORAGE_BIT

o If tiling is VK_IMAGE_TILING_OPTIMAL, and VkFormatProperties::optimalTilingFeatures (as
returned by vkGetPhysicalDeviceFormatProperties with the same value of format) does not

include VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT, usage must not contain
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

o If tiling is VK_IMAGE_TILING_OPTIMAL, and VkFormatProperties::optimalTilingFeatures (as
returned by vkGetPhysicalDeviceFormatProperties with the same value of format) does not

include VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT, wusage must not contain
VK_IMAGE_USAGE _DEPTH_STENCIL_ATTACHMENT BIT

o If flags contains VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT or

VK_IMAGE _CREATE SPARSE ALIASED BIT, it must also contain
VK_IMAGE _CREATE_SPARSE_BINDING_BIT

* initiallayout must be VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE _LAYOUT_PREINITIALIZED.

Valid Usage (Implicit)

* sType must be VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO

* pNext must be NULL

» flags must be a valid combination of VkImageCreateFlagBits values
* imageType must be a valid VkImageType value

» format must be a valid VkFormat value

* samples must be a valid VkSampleCountFlagBits value

» tiling must be a valid VkImageTiling value

* usage must be a valid combination of VkImageUsageFlagBits values
* usage must not be 0

* sharingMode must be a valid VkSharingMode value

 initiallayout must be a valid VkImageLayout value

Bits which can be set in VkImageCreatelnfo::usage, specifying intended usage of an image, are:

typedef enum VkImageUsageFlagBits {
VK_IMAGE _USAGE_TRANSFER_SRC_BIT = 0x00000001,
VK_IMAGE_USAGE_TRANSFER_DST_BIT = 0x00000002,
VK_IMAGE _USAGE_SAMPLED_BIT = 0x00000004,
VK_IMAGE_USAGE_STORAGE_BIT = 0x00000008,
VK_IMAGE _USAGE_COLOR_ATTACHMENT_BIT = 0x00000010,
VK_IMAGE _USAGE_DEPTH_STENCIL_ATTACHMENT_BIT = 0x00000020,
VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT = 0x00000040,
VK_IMAGE _USAGE_INPUT_ATTACHMENT_BIT = 0x00000080,

} VkImageUsageFlagBits;

 VK_IMAGE_USAGE_TRANSFER_SRC_BIT specifies that the image can be used as the source of a transfer
command.

241

» VK_IMAGE_USAGE_TRANSFER_DST_BIT specifies that the image can be used as the destination of a
transfer command.

» VK_IMAGE_USAGE_SAMPLED_BIT specifies that the image can be used to create a VkImageView suitable
for occupying a VkDescriptorSet slot either of type VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE or
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and be sampled by a shader.

» VK_IMAGE_USAGE_STORAGE_BIT specifies that the image can be used to create a VkImageView suitable
for occupying a VkDescriptorSet slot of type VK_DESCRIPTOR_TYPE_STORAGE _IMAGE.

* VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT specifies that the image can be used to create a
VkImageView suitable for use as a color or resolve attachment in a VkFramebuffer.

» VK_IMAGE _USAGE_DEPTH_STENCIL_ATTACHMENT_BIT specifies that the image can be used to create a
VkImageView suitable for use as a depth/stencil attachment in a VkFramebuffer.

 VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT _BIT specifies that the memory bound to this image will
have been allocated with the VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT (see Memory Allocation
for more detail). This bit can be set for any image that can be used to create a VkImageView
suitable for use as a color, resolve, depth/stencil, or input attachment.

* VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT specifies that the image can be used to create a
VkImageView suitable for occupying VkDescriptorSet slot of type
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT; be read from a shader as an input attachment; and be
used as an input attachment in a framebuffer.

Bits which can be set in VkImageCreatelnfo::flags, specifying additional parameters of an image,
are:

typedef enum VkImageCreateFlagBits {
VK_IMAGE_CREATE_SPARSE_BINDING_BIT = 0x00000001,
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT = 0x00000002,
VK_IMAGE_CREATE_SPARSE_ALIASED_BIT = 0x00000004,
VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT = 0x00000008,
VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT = 0x00000010,
} VkImageCreateFlagBits;

* VK_IMAGE_CREATE_SPARSE_BINDING_BIT specifies that the image will be backed using sparse
memory binding.

» VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT specifies that the image can be partially backed using
sparse memory binding. Images created with this flag must also be created with the
VK_IMAGE_CREATE_SPARSE_BINDING_BIT flag.

* VK_IMAGE_CREATE_SPARSE_ALIASED_BIT specifies that the image will be backed using sparse
memory binding with memory ranges that might also simultaneously be backing another image
(or another portion of the same image). Images created with this flag must also be created with
the VK_IMAGE_CREATE_SPARSE_BINDING_BIT flag

* VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT specifies that the image can be used to create a VkImageView
with a different format from the image.

» VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT specifies that the image can be used to create a
VkImageView of type VK_IMAGE_VIEW_TYPE_CUBE or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY.

242

If any of the bits VK_IMAGE_CREATE_SPARSE_BINDING_BIT, VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT, or
VK_IMAGE _CREATE_SPARSE_ALIASED BIT are set, VK_IMAGE_USAGE_TRANSIENT ATTACHMENT BIT must not also
be set.

See Sparse Resource Features and Sparse Physical Device Features for more details.

Possible values of VkImageCreateInfo::imageType, specifying the basic dimensionality of an image,
are:

typedef enum VkImageType {
VK_IMAGE_TYPE_1D = 0,
VK_IMAGE_TYPE_2D = 1,
VK_IMAGE_TYPE_3D = 2,
} VkImageType;

» VK_IMAGE_TYPE_1D specifies a one-dimensional image.
» VK_IMAGE_TYPE_2D specifies a two-dimensional image.
» VK_IMAGE_TYPE_3D specifies a three-dimensional image.

Possible values of VkImageCreateInfo::tiling, specifying the tiling arrangement of data elements in
an image, are:

typedef enum VkImageTiling {
VK_IMAGE_TILING_OPTIMAL = 0,
VK_IMAGE_TILING_LINEAR = 1,
+ VkImageTiling;

» VK_IMAGE_TILING_OPTIMAL specifies optimal tiling (texels are laid out in an implementation-
dependent arrangement, for more optimal memory access).

» VK_IMAGE_TILING_LINEAR specifies linear tiling (texels are laid out in memory in row-major order,
possibly with some padding on each row).

To query the host access layout of an image subresource, for an image created with linear tiling,
call:

void vkGetImageSubresourcelayout(

VkDevice device,
VkImage image,

const VkImageSubresource* pSubresource,
VkSubresourcelayout* pLayout);

* device is the logical device that owns the image.
* image is the image whose layout is being queried.

* pSubresource is a pointer to a VkImageSubresource structure selecting a specific image for the
image subresource.

243

* playout points to a VkSubresourceLayout structure in which the layout is returned.

vkGetlmageSubresourceLayout is invariant for the lifetime of a single image.

Valid Usage

image must have been created with tiling equal to VK_IMAGE_TILING_LINEAR

The aspectMask member of pSubresource must only have a single bit set

Valid Usage (Implicit)

device must be a valid VkDevice handle

image must be a valid VkImage handle

pSubresource must be a pointer to a valid VkImageSubresource structure
pLayout must be a pointer to a VkSubresourcelayout structure

image must have been created, allocated, or retrieved from device

The VkImageSubresource structure is defined as:

typedef struct VkImageSubresource {

VkImageAspectFlags aspectMask;
uint32_ t mipLevel;
uint32_t arraylayer;

} VkImageSubresource;

» aspectMask is a VkImageAspectFlags selecting the image aspect.

* mipLevel selects the mipmap level.

* arraylayer selects the array layer.

244

Valid Usage

mipLevel must be less than the mipLevels specified in VkImageCreateInfo when the image
was created

arraylLayer must be less than the arraylLayers specified in VkimageCreateInfo when the
image was created

Valid Usage (Implicit)

aspectMask must be a valid combination of VkImageAspectFlagBits values

aspectMask must not be 0

Information about the layout of the image subresource is returned in a VkSubresourcelayout
structure:

typedef struct VkSubresourcelayout {
VkDeviceSize offset;
VkDeviceSize size;
VkDeviceSize rowPitch;
VkDeviceSize arrayPitch;
VkDeviceSize depthPitch;

} VkSubresourcelayout;

» offset is the byte offset from the start of the image where the image subresource begins.

* size is the size in bytes of the image subresource. size includes any extra memory that is
required based on rowPitch.

 rowPitch describes the number of bytes between each row of texels in an image.
 arrayPitch describes the number of bytes between each array layer of an image.

» depthPitch describes the number of bytes between each slice of 3D image.

For images created with linear tiling, rowPitch, arrayPitch and depthPitch describe the layout of the
image subresource in linear memory. For uncompressed formats, rowPitch is the number of bytes
between texels with the same x coordinate in adjacent rows (y coordinates differ by one).
arrayPitch is the number of bytes between texels with the same x and y coordinate in adjacent
array layers of the image (array layer values differ by one). depthPitch is the number of bytes
between texels with the same x and y coordinate in adjacent slices of a 3D image (z coordinates
differ by one). Expressed as an addressing formula, the starting byte of a texel in the image
subresource has address:

// (x,y,z,layer) are in texel coordinates
address(x,y,z,layer) = layer*arrayPitch + z*depthPitch + y*rowPitch + x*elementSize +
offset

For compressed formats, the rowPitch is the number of bytes between compressed texel blocks in
adjacent rows. arrayPitch is the number of bytes between compressed texel blocks in adjacent
array layers. depthPitch is the number of bytes between compressed texel blocks in adjacent slices
of a 3D image.

// (x,y,z,1layer) are in compressed texel block coordinates
address(x,y,z,layer) = layer*arrayPitch + z*depthPitch + y*rowPitch + x
*compressedTexelBlockByteSize + offset;

arrayPitch is undefined for images that were not created as arrays. depthPitch is defined only for
3D images.

For color formats, the aspectMask member of VkImageSubresource must be
VK_IMAGE_ASPECT_COLOR_BIT. For depth/stencil formats, aspectMask must be either

245

VK_IMAGE _ASPECT_DEPTH_BIT or VK_IMAGE_ASPECT_STENCIL_BIT. On implementations that store depth
and stencil aspects separately, querying each of these image subresource layouts will return a
different offset and size representing the region of memory used for that aspect. On
implementations that store depth and stencil aspects interleaved, the same offset and size are
returned and represent the interleaved memory allocation.

To destroy an image, call:

void vkDestroyImage(

VkDevice device,
VkImage image,
const VkAllocationCallbacks* pAllocator);

 device is the logical device that destroys the image.
* image is the image to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

* All submitted commands that refer to image, either directly or via a VkImageView, must
have completed execution

» If VkAllocationCallbacks were provided when image was created, a compatible set of
callbacks must be provided here

» If no VkAllocationCallbacks were provided when image was created, pAllocator must be
NULL

Valid Usage (Implicit)

» device must be a valid VkDevice handle
o If image is not VK_NULL_HANDLE, image must be a valid VkImage handle

o If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

* If image is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

» Host access to image must be externally synchronized

11.4. Image Layouts

Images are stored in implementation-dependent opaque layouts in memory. Each layout has

246

limitations on what kinds of operations are supported for image subresources using the layout. At
any given time, the data representing an image subresource in memory exists in a particular layout
which is determined by the most recent layout transition that was performed on that image
subresource. Applications have control over which layout each image subresource uses, and can
transition an image subresource from one layout to another. Transitions can happen with an image
memory barrier, included as part of a vkCmdPipelineBarrier or a vkCmdWaitEvents command buffer
command (see Image Memory Barriers), or as part of a subpass dependency within a render pass
(see VkSubpassDependency). The image layout is per-image subresource, and separate image
subresources of the same image can be in different layouts at the same time with one exception -
depth and stencil aspects of a given image subresource must always be in the same layout.

Note

Each layout may offer optimal performance for a specific usage of image memory.
For example, an image with a layout of VK_IMAGE_LAYOUT_COLOR_ATTACHMENT _OPTIMAL
may provide optimal performance for use as a color attachment, but be
ﬂ unsupported for use in transfer commands. Applications can transition an image
subresource from one layout to another in order to achieve optimal performance
when the image subresource is used for multiple kinds of operations. After
initialization, applications need not use any layout other than the general layout,
though this may produce suboptimal performance on some implementations.

Upon creation, all image subresources of an image are initially in the same layout, where that
layout is selected by the VkImageCreateInfo::initiallayout member. The initiallayout must be
either VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED. If it is
VK_IMAGE_LAYOUT_PREINITIALIZED, then the image data can be preinitialized by the host while using
this layout, and the transition away from this layout will preserve that data. If it is
VK_IMAGE_LAYOUT UNDEFINED, then the contents of the data are considered to be undefined, and the
transition away from this layout is not guaranteed to preserve that data. For either of these initial
layouts, any image subresources must be transitioned to another layout before they are accessed
by the device.

Host access to image memory is only well-defined for images created with VK_IMAGE_TILING_LINEAR
tiling and for image subresources of those images which are currently in either the
VK_IMAGE_LAYOUT _PREINITIALIZED or VK_IMAGE_LAYOUT_GENERAL layout. Calling
vkGetlmageSubresourceLayout for a linear image returns a subresource layout mapping that is
valid for either of those image layouts.

The set of image layouts consists of:

247

typedef enum VkImagelayout {

VK_IMAGE_LAYOUT_UNDEFINED = 0,
VK_IMAGE_LAYOUT_GENERAL = 1,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT _OPTIMAL = 2,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT _OPTIMAL = 3,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL = 4,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL = 5,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL = 6,
VK_IMAGE_LAYOUT _TRANSFER_DST_OPTIMAL = 7,
VK_IMAGE_LAYOUT_PREINITIALIZED = 8,

} VkImagelayout;

The type(s) of device access supported by each layout are:

248

VK_IMAGE_LAYOUT_UNDEFINED does not support device access. This layout must only be used as the
initialLayout member of VkImageCreateInfo or VkAttachmentDescription, or as the oldLayout in
an image transition. When transitioning out of this layout, the contents of the memory are not
guaranteed to be preserved.

VK_IMAGE_LAYOUT_PREINITIALIZED does not support device access. This layout must only be used
as the initialLayout member of VkImageCreateInfo or VkAttachmentDescription, or as the
oldLayout in an image transition. When transitioning out of this layout, the contents of the
memory are preserved. This layout is intended to be used as the initial layout for an image
whose contents are written by the host, and hence the data can be written to memory
immediately, without first executing a layout transition. Currently,
VK_IMAGE_LAYOUT_PREINITIALIZED is only useful with VK_IMAGE_TILING_LINEAR images because there
is not a standard layout defined for VK_IMAGE_TILING_OPTIMAL images.

VK_IMAGE_LAYOUT_GENERAL supports all types of device access.

VK_IMAGE _LAYOUT_COLOR_ATTACHMENT_OPTIMAL must only be used as a color or resolve attachment in
a VkFramebuffer. This layout is valid only for image subresources of images created with the
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT usage bit enabled.

VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL must only be used as a depth/stencil
attachment in a VkFramebuffer. This layout is valid only for image subresources of images
created with the VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT usage bit enabled.

VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL must only be used as a read-only
depth/stencil attachment in a VkFramebuffer and/or as a read-only image in a shader (which can
be read as a sampled image, combined image/sampler and/or input attachment). This layout is
valid only for image subresources of images created with the
VK_IMAGE_USAGE _DEPTH_STENCIL_ATTACHMENT_BIT usage bit enabled. Only image subresources of
images created with VK_IMAGE_USAGE_SAMPLED_BIT can be used as a sampled image or combined
image/sampler in a shader. Similarly, only image subresources of images created with
VK_IMAGE _USAGE_INPUT_ATTACHMENT_BIT can be used as input attachments.

VK_IMAGE _LAYOUT_SHADER_READ_ONLY_OPTIMAL must only be used as a read-only image in a shader
(which can be read as a sampled image, combined image/sampler and/or input attachment).
This layout is wvalid only for image subresources of images created with the
VK_IMAGE_USAGE _SAMPLED_BIT or VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT usage bit enabled.

o VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL must only be used as a source image of a transfer
command (see the definition of VK_PIPELINE_STAGE_TRANSFER_BIT). This layout is valid only for
image subresources of images created with the VK_IMAGE_USAGE_TRANSFER_SRC_BIT usage bit
enabled.

* VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL must only be used as a destination image of a transfer
command. This layout is valid only for image subresources of images created with the
VK_IMAGE_USAGE _TRANSFER_DST_BIT usage bit enabled.

For each mechanism of accessing an image in the API, there is a parameter or structure member
that controls the image layout used to access the image. For transfer commands, this is a parameter
to the command (see Clear Commands and Copy Commands). For use as a framebuffer attachment,
this is a member in the substructures of the VkRenderPassCreateInfo (see Render Pass). For use in a
descriptor set, this is a member in the VkDescriptorImageInfo structure (see Descriptor Set Updates).
At the time that any command buffer command accessing an image executes on any queue, the
layouts of the image subresources that are accessed must all match the layout specified via the API
controlling those accesses.

The image layout of each image subresource must be well-defined at each point in the image
subresource’s lifetime. This means that when performing a layout transition on the image
subresource, the old layout value must either equal the current layout of the image subresource (at
the time the transition executes), or else be VK_IMAGE_LAYOUT_UNDEFINED (implying that the contents of
the image subresource need not be preserved). The new layout used in a transition must not be
VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE _LAYOUT_PREINITIALIZED.

11.5. Image Views

Image objects are not directly accessed by pipeline shaders for reading or writing image data.
Instead, image views representing contiguous ranges of the image subresources and containing
additional metadata are used for that purpose. Views must be created on images of compatible
types, and must represent a valid subset of image subresources.

Image views are represented by VkImageView handles:
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkImageView)
The types of image views that can be created are:

typedef enum VkImageViewType {
VK_IMAGE _VIEW_TYPE_1D
VK_IMAGE _VIEW_TYPE_2D
VK_IMAGE _VIEW_TYPE_3D
VK_IMAGE _VIEW_TYPE_CUBE = 3,
VK_IMAGE_VIEW_TYPE_TD_ARRAY = 4,
VK_IMAGE_VIEW_TYPE_2D_ARRAY = 5,
VK_IMAGE _VIEW_TYPE_CUBE_ARRAY = 6,

} VkImageViewType;

0,
1,
2,

249

The exact image view type is partially implicit, based on the image’s type and sample count, as well
as the view creation parameters as described in the image view compatibility table for
vkCreatelmageView. This table also shows which SPIR-V OpTypeImage Dim and Arrayed parameters
correspond to each image view type.

To create an image view, call:

VkResult vkCreateImageView(

VkDevice device,
const VkImageViewCreateInfo* pCreatelnfo,
const VkAllocationCallbacks* pAllocator,
VkImageView* pView);

* device is the logical device that creates the image view.

pCreateInfo is a pointer to an instance of the VkImageViewCreateInfo structure containing
parameters to be used to create the image view.

pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pView points to a VkImageView handle in which the resulting image view object is returned.
Some of the image creation parameters are inherited by the view. The remaining parameters are
contained in the pCreatelInfo.
Valid Usage (Implicit)

e device must be a valid VkDevice handle

pCreateInfo must be a pointer to a valid VkImageViewCreateInfo structure

If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks
structure

* pView must be a pointer to a VkImageView handle

Return Codes

Success
o VK_SUCCESS

Failure
o VK_ERROR_QUT_OF HOST_MEMORY
o VK_ERROR_OUT_OF DEVICE MEMORY

The VkImageViewCreateInfo structure is defined as:

250

typedef struct VkImageViewCreateInfo {

VkStructureType sType;
const void* pNext;
VkImageViewCreateFlags flags;
VkImage image;
VkImageViewType viewType;
VkFormat format;
VkComponentMapping components;

VkImageSubresourceRange subresourceRange;
} VkImageViewCreateInfo;

* sType is the type of this structure.

» pNext is NULL or a pointer to an extension-specific structure.

 flags is reserved for future use.

* image is a VkImage on which the view will be created.

» viewType is an VkImageViewType value specifying the type of the image view.

» format is a VkFormat describing the format and type used to