
Vulkan
®
 1.0.57 - A Specification

The Khronos Vulkan Working Group

Version 1.0.57, Tue, 01 Aug 2017 00:30:33 +0000

Table of Contents

1. Introduction. 3

1.1. What is the Vulkan Graphics System? . 3

1.2. Filing Bug Reports. 4

1.3. Terminology . 4

1.4. Normative References . 5

2. Fundamentals . 6

2.1. Architecture Model. 6

2.2. Execution Model . 6

2.3. Object Model . 9

2.4. Command Syntax and Duration . 12

2.5. Threading Behavior . 13

2.6. Errors. 20

2.7. Numeric Representation and Computation . 25

2.8. Fixed-Point Data Conversions . 27

2.9. API Version Numbers and Semantics . 29

2.10. Common Object Types. 29

3. Initialization . 32

3.1. Command Function Pointers . 32

3.2. Instances . 34

4. Devices and Queues . 39

4.1. Physical Devices . 39

4.2. Devices . 45

4.3. Queues. 50

5. Command Buffers . 55

5.1. Command Buffer Lifecycle. 55

5.2. Command Pools . 56

5.3. Command Buffer Allocation and Management. 61

5.4. Command Buffer Recording . 65

5.5. Command Buffer Submission . 70

5.6. Queue Forward Progress . 75

5.7. Secondary Command Buffer Execution . 76

6. Synchronization and Cache Control . 79

6.1. Execution and Memory Dependencies . 79

6.2. Implicit Synchronization Guarantees . 91

6.3. Fences . 92

6.4. Semaphores . 98

6.5. Events . 102

6.6. Pipeline Barriers. 113

6.7. Memory Barriers . 118

6.8. Wait Idle Operations . 126

6.9. Host Write Ordering Guarantees . 128

7. Render Pass . 129

7.1. Render Pass Creation. 130

7.2. Render Pass Compatibility . 147

7.3. Framebuffers. 148

7.4. Render Pass Commands . 152

8. Shaders . 160

8.1. Shader Modules . 160

8.2. Shader Execution . 163

8.3. Shader Memory Access Ordering . 163

8.4. Shader Inputs and Outputs . 165

8.5. Vertex Shaders . 165

8.6. Tessellation Control Shaders . 166

8.7. Tessellation Evaluation Shaders . 166

8.8. Geometry Shaders . 167

8.9. Fragment Shaders . 167

8.10. Compute Shaders . 168

8.11. Interpolation Decorations . 168

8.12. Static Use . 169

8.13. Invocation and Derivative Groups. 169

9. Pipelines . 170

9.1. Compute Pipelines . 172

9.2. Graphics Pipelines . 178

9.3. Pipeline destruction. 189

9.4. Multiple Pipeline Creation . 190

9.5. Pipeline Derivatives. 190

9.6. Pipeline Cache . 191

9.7. Specialization Constants . 197

9.8. Pipeline Binding . 201

10. Memory Allocation . 204

10.1. Host Memory. 204

10.2. Device Memory. 211

11. Resource Creation . 226

11.1. Buffers. 226

11.2. Buffer Views . 231

11.3. Images. 234

11.4. Image Layouts . 246

11.5. Image Views. 249

11.6. Resource Memory Association . 260

11.7. Resource Sharing Mode . 266

11.8. Memory Aliasing . 267

12. Samplers. 269

13. Resource Descriptors . 277

13.1. Descriptor Types. 278

13.2. Descriptor Sets . 286

14. Shader Interfaces . 324

14.1. Shader Input and Output Interfaces . 324

14.2. Vertex Input Interface. 328

14.3. Fragment Output Interface . 328

14.4. Fragment Input Attachment Interface . 329

14.5. Shader Resource Interface. 329

14.6. Built-In Variables . 335

15. Image Operations. 346

15.1. Image Operations Overview . 346

15.2. Conversion Formulas . 349

15.3. Texel Input Operations . 351

15.4. Texel Output Operations . 357

15.5. Derivative Operations . 358

15.6. Normalized Texel Coordinate Operations . 360

15.7. Unnormalized Texel Coordinate Operations . 365

15.8. Image Sample Operations . 366

15.9. Image Operation Steps . 368

16. Queries . 370

16.1. Query Pools . 370

16.2. Query Operation. 373

16.3. Occlusion Queries . 384

16.4. Pipeline Statistics Queries . 385

16.5. Timestamp Queries . 387

17. Clear Commands . 390

17.1. Clearing Images Outside A Render Pass Instance . 390

17.2. Clearing Images Inside A Render Pass Instance . 394

17.3. Clear Values . 398

17.4. Filling Buffers . 399

17.5. Updating Buffers . 401

18. Copy Commands. 403

18.1. Common Operation . 403

18.2. Copying Data Between Buffers . 403

18.3. Copying Data Between Images . 406

18.4. Copying Data Between Buffers and Images . 413

18.5. Image Copies with Scaling . 421

18.6. Resolving Multisample Images . 429

19. Drawing Commands . 433

19.1. Primitive Topologies . 434

19.2. Primitive Order. 440

19.3. Programmable Primitive Shading . 441

20. Fixed-Function Vertex Processing . 458

20.1. Vertex Attributes . 458

20.2. Vertex Input Description . 463

20.3. Example . 468

21. Tessellation . 470

21.1. Tessellator . 470

21.2. Tessellator Patch Discard . 472

21.3. Tessellator Spacing . 472

21.4. Tessellation Primitive Ordering . 473

21.5. Triangle Tessellation . 473

21.6. Quad Tessellation . 476

21.7. Isoline Tessellation . 479

21.8. Tessellation Pipeline State . 479

22. Geometry Shading . 481

22.1. Geometry Shader Input Primitives . 481

22.2. Geometry Shader Output Primitives . 482

22.3. Multiple Invocations of Geometry Shaders . 482

22.4. Geometry Shader Primitive Ordering . 483

23. Fixed-Function Vertex Post-Processing . 484

23.1. Flat Shading . 484

23.2. Primitive Clipping . 485

23.3. Clipping Shader Outputs. 487

23.4. Coordinate Transformations . 487

23.5. Controlling the Viewport . 488

24. Rasterization . 493

24.1. Discarding Primitives Before Rasterization. 496

24.2. Rasterization Order . 496

24.3. Multisampling . 497

24.4. Sample Shading . 498

24.5. Points. 498

24.6. Line Segments . 499

24.7. Polygons . 502

25. Fragment Operations . 508

25.1. Early Per-Fragment Tests . 508

25.2. Scissor Test. 508

25.3. Sample Mask . 510

25.4. Early Fragment Test Mode . 510

25.5. Late Per-Fragment Tests . 511

25.6. Multisample Coverage . 511

25.7. Depth and Stencil Operations . 512

25.8. Depth Bounds Test . 513

25.9. Stencil Test . 514

25.10. Depth Test . 521

25.11. Sample Counting . 522

25.12. Coverage Reduction. 522

26. The Framebuffer . 523

26.1. Blending . 523

26.2. Logical Operations . 531

26.3. Color Write Mask . 532

27. Dispatching Commands . 534

28. Sparse Resources . 541

28.1. Sparse Resource Features . 541

28.2. Sparse Buffers and Fully-Resident Images. 542

28.3. Sparse Partially-Resident Buffers. 543

28.4. Sparse Partially-Resident Images . 543

28.5. Sparse Memory Aliasing. 549

28.6. Sparse Resource Implementation Guidelines . 550

28.7. Sparse Resource API . 552

28.8. Examples . 570

29. Extended Functionality . 576

29.1. Layers . 576

29.2. Extensions . 579

29.3. Extension Dependencies. 583

30. Features, Limits, and Formats . 584

30.1. Features . 584

30.2. Limits . 595

30.3. Formats. 614

30.4. Additional Image Capabilities . 655

31. Debugging . 660

Appendix A: Vulkan Environment for SPIR-V. 662

Required Versions and Formats . 662

Capabilities . 662

Validation Rules within a Module . 663

Precision and Operation of SPIR-V Instructions. 664

Appendix B: Compressed Image Formats. 668

Block-Compressed Image Formats . 669

ETC Compressed Image Formats . 670

ASTC Compressed Image Formats . 671

Appendix C: Layers & Extensions. 672

VK_KHR_sampler_mirror_clamp_to_edge . 672

Appendix D: API Boilerplate . 675

Structure Types . 675

Flag Types . 676

Macro Definitions in vulkan.h . 680

Platform-Specific Macro Definitions in vk_platform.h. 682

Appendix E: Invariance . 684

Repeatability . 684

Multi-pass Algorithms. 684

Invariance Rules . 684

Tessellation Invariance . 686

Glossary . 688

Common Abbreviations . 705

Prefixes . 706

Appendix F: Credits . 707

Copyright 2014-2017 The Khronos Group Inc.

This specification is protected by copyright laws and contains material proprietary to Khronos.

Except as described by these terms, it or any components may not be reproduced, republished,

distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the

express prior written permission of Khronos.

This specification has been created under the Khronos Intellectual Property Rights Policy, which is

Attachment A of the Khronos Group Membership Agreement available at

www.khronos.org/files/member_agreement.pdf. Khronos Group grants a conditional copyright

license to use and reproduce the unmodified specification for any purpose, without fee or royalty,

EXCEPT no licenses to any patent, trademark or other intellectual property rights are granted under

these terms. Parties desiring to implement the specification and make use of Khronos trademarks

in relation to that implementation, and receive reciprocal patent license protection under the

Khronos IP Policy must become Adopters and confirm the implementation as conformant under

the process defined by Khronos for this specification; see https://www.khronos.org/adopters.

Khronos makes no, and expressly disclaims any, representations or warranties, express or implied,

regarding this specification, including, without limitation: merchantability, fitness for a particular

purpose, non-infringement of any intellectual property, correctness, accuracy, completeness,

timeliness, and reliability. Under no circumstances will Khronos, or any of its Promoters,

Contributors or Members, or their respective partners, officers, directors, employees, agents or

representatives be liable for any damages, whether direct, indirect, special or consequential

damages for lost revenues, lost profits, or otherwise, arising from or in connection with these

materials.

This specification contains substantially unmodified functionality from, and is a successor to,

Khronos specifications including OpenGL, OpenGL ES and OpenCL.

Some parts of this Specification are purely informative and do not define requirements necessary

for compliance and so are outside the Scope of this Specification. These parts of the Specification

are marked by the “Note” icon or designated “Informative”.

Where this Specification uses terms, defined in the Glossary or otherwise, that refer to enabling

technologies that are not expressly set forth as being required for compliance, those enabling

technologies are outside the Scope of this Specification.

Where this Specification uses the terms “may”, or “optional”, such features or behaviors do not

define requirements necessary for compliance and so are outside the Scope of this Specification.

Where this Specification uses the terms “not required”, such features or behaviors may be omitted

from certain implementations, but when they are included, they define requirements necessary for

compliance and so are INCLUDED in the Scope of this Specification.

Where this Specification includes normative references to external documents, the specifically

identified sections and functionality of those external documents are in Scope. Requirements

defined by external documents not created by Khronos may contain contributions from non-

members of Khronos not covered by the Khronos Intellectual Property Rights Policy.

Vulkan is a registered trademark, and Khronos is a trademark of The Khronos Group Inc. ASTC is a

1

https://www.khronos.org/adopters

trademark of ARM Holdings PLC; OpenCL is a trademark of Apple Inc.; and OpenGL is a registered

trademark of Silicon Graphics International, all used under license by Khronos. All other product

names, trademarks, and/or company names are used solely for identification and belong to their

respective owners.

2

Chapter 1. Introduction

This chapter is Informative except for the sections on Terminology and Normative References.

This document, referred to as the “Vulkan Specification” or just the “Specification” hereafter,

describes the Vulkan graphics system: what it is, how it acts, and what is required to implement it.

We assume that the reader has at least a rudimentary understanding of computer graphics. This

means familiarity with the essentials of computer graphics algorithms and terminology as well as

with modern GPUs (Graphic Processing Units).

The canonical version of the Specification is available in the official Vulkan Registry, located at URL

http://www.khronos.org/registry/vulkan/

1.1. What is the Vulkan Graphics System?

Vulkan is an API (Application Programming Interface) for graphics and compute hardware. The API

consists of many commands that allow a programmer to specify shader programs, compute kernels,

objects, and operations involved in producing high-quality graphical images, specifically color

images of three-dimensional objects.

1.1.1. The Programmer’s View of Vulkan

To the programmer, Vulkan is a set of commands that allow the specification of shader programs or

shaders, kernels, data used by kernels or shaders, and state controlling aspects of Vulkan outside of

shader execution. Typically, the data represents geometry in two or three dimensions and texture

images, while the shaders and kernels control the processing of the data, rasterization of the

geometry, and the lighting and shading of fragments generated by rasterization, resulting in the

rendering of geometry into the framebuffer.

A typical Vulkan program begins with platform-specific calls to open a window or otherwise

prepare a display device onto which the program will draw. Then, calls are made to open queues to

which command buffers are submitted. The command buffers contain lists of commands which will

be executed by the underlying hardware. The application can also allocate device memory,

associate resources with memory and refer to these resources from within command buffers.

Drawing commands cause application-defined shader programs to be invoked, which can then

consume the data in the resources and use them to produce graphical images. To display the

resulting images, further platform-specific commands are made to transfer the resulting image to a

display device or window.

1.1.2. The Implementor’s View of Vulkan

To the implementor, Vulkan is a set of commands that allow the construction and submission of

command buffers to a device. Modern devices accelerate virtually all Vulkan operations, storing

data and framebuffer images in high-speed memory and executing shaders in dedicated GPU

processing resources.

The implementor’s task is to provide a software library on the host which implements the Vulkan

3

http://www.khronos.org/registry/vulkan/

API, while mapping the work for each Vulkan command to the graphics hardware as appropriate

for the capabilities of the device.

1.1.3. Our View of Vulkan

We view Vulkan as a pipeline having some programmable stages and some state-driven fixed-

function stages that are invoked by a set of specific drawing operations. We expect this model to

result in a specification that satisfies the needs of both programmers and implementors. It does not,

however, necessarily provide a model for implementation. An implementation must produce

results conforming to those produced by the specified methods, but may carry out particular

computations in ways that are more efficient than the one specified.

1.2. Filing Bug Reports

Issues with and bug reports on the Vulkan Specification and the API Registry can be filed in the

Khronos Vulkan GitHub repository, located at URL

http://github.com/KhronosGroup/Vulkan-Docs

Please tag issues with appropriate labels, such as “Specification”, “Ref Pages” or “Registry”, to help

us triage and assign them appropriately. Unfortunately, GitHub does not currently let users who do

not have write access to the repository set GitHub labels on issues. In the meantime, they can be

added to the title line of the issue set in brackets, e.g. ''[Specification]''.

1.3. Terminology

The key words must, required, should, recommend, may, and optional in this document are to be

interpreted as described in RFC 2119:

http://www.ietf.org/rfc/rfc2119.txt

must

When used alone, this word, or the term required, means that the definition is an absolute

requirement of the specification. When followed by not (“must not”), the phrase means that the

definition is an absolute prohibition of the specification.

should

When used alone, this word means that there may exist valid reasons in particular

circumstances to ignore a particular item, but the full implications must be understood and

carefully weighed before choosing a different course. When followed by not (“should not”), the

phrase means that there may exist valid reasons in particular circumstances when the

particular behavior is acceptable or even useful, but the full implications should be understood

and the case carefully weighed before implementing any behavior described with this label. In

cases where grammatically appropriate, the terms recommend or recommendation may be

used instead of should.

may

This word, or the adjective optional, means that an item is truly optional. One vendor may

4

http://github.com/KhronosGroup/Vulkan-Docs
http://www.ietf.org/rfc/rfc2119.txt

choose to include the item because a particular marketplace requires it or because the vendor

feels that it enhances the product while another vendor may omit the same item. An

implementation which does not include a particular option must be prepared to interoperate

with another implementation which does include the option, though perhaps with reduced

functionality. In the same vein an implementation which does include a particular option must

be prepared to interoperate with another implementation which does not include the option

(except, of course, for the feature the option provides).

The additional terms can and cannot are to be interpreted as follows:

can

This word means that the particular behavior described is a valid choice for an application, and

is never used to refer to implementation behavior.

cannot

This word means that the particular behavior described is not achievable by an application. For

example, an entry point does not exist, or shader code is not capable of expressing an operation.



Note

There is an important distinction between cannot and must not, as used in this

Specification. Cannot means something the application literally is unable to

express or accomplish through the API, while must not means something that the

application is capable of expressing through the API, but that the consequences of

doing so are undefined and potentially unrecoverable for the implementation.

1.4. Normative References

Normative references are references to external documents or resources to which implementers of

Vulkan must comply.

IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008, http://dx.doi.org/10.1109/

IEEESTD.2008.4610935, August, 2008.

A. Garrard, Khronos Data Format Specification, version 1.1, https://www.khronos.org/registry/

dataformat/specs/1.1/dataformat.1.1.html, June, 2017.

J. Kessenich, SPIR-V Extended Instructions for GLSL, Version 1.00, https://www.khronos.org/registry/

spir-v/, February 10, 2016.

J. Kessenich and B. Ouriel, The Khronos SPIR-V Specification, Version 1.00, https://www.khronos.org/

registry/spir-v/, February 10, 2016.

J. Leech and T. Hector, Vulkan Documentation and Extensions: Procedures and Conventions,

https://www.khronos.org/registry/vulkan/, July 11, 2016

Vulkan Loader Specification and Architecture Overview, https://github.com/KhronosGroup/Vulkan-

LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md, August, 2016.

5

http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
https://www.khronos.org/registry/dataformat/specs/1.1/dataformat.1.1.html
https://www.khronos.org/registry/dataformat/specs/1.1/dataformat.1.1.html
https://www.khronos.org/registry/spir-v/
https://www.khronos.org/registry/spir-v/
https://www.khronos.org/registry/spir-v/
https://www.khronos.org/registry/spir-v/
https://www.khronos.org/registry/vulkan/
https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md
https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md

Chapter 2. Fundamentals

This chapter introduces fundamental concepts including the Vulkan architecture and execution

model, API syntax, queues, pipeline configurations, numeric representation, state and state queries,

and the different types of objects and shaders. It provides a framework for interpreting more

specific descriptions of commands and behavior in the remainder of the Specification.

2.1. Architecture Model

Vulkan is designed for, and the API is written for, CPU, GPU, and other hardware accelerator

architectures with the following properties:

• Runtime support for 8, 16, 32 and 64-bit signed and unsigned twos-complement integers, all

addressable at the granularity of their size in bytes.

• Runtime support for 32- and 64-bit floating-point types satisfying the range and precision

constraints in the Floating Point Computation section.

• The representation and endianness of these types must be identical for the host and the

physical devices.



Note

Since a variety of data types and structures in Vulkan may be mapped back and

forth between host and physical device memory, host and device architectures

must both be able to access such data efficiently in order to write portable and

performant applications.

Where the Specification leaves choices open that would affect Application Binary Interface

compatibility on a given platform supporting Vulkan, those choices are usually made to be

compliant to the preferred ABI defined by the platform vendor. Some choices, such as function

calling conventions, may be made in platform-specific portions of the vk_platform.h header file.



Note

For example, the Android ABI is defined by Google, and the Linux ABI is defined by

a combination of gcc defaults, distribution vendor choices, and external standards

such as the Linux Standard Base.

2.2. Execution Model

This section outlines the execution model of a Vulkan system.

Vulkan exposes one or more devices, each of which exposes one or more queues which may process

work asynchronously to one another. The set of queues supported by a device is partitioned into

families. Each family supports one or more types of functionality and may contain multiple queues

with similar characteristics. Queues within a single family are considered compatible with one

another, and work produced for a family of queues can be executed on any queue within that

family. This specification defines four types of functionality that queues may support: graphics,

6

compute, transfer, and sparse memory management.



Note

A single device may report multiple similar queue families rather than, or as well

as, reporting multiple members of one or more of those families. This indicates

that while members of those families have similar capabilities, they are not

directly compatible with one another.

Device memory is explicitly managed by the application. Each device may advertise one or more

heaps, representing different areas of memory. Memory heaps are either device local or host local,

but are always visible to the device. Further detail about memory heaps is exposed via memory

types available on that heap. Examples of memory areas that may be available on an

implementation include:

• device local is memory that is physically connected to the device.

• device local, host visible is device local memory that is visible to the host.

• host local, host visible is memory that is local to the host and visible to the device and host.

On other architectures, there may only be a single heap that can be used for any purpose.

A Vulkan application controls a set of devices through the submission of command buffers which

have recorded device commands issued via Vulkan library calls. The content of command buffers is

specific to the underlying hardware and is opaque to the application. Once constructed, a command

buffer can be submitted once or many times to a queue for execution. Multiple command buffers

can be built in parallel by employing multiple threads within the application.

Command buffers submitted to different queues may execute in parallel or even out of order with

respect to one another. Command buffers submitted to a single queue respect submission order, as

described further in synchronization chapter. Command buffer execution by the device is also

asynchronous to host execution. Once a command buffer is submitted to a queue, control may

return to the application immediately. Synchronization between the device and host, and between

different queues is the responsibility of the application.

2.2.1. Queue Operation

Vulkan queues provide an interface to the execution engines of a device. Commands for these

execution engines are recorded into command buffers ahead of execution time. These command

buffers are then submitted to queues with a queue submission command for execution in a number

of batches. Once submitted to a queue, these commands will begin and complete execution without

further application intervention, though the order of this execution is dependent on a number of

implicit and explicit ordering constraints.

Work is submitted to queues using queue submission commands that typically take the form

vkQueue* (e.g. vkQueueSubmit, vkQueueBindSparse), and optionally take a list of semaphores upon

which to wait before work begins and a list of semaphores to signal once work has completed. The

work itself, as well as signaling and waiting on the semaphores are all queue operations.

Queue operations on different queues have no implicit ordering constraints, and may execute in

7

any order. Explicit ordering constraints between queues can be expressed with semaphores and

fences.

Command buffer submissions to a single queue respect submission order and other implicit

ordering guarantees, but otherwise may overlap or execute out of order. Other types of batches and

queue submissions against a single queue (e.g. sparse memory binding) have no implicit ordering

constraints with any other queue submission or batch. Additional explicit ordering constraints

between queue submissions and individual batches can be expressed with semaphores and fences.

Before a fence or semaphore is signaled, it is guaranteed that any previously submitted queue

operations have completed execution, and that memory writes from those queue operations are

available to future queue operations. Waiting on a signaled semaphore or fence guarantees that

previous writes that are available are also visible to subsequent commands.

Command buffer boundaries, both between primary command buffers of the same or different

batches or submissions as well as between primary and secondary command buffers, do not

introduce any additional ordering constraints. In other words, submitting the set of command

buffers (which can include executing secondary command buffers) between any semaphore or

fence operations execute the recorded commands as if they had all been recorded into a single

primary command buffer, except that the current state is reset on each boundary. Explicit ordering

constraints can be expressed with explicit synchronization primitives.

There are a few implicit ordering guarantees between commands within a command buffer, but

only covering a subset of execution. Additional explicit ordering constraints can be expressed with

the various explicit synchronization primitives.



Note

Implementations have significant freedom to overlap execution of work submitted

to a queue, and this is common due to deep pipelining and parallelism in Vulkan

devices.

Commands recorded in command buffers either perform actions (draw, dispatch, clear, copy,

query/timestamp operations, begin/end subpass operations), set state (bind pipelines, descriptor

sets, and buffers, set dynamic state, push constants, set render pass/subpass state), or perform

synchronization (set/wait events, pipeline barrier, render pass/subpass dependencies). Some

commands perform more than one of these tasks. State setting commands update the current state

of the command buffer. Some commands that perform actions (e.g. draw/dispatch) do so based on

the current state set cumulatively since the start of the command buffer. The work involved in

performing action commands is often allowed to overlap or to be reordered, but doing so must not

alter the state to be used by each action command. In general, action commands are those

commands that alter framebuffer attachments, read/write buffer or image memory, or write to

query pools.

Synchronization commands introduce explicit execution and memory dependencies between two

sets of action commands, where the second set of commands depends on the first set of commands.

These dependencies enforce that both the execution of certain pipeline stages in the later set occur

after the execution of certain stages in the source set, and that the effects of memory accesses

performed by certain pipeline stages occur in order and are visible to each other. When not

enforced by an explicit dependency or implicit ordering guarantees, action commands may overlap

8

execution or execute out of order, and may not see the side effects of each other’s memory

accesses.

The device executes queue operations asynchronously with respect to the host. Control is returned

to an application immediately following command buffer submission to a queue. The application

must synchronize work between the host and device as needed.

2.3. Object Model

The devices, queues, and other entities in Vulkan are represented by Vulkan objects. At the API

level, all objects are referred to by handles. There are two classes of handles, dispatchable and non-

dispatchable. Dispatchable handle types are a pointer to an opaque type. This pointer may be used

by layers as part of intercepting API commands, and thus each API command takes a dispatchable

type as its first parameter. Each object of a dispatchable type must have a unique handle value

during its lifetime.

Non-dispatchable handle types are a 64-bit integer type whose meaning is implementation-

dependent, and may encode object information directly in the handle rather than pointing to a

software structure. Objects of a non-dispatchable type may not have unique handle values within a

type or across types. If handle values are not unique, then destroying one such handle must not

cause identical handles of other types to become invalid, and must not cause identical handles of

the same type to become invalid if that handle value has been created more times than it has been

destroyed.

All objects created or allocated from a VkDevice (i.e. with a VkDevice as the first parameter) are

private to that device, and must not be used on other devices.

2.3.1. Object Lifetime

Objects are created or allocated by vkCreate* and vkAllocate* commands, respectively. Once an

object is created or allocated, its “structure” is considered to be immutable, though the contents of

certain object types is still free to change. Objects are destroyed or freed by vkDestroy* and vkFree*

commands, respectively.

Objects that are allocated (rather than created) take resources from an existing pool object or

memory heap, and when freed return resources to that pool or heap. While object creation and

destruction are generally expected to be low-frequency occurrences during runtime, allocating and

freeing objects can occur at high frequency. Pool objects help accommodate improved performance

of the allocations and frees.

It is an application’s responsibility to track the lifetime of Vulkan objects, and not to destroy them

while they are still in use.

Application-owned memory is immediately consumed by any Vulkan command it is passed into.

The application can alter or free this memory as soon as the commands that consume it have

returned.

The following object types are consumed when they are passed into a Vulkan command and not

further accessed by the objects they are used to create. They must not be destroyed in the duration

9

of any API command they are passed into:

• VkShaderModule

• VkPipelineCache

A VkRenderPass object passed as a parameter to create another object is not further accessed by that

object after the duration of the command it is passed into. A VkRenderPass used in a command

buffer follows the rules described below.

A VkPipelineLayout object must not be destroyed while any command buffer that uses it is in the

recording state.

VkDescriptorSetLayout objects may be accessed by commands that operate on descriptor sets

allocated using that layout, and those descriptor sets must not be updated with

vkUpdateDescriptorSets after the descriptor set layout has been destroyed. Otherwise, descriptor

set layouts can be destroyed any time they are not in use by an API command.

The application must not destroy any other type of Vulkan object until all uses of that object by the

device (such as via command buffer execution) have completed.

The following Vulkan objects must not be destroyed while any command buffers using the object

are in the pending state:

• VkEvent

• VkQueryPool

• VkBuffer

• VkBufferView

• VkImage

• VkImageView

• VkPipeline

• VkSampler

• VkDescriptorPool

• VkFramebuffer

• VkRenderPass

• VkCommandBuffer

• VkCommandPool

• VkDeviceMemory

• VkDescriptorSet

Destroying these objects will move any command buffers that are in the recording or executable

state, and are using those objects, to the invalid state.

The following Vulkan objects must not be destroyed while any queue is executing commands that

use the object:

• VkFence

• VkSemaphore

• VkCommandBuffer

10

• VkCommandPool

In general, objects can be destroyed or freed in any order, even if the object being freed is involved

in the use of another object (e.g. use of a resource in a view, use of a view in a descriptor set, use of

an object in a command buffer, binding of a memory allocation to a resource), as long as any object

that uses the freed object is not further used in any way except to be destroyed or to be reset in

such a way that it no longer uses the other object (such as resetting a command buffer). If the object

has been reset, then it can be used as if it never used the freed object. An exception to this is when

there is a parent/child relationship between objects. In this case, the application must not destroy a

parent object before its children, except when the parent is explicitly defined to free its children

when it is destroyed (e.g. for pool objects, as defined below).

VkCommandPool objects are parents of VkCommandBuffer objects. VkDescriptorPool objects are parents of

VkDescriptorSet objects. VkDevice objects are parents of many object types (all that take a VkDevice

as a parameter to their creation).

The following Vulkan objects have specific restrictions for when they can be destroyed:

• VkQueue objects cannot be explicitly destroyed. Instead, they are implicitly destroyed when the

VkDevice object they are retrieved from is destroyed.

• Destroying a pool object implicitly frees all objects allocated from that pool. Specifically,

destroying VkCommandPool frees all VkCommandBuffer objects that were allocated from it, and

destroying VkDescriptorPool frees all VkDescriptorSet objects that were allocated from it.

• VkDevice objects can be destroyed when all VkQueue objects retrieved from them are idle, and all

objects created from them have been destroyed. This includes the following objects:

◦ VkFence

◦ VkSemaphore

◦ VkEvent

◦ VkQueryPool

◦ VkBuffer

◦ VkBufferView

◦ VkImage

◦ VkImageView

◦ VkShaderModule

◦ VkPipelineCache

◦ VkPipeline

◦ VkPipelineLayout

◦ VkSampler

◦ VkDescriptorSetLayout

◦ VkDescriptorPool

◦ VkFramebuffer

◦ VkRenderPass

◦ VkCommandPool

◦ VkCommandBuffer

◦ VkDeviceMemory

11

• VkPhysicalDevice objects cannot be explicitly destroyed. Instead, they are implicitly destroyed

when the VkInstance object they are retrieved from is destroyed.

• VkInstance objects can be destroyed once all VkDevice objects created from any of its

VkPhysicalDevice objects have been destroyed.

2.4. Command Syntax and Duration

The Specification describes Vulkan commands as functions or procedures using C99 syntax.

Language bindings for other languages such as C++ and JavaScript may allow for stricter parameter

passing, or object-oriented interfaces.

Vulkan uses the standard C types for the base type of scalar parameters (e.g. types from stdint.h),

with exceptions described below, or elsewhere in the text when appropriate:

VkBool32 represents boolean True and False values, since C does not have a sufficiently portable

built-in boolean type:

typedef uint32_t VkBool32;

VK_TRUE represents a boolean True (integer 1) value, and VK_FALSE a boolean False (integer 0) value.

All values returned from a Vulkan implementation in a VkBool32 will be either VK_TRUE or VK_FALSE.

Applications must not pass any other values than VK_TRUE or VK_FALSE into a Vulkan implementation

where a VkBool32 is expected.

VkDeviceSize represents device memory size and offset values:

typedef uint64_t VkDeviceSize;

Commands that create Vulkan objects are of the form vkCreate* and take Vk*CreateInfo structures

with the parameters needed to create the object. These Vulkan objects are destroyed with

commands of the form vkDestroy*.

The last in-parameter to each command that creates or destroys a Vulkan object is pAllocator. The

pAllocator parameter can be set to a non-NULL value such that allocations for the given object are

delegated to an application provided callback; refer to the Memory Allocation chapter for further

details.

Commands that allocate Vulkan objects owned by pool objects are of the form vkAllocate*, and take

Vk*AllocateInfo structures. These Vulkan objects are freed with commands of the form vkFree*.

These objects do not take allocators; if host memory is needed, they will use the allocator that was

specified when their parent pool was created.

Commands are recorded into a command buffer by calling API commands of the form vkCmd*. Each

such command may have different restrictions on where it can be used: in a primary and/or

secondary command buffer, inside and/or outside a render pass, and in one or more of the

12

supported queue types. These restrictions are documented together with the definition of each such

command.

The duration of a Vulkan command refers to the interval between calling the command and its

return to the caller.

2.4.1. Lifetime of Retrieved Results

Information is retrieved from the implementation with commands of the form vkGet* and

vkEnumerate*.

Unless otherwise specified for an individual command, the results are invariant; that is, they will

remain unchanged when retrieved again by calling the same command with the same parameters,

so long as those parameters themselves all remain valid.

2.5. Threading Behavior

Vulkan is intended to provide scalable performance when used on multiple host threads. All

commands support being called concurrently from multiple threads, but certain parameters, or

components of parameters are defined to be externally synchronized. This means that the caller

must guarantee that no more than one thread is using such a parameter at a given time.

More precisely, Vulkan commands use simple stores to update software structures representing

Vulkan objects. A parameter declared as externally synchronized may have its software structures

updated at any time during the host execution of the command. If two commands operate on the

same object and at least one of the commands declares the object to be externally synchronized,

then the caller must guarantee not only that the commands do not execute simultaneously, but also

that the two commands are separated by an appropriate memory barrier (if needed).



Note

Memory barriers are particularly relevant on the ARM CPU architecture which is

more weakly ordered than many developers are accustomed to from x86/x64

programming. Fortunately, most higher-level synchronization primitives (like the

pthread library) perform memory barriers as a part of mutual exclusion, so

mutexing Vulkan objects via these primitives will have the desired effect.

Many object types are immutable, meaning the objects cannot change once they have been created.

These types of objects never need external synchronization, except that they must not be destroyed

while they are in use on another thread. In certain special cases, mutable object parameters are

internally synchronized such that they do not require external synchronization. One example of

this is the use of a VkPipelineCache in vkCreateGraphicsPipelines and vkCreateComputePipelines,

where external synchronization around such a heavyweight command would be impractical. The

implementation must internally synchronize the cache in this example, and may be able to do so in

the form of a much finer-grained mutex around the command. Any command parameters that are

not labeled as externally synchronized are either not mutated by the command or are internally

synchronized. Additionally, certain objects related to a command’s parameters (e.g. command pools

and descriptor pools) may be affected by a command, and must also be externally synchronized.

These implicit parameters are documented as described below.

13

Parameters of commands that are externally synchronized are listed below.

14

Externally Synchronized Parameters

• The instance parameter in vkDestroyInstance

• The device parameter in vkDestroyDevice

• The queue parameter in vkQueueSubmit

• The fence parameter in vkQueueSubmit

• The memory parameter in vkFreeMemory

• The memory parameter in vkMapMemory

• The memory parameter in vkUnmapMemory

• The buffer parameter in vkBindBufferMemory

• The image parameter in vkBindImageMemory

• The queue parameter in vkQueueBindSparse

• The fence parameter in vkQueueBindSparse

• The fence parameter in vkDestroyFence

• The semaphore parameter in vkDestroySemaphore

• The event parameter in vkDestroyEvent

• The event parameter in vkSetEvent

• The event parameter in vkResetEvent

• The queryPool parameter in vkDestroyQueryPool

• The buffer parameter in vkDestroyBuffer

• The bufferView parameter in vkDestroyBufferView

• The image parameter in vkDestroyImage

• The imageView parameter in vkDestroyImageView

• The shaderModule parameter in vkDestroyShaderModule

• The pipelineCache parameter in vkDestroyPipelineCache

• The dstCache parameter in vkMergePipelineCaches

• The pipeline parameter in vkDestroyPipeline

• The pipelineLayout parameter in vkDestroyPipelineLayout

• The sampler parameter in vkDestroySampler

• The descriptorSetLayout parameter in vkDestroyDescriptorSetLayout

• The descriptorPool parameter in vkDestroyDescriptorPool

• The descriptorPool parameter in vkResetDescriptorPool

• The descriptorPool the pAllocateInfo parameter in vkAllocateDescriptorSets

• The descriptorPool parameter in vkFreeDescriptorSets

• The framebuffer parameter in vkDestroyFramebuffer

15

• The renderPass parameter in vkDestroyRenderPass

• The commandPool parameter in vkDestroyCommandPool

• The commandPool parameter in vkResetCommandPool

• The commandPool the pAllocateInfo parameter in vkAllocateCommandBuffers

• The commandPool parameter in vkFreeCommandBuffers

• The commandBuffer parameter in vkBeginCommandBuffer

• The commandBuffer parameter in vkEndCommandBuffer

• The commandBuffer parameter in vkResetCommandBuffer

• The commandBuffer parameter in vkCmdBindPipeline

• The commandBuffer parameter in vkCmdSetViewport

• The commandBuffer parameter in vkCmdSetScissor

• The commandBuffer parameter in vkCmdSetLineWidth

• The commandBuffer parameter in vkCmdSetDepthBias

• The commandBuffer parameter in vkCmdSetBlendConstants

• The commandBuffer parameter in vkCmdSetDepthBounds

• The commandBuffer parameter in vkCmdSetStencilCompareMask

• The commandBuffer parameter in vkCmdSetStencilWriteMask

• The commandBuffer parameter in vkCmdSetStencilReference

• The commandBuffer parameter in vkCmdBindDescriptorSets

• The commandBuffer parameter in vkCmdBindIndexBuffer

• The commandBuffer parameter in vkCmdBindVertexBuffers

• The commandBuffer parameter in vkCmdDraw

• The commandBuffer parameter in vkCmdDrawIndexed

• The commandBuffer parameter in vkCmdDrawIndirect

• The commandBuffer parameter in vkCmdDrawIndexedIndirect

• The commandBuffer parameter in vkCmdDispatch

• The commandBuffer parameter in vkCmdDispatchIndirect

• The commandBuffer parameter in vkCmdCopyBuffer

• The commandBuffer parameter in vkCmdCopyImage

• The commandBuffer parameter in vkCmdBlitImage

• The commandBuffer parameter in vkCmdCopyBufferToImage

• The commandBuffer parameter in vkCmdCopyImageToBuffer

• The commandBuffer parameter in vkCmdUpdateBuffer

• The commandBuffer parameter in vkCmdFillBuffer

• The commandBuffer parameter in vkCmdClearColorImage

16

• The commandBuffer parameter in vkCmdClearDepthStencilImage

• The commandBuffer parameter in vkCmdClearAttachments

• The commandBuffer parameter in vkCmdResolveImage

• The commandBuffer parameter in vkCmdSetEvent

• The commandBuffer parameter in vkCmdResetEvent

• The commandBuffer parameter in vkCmdWaitEvents

• The commandBuffer parameter in vkCmdPipelineBarrier

• The commandBuffer parameter in vkCmdBeginQuery

• The commandBuffer parameter in vkCmdEndQuery

• The commandBuffer parameter in vkCmdResetQueryPool

• The commandBuffer parameter in vkCmdWriteTimestamp

• The commandBuffer parameter in vkCmdCopyQueryPoolResults

• The commandBuffer parameter in vkCmdPushConstants

• The commandBuffer parameter in vkCmdBeginRenderPass

• The commandBuffer parameter in vkCmdNextSubpass

• The commandBuffer parameter in vkCmdEndRenderPass

• The commandBuffer parameter in vkCmdExecuteCommands

There are also a few instances where a command can take in a user allocated list whose contents

are externally synchronized parameters. In these cases, the caller must guarantee that at most one

thread is using a given element within the list at a given time. These parameters are listed below.

17

Externally Synchronized Parameter Lists

• Each element of the pWaitSemaphores member of each element of the pSubmits parameter

in vkQueueSubmit

• Each element of the pSignalSemaphores member of each element of the pSubmits parameter

in vkQueueSubmit

• Each element of the pWaitSemaphores member of each element of the pBindInfo parameter

in vkQueueBindSparse

• Each element of the pSignalSemaphores member of each element of the pBindInfo

parameter in vkQueueBindSparse

• The buffer member of each element of the pBufferBinds member of each element of the

pBindInfo parameter in vkQueueBindSparse

• The image member of each element of the pImageOpaqueBinds member of each element of

the pBindInfo parameter in vkQueueBindSparse

• The image member of each element of the pImageBinds member of each element of the

pBindInfo parameter in vkQueueBindSparse

• Each element of the pFences parameter in vkResetFences

• Each element of the pDescriptorSets parameter in vkFreeDescriptorSets

• The dstSet member of each element of the pDescriptorWrites parameter in

vkUpdateDescriptorSets

• The dstSet member of each element of the pDescriptorCopies parameter in

vkUpdateDescriptorSets

• Each element of the pCommandBuffers parameter in vkFreeCommandBuffers

In addition, there are some implicit parameters that need to be externally synchronized. For

example, all commandBuffer parameters that need to be externally synchronized imply that the

commandPool that was passed in when creating that command buffer also needs to be externally

synchronized. The implicit parameters and their associated object are listed below.

18

Implicit Externally Synchronized Parameters

• All VkQueue objects created from device in vkDeviceWaitIdle

• Any VkDescriptorSet objects allocated from descriptorPool in vkResetDescriptorPool

• The VkCommandPool that commandBuffer was allocated from in vkBeginCommandBuffer

• The VkCommandPool that commandBuffer was allocated from in vkEndCommandBuffer

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBindPipeline

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetViewport

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetScissor

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetLineWidth

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetDepthBias

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetBlendConstants

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetDepthBounds

• The VkCommandPool that commandBuffer was allocated from, in

vkCmdSetStencilCompareMask

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetStencilWriteMask

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetStencilReference

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBindDescriptorSets

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBindIndexBuffer

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBindVertexBuffers

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDraw

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDrawIndexed

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDrawIndirect

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDrawIndexedIndirect

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDispatch

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDispatchIndirect

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyBuffer

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyImage

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBlitImage

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyBufferToImage

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyImageToBuffer

• The VkCommandPool that commandBuffer was allocated from, in vkCmdUpdateBuffer

• The VkCommandPool that commandBuffer was allocated from, in vkCmdFillBuffer

• The VkCommandPool that commandBuffer was allocated from, in vkCmdClearColorImage

• The VkCommandPool that commandBuffer was allocated from, in

19

vkCmdClearDepthStencilImage

• The VkCommandPool that commandBuffer was allocated from, in vkCmdClearAttachments

• The VkCommandPool that commandBuffer was allocated from, in vkCmdResolveImage

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetEvent

• The VkCommandPool that commandBuffer was allocated from, in vkCmdResetEvent

• The VkCommandPool that commandBuffer was allocated from, in vkCmdWaitEvents

• The VkCommandPool that commandBuffer was allocated from, in vkCmdPipelineBarrier

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBeginQuery

• The VkCommandPool that commandBuffer was allocated from, in vkCmdEndQuery

• The VkCommandPool that commandBuffer was allocated from, in vkCmdResetQueryPool

• The VkCommandPool that commandBuffer was allocated from, in vkCmdWriteTimestamp

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyQueryPoolResults

• The VkCommandPool that commandBuffer was allocated from, in vkCmdPushConstants

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBeginRenderPass

• The VkCommandPool that commandBuffer was allocated from, in vkCmdNextSubpass

• The VkCommandPool that commandBuffer was allocated from, in vkCmdEndRenderPass

• The VkCommandPool that commandBuffer was allocated from, in vkCmdExecuteCommands

2.6. Errors

Vulkan is a layered API. The lowest layer is the core Vulkan layer, as defined by this Specification.

The application can use additional layers above the core for debugging, validation, and other

purposes.

One of the core principles of Vulkan is that building and submitting command buffers should be

highly efficient. Thus error checking and validation of state in the core layer is minimal, although

more rigorous validation can be enabled through the use of layers.

The core layer assumes applications are using the API correctly. Except as documented elsewhere in

the Specification, the behavior of the core layer to an application using the API incorrectly is

undefined, and may include program termination. However, implementations must ensure that

incorrect usage by an application does not affect the integrity of the operating system, the Vulkan

implementation, or other Vulkan client applications in the system, and does not allow one

application to access data belonging to another application. Applications can request stronger

robustness guarantees by enabling the robustBufferAccess feature as described in Features, Limits,

and Formats.

Validation of correct API usage is left to validation layers. Applications should be developed with

validation layers enabled, to help catch and eliminate errors. Once validated, released applications

should not enable validation layers by default.

20

2.6.1. Valid Usage

Valid usage defines a set of conditions which must be met in order to achieve well-defined run-time

behavior in an application. These conditions depend only on Vulkan state, and the parameters or

objects whose usage is constrained by the condition.

Some valid usage conditions have dependencies on run-time limits or feature availability. It is

possible to validate these conditions against Vulkan’s minimum supported values for these limits

and features, or some subset of other known values.

Valid usage conditions do not cover conditions where well-defined behavior (including returning

an error code) exists.

Valid usage conditions should apply to the command or structure where complete information

about the condition would be known during execution of an application. This is such that a

validation layer or linter can be written directly against these statements at the point they are

specified.



Note

This does lead to some non-obvious places for valid usage statements. For instance,

the valid values for a structure might depend on a separate value in the calling

command. In this case, the structure itself will not reference this valid usage as it is

impossible to determine validity from the structure that it is invalid - instead this

valid usage would be attached to the calling command.

Another example is draw state - the state setters are independent, and can cause a

legitimately invalid state configuration between draw calls; so the valid usage

statements are attached to the place where all state needs to be valid - at the draw

command.

Valid usage conditions are described in a block labelled “Valid Usage” following each command or

structure they apply to.

2.6.2. Implicit Valid Usage

Some valid usage conditions apply to all commands and structures in the API, unless explicitly

denoted otherwise for a specific command or structure. These conditions are considered implicit,

and are described in a block labelled “Valid Usage (Implicit)” following each command or structure

they apply to. Implicit valid usage conditions are described in detail below.

Valid Usage for Object Handles

Any input parameter to a command that is an object handle must be a valid object handle, unless

otherwise specified. An object handle is valid if:

• It has been created or allocated by a previous, successful call to the API. Such calls are noted in

the specification.

• It has not been deleted or freed by a previous call to the API. Such calls are noted in the

specification.

21

• Any objects used by that object, either as part of creation or execution, must also be valid.

The reserved values VK_NULL_HANDLE and NULL can be used in place of valid non-dispatchable

handles and dispatchable handles, respectively, when explicitly called out in the specification. Any

command that creates an object successfully must not return these values. It is valid to pass these

values to vkDestroy* or vkFree* commands, which will silently ignore these values.

Valid Usage for Pointers

Any parameter that is a pointer must either be a valid pointer, or if explicitly called out in the

specification, can be NULL. A pointer is valid if it points at memory containing values of the number

and type(s) expected by the command, and all fundamental types accessed through the pointer (e.g.

as elements of an array or as members of a structure) satisfy the alignment requirements of the

host processor.

Valid Usage for Strings

Any parameter that is a pointer to char must be a finite sequence of values terminated by a null

character, or if explicitly called out in the specification, can be NULL.

Valid Usage for Enumerated Types

Any parameter of an enumerated type must be a valid enumerant for that type. A enumerant is

valid if:

• The enumerant is defined as part of the enumerated type.

• The enumerant is not one of the special values defined for the enumerated type, which are

suffixed with _BEGIN_RANGE, _END_RANGE, _RANGE_SIZE or _MAX_ENUM.

Any enumerated type returned from a query command or otherwise output from Vulkan to the

application must not have a reserved value. Reserved values are values not defined by any

extension for that enumerated type.



Note

This language is intended to accomodate cases such as “hidden” extensions known

only to driver internals, or layers enabling extensions without knowledge of the

application, without allowing return of values not defined by any extension.

Valid Usage for Flags

A collection of flags is represented by a bitmask using the type VkFlags:

typedef uint32_t VkFlags;

Bitmasks are passed to many commands and structures to compactly represent options, but VkFlags

is not used directly in the API. Instead, a Vk*Flags type which is an alias of VkFlags, and whose name

matches the corresponding Vk*FlagBits that are valid for that type, is used. These aliases are

described in the Flag Types appendix of the Specification.

22

Any Vk*Flags member or parameter used in the API as an input must be a valid combination of bit

flags. A valid combination is either zero or the bitwise OR of valid bit flags. A bit flag is valid if:

• The bit flag is defined as part of the Vk*FlagBits type, where the bits type is obtained by taking

the flag type and replacing the trailing Flags with FlagBits. For example, a flag value of type

VkColorComponentFlags must contain only bit flags defined by VkColorComponentFlagBits.

• The flag is allowed in the context in which it is being used. For example, in some cases, certain

bit flags or combinations of bit flags are mutually exclusive.

Any Vk*Flags member or parameter returned from a query command or otherwise output from

Vulkan to the application may contain bit flags undefined in its corresponding Vk*FlagBits type. An

application cannot rely on the state of these unspecified bits.

Valid Usage for Structure Types

Any parameter that is a structure containing a sType member must have a value of sType which is a

valid VkStructureType value matching the type of the structure. As a general rule, the name of this

value is obtained by taking the structure name, stripping the leading Vk, prefixing each capital letter

with _, converting the entire resulting string to upper case, and prefixing it with VK_STRUCTURE_TYPE_.

For example, structures of type VkImageCreateInfo must have a sType value of

VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO.

The values VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO and

VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO are reserved for internal use by the loader, and do

not have corresponding Vulkan structures in this specification.

The list of supported structure types is defined in an appendix.

Valid Usage for Structure Pointer Chains

Any parameter that is a structure containing a void* pNext member must have a value of pNext that

is either NULL, or points to a valid structure defined by an extension, containing sType and pNext

members as described in the Vulkan Documentation and Extensions document in the section

“Extension Interactions”. The set of structures connected by pNext pointers is referred to as a pNext

chain. If that extension is supported by the implementation, then it must be enabled.

Each type of valid structure must not appear more than once in a pNext chain.

Any component of the implementation (the loader, any enabled layers, and drivers) must skip over,

without processing (other than reading the sType and pNext members) any structures in the chain

with sType values not defined by extensions supported by that component.

Extension structures are not described in the base Vulkan specification, but either in layered

specifications incorporating those extensions, or in separate vendor-provided documents.

Valid Usage for Nested Structures

The above conditions also apply recursively to members of structures provided as input to a

command, either as a direct argument to the command, or themselves a member of another

structure.

23

Specifics on valid usage of each command are covered in their individual sections.

2.6.3. Return Codes

While the core Vulkan API is not designed to capture incorrect usage, some circumstances still

require return codes. Commands in Vulkan return their status via return codes that are in one of

two categories:

• Successful completion codes are returned when a command needs to communicate success or

status information. All successful completion codes are non-negative values.

• Run time error codes are returned when a command needs to communicate a failure that could

only be detected at run time. All run time error codes are negative values.

All return codes in Vulkan are reported via VkResult return values. The possible codes are:

typedef enum VkResult {

 VK_SUCCESS = 0,

 VK_NOT_READY = 1,

 VK_TIMEOUT = 2,

 VK_EVENT_SET = 3,

 VK_EVENT_RESET = 4,

 VK_INCOMPLETE = 5,

 VK_ERROR_OUT_OF_HOST_MEMORY = -1,

 VK_ERROR_OUT_OF_DEVICE_MEMORY = -2,

 VK_ERROR_INITIALIZATION_FAILED = -3,

 VK_ERROR_DEVICE_LOST = -4,

 VK_ERROR_MEMORY_MAP_FAILED = -5,

 VK_ERROR_LAYER_NOT_PRESENT = -6,

 VK_ERROR_EXTENSION_NOT_PRESENT = -7,

 VK_ERROR_FEATURE_NOT_PRESENT = -8,

 VK_ERROR_INCOMPATIBLE_DRIVER = -9,

 VK_ERROR_TOO_MANY_OBJECTS = -10,

 VK_ERROR_FORMAT_NOT_SUPPORTED = -11,

 VK_ERROR_FRAGMENTED_POOL = -12,

} VkResult;

Success Codes

• VK_SUCCESS Command successfully completed

• VK_NOT_READY A fence or query has not yet completed

• VK_TIMEOUT A wait operation has not completed in the specified time

• VK_EVENT_SET An event is signaled

• VK_EVENT_RESET An event is unsignaled

• VK_INCOMPLETE A return array was too small for the result

Error codes

• VK_ERROR_OUT_OF_HOST_MEMORY A host memory allocation has failed.

24

• VK_ERROR_OUT_OF_DEVICE_MEMORY A device memory allocation has failed.

• VK_ERROR_INITIALIZATION_FAILED Initialization of an object could not be completed for

implementation-specific reasons.

• VK_ERROR_DEVICE_LOST The logical or physical device has been lost. See Lost Device

• VK_ERROR_MEMORY_MAP_FAILED Mapping of a memory object has failed.

• VK_ERROR_LAYER_NOT_PRESENT A requested layer is not present or could not be loaded.

• VK_ERROR_EXTENSION_NOT_PRESENT A requested extension is not supported.

• VK_ERROR_FEATURE_NOT_PRESENT A requested feature is not supported.

• VK_ERROR_INCOMPATIBLE_DRIVER The requested version of Vulkan is not supported by the driver or

is otherwise incompatible for implementation-specific reasons.

• VK_ERROR_TOO_MANY_OBJECTS Too many objects of the type have already been created.

• VK_ERROR_FORMAT_NOT_SUPPORTED A requested format is not supported on this device.

• VK_ERROR_FRAGMENTED_POOL A pool allocation has failed due to fragmentation of the pool’s

memory. This must only be returned if no attempt to allocate host or device memory was made

to accomodate the new allocation.

If a command returns a run time error, it will leave any result pointers unmodified, unless other

behavior is explicitly defined in the specification.

Out of memory errors do not damage any currently existing Vulkan objects. Objects that have

already been successfully created can still be used by the application.

Performance-critical commands generally do not have return codes. If a run time error occurs in

such commands, the implementation will defer reporting the error until a specified point. For

commands that record into command buffers (vkCmd*) run time errors are reported by

vkEndCommandBuffer.

2.7. Numeric Representation and Computation

Implementations normally perform computations in floating-point, and must meet the range and

precision requirements defined under “Floating-Point Computation” below.

These requirements only apply to computations performed in Vulkan operations outside of shader

execution, such as texture image specification and sampling, and per-fragment operations. Range

and precision requirements during shader execution differ and are specified by the Precision and

Operation of SPIR-V Instructions section.

In some cases, the representation and/or precision of operations is implicitly limited by the

specified format of vertex or texel data consumed by Vulkan. Specific floating-point formats are

described later in this section.

2.7.1. Floating-Point Computation

Most floating-point computation is performed in SPIR-V shader modules. The properties of

computation within shaders are constrained as defined by the Precision and Operation of SPIR-V

25

Instructions section.

Some floating-point computation is performed outside of shaders, such as viewport and depth

range calculations. For these computations, we do not specify how floating-point numbers are to be

represented, or the details of how operations on them are performed, but only place minimal

requirements on representation and precision as described in the remainder of this section.

We require simply that numbers' floating-point parts contain enough bits and that their exponent

fields are large enough so that individual results of floating-point operations are accurate to about 1

part in 10
5
. The maximum representable magnitude for all floating-point values must be at least 2

32
.

x × 0 = 0 × x = 0 for any non-infinite and non-NaN x.

1 × x = x × 1 = x.

x + 0 = 0 + x = x.

0
0
 = 1.

Occasionally, further requirements will be specified. Most single-precision floating-point formats

meet these requirements.

The special values Inf and -Inf encode values with magnitudes too large to be represented; the

special value NaN encodes “Not A Number” values resulting from undefined arithmetic operations

such as 0 / 0. Implementations may support Inf and NaN in their floating-point computations.

Any representable floating-point value is legal as input to a Vulkan command that requires floating-

point data. The result of providing a value that is not a floating-point number to such a command is

unspecified, but must not lead to Vulkan interruption or termination. In IEEE 754 arithmetic, for

example, providing a negative zero or a denormalized number to an Vulkan command must yield

deterministic results, while providing a NaN or Inf yields unspecified results.

2.7.2. 16-Bit Floating-Point Numbers

16-bit floating point numbers are defined in the “16-bit floating point numbers” section of the

Khronos Data Format Specification.

Any representable 16-bit floating-point value is legal as input to a Vulkan command that accepts 16-

bit floating-point data. The result of providing a value that is not a floating-point number (such as

Inf or NaN) to such a command is unspecified, but must not lead to Vulkan interruption or

termination. Providing a denormalized number or negative zero to Vulkan must yield

deterministic results.

2.7.3. Unsigned 11-Bit Floating-Point Numbers

Unsigned 11-bit floating point numbers are defined in the “Unsigned 11-bit floating point numbers”

section of the Khronos Data Format Specification.

When a floating-point value is converted to an unsigned 11-bit floating-point representation, finite

26

values are rounded to the closest representable finite value.

While less accurate, implementations are allowed to always round in the direction of zero. This

means negative values are converted to zero. Likewise, finite positive values greater than 65024

(the maximum finite representable unsigned 11-bit floating-point value) are converted to 65024.

Additionally: negative infinity is converted to zero; positive infinity is converted to positive infinity;

and both positive and negative NaN are converted to positive NaN.

Any representable unsigned 11-bit floating-point value is legal as input to a Vulkan command that

accepts 11-bit floating-point data. The result of providing a value that is not a floating-point number

(such as Inf or NaN) to such a command is unspecified, but must not lead to Vulkan interruption or

termination. Providing a denormalized number to Vulkan must yield deterministic results.

2.7.4. Unsigned 10-Bit Floating-Point Numbers

Unsigned 10-bit floating point numbers are defined in the “Unsigned 10-bit floating point numbers”

section of the Khronos Data Format Specification.

When a floating-point value is converted to an unsigned 10-bit floating-point representation, finite

values are rounded to the closest representable finite value.

While less accurate, implementations are allowed to always round in the direction of zero. This

means negative values are converted to zero. Likewise, finite positive values greater than 64512

(the maximum finite representable unsigned 10-bit floating-point value) are converted to 64512.

Additionally: negative infinity is converted to zero; positive infinity is converted to positive infinity;

and both positive and negative NaN are converted to positive NaN.

Any representable unsigned 10-bit floating-point value is legal as input to a Vulkan command that

accepts 10-bit floating-point data. The result of providing a value that is not a floating-point number

(such as Inf or NaN) to such a command is unspecified, but must not lead to Vulkan interruption or

termination. Providing a denormalized number to Vulkan must yield deterministic results.

2.7.5. General Requirements

Some calculations require division. In such cases (including implied divisions performed by vector

normalization), division by zero produces an unspecified result but must not lead to Vulkan

interruption or termination.

2.8. Fixed-Point Data Conversions

When generic vertex attributes and pixel color or depth components are represented as integers,

they are often (but not always) considered to be normalized. Normalized integer values are treated

specially when being converted to and from floating-point values, and are usually referred to as

normalized fixed-point.

In the remainder of this section, b denotes the bit width of the fixed-point integer representation.

When the integer is one of the types defined by the API, b is the bit width of that type. When the

integer comes from an image containing color or depth component texels, b is the number of bits

allocated to that component in its specified image format.

27

The signed and unsigned fixed-point representations are assumed to be b-bit binary two’s-

complement integers and binary unsigned integers, respectively.

2.8.1. Conversion from Normalized Fixed-Point to Floating-Point

Unsigned normalized fixed-point integers represent numbers in the range [0,1]. The conversion

from an unsigned normalized fixed-point value c to the corresponding floating-point value f is

defined as

Signed normalized fixed-point integers represent numbers in the range [-1,1]. The conversion from

a signed normalized fixed-point value c to the corresponding floating-point value f is performed

using

Only the range [-2
b-1

 + 1, 2
b-1

 - 1] is used to represent signed fixed-point values in the range [-1,1]. For

example, if b = 8, then the integer value -127 corresponds to -1.0 and the value 127 corresponds to

1.0. Note that while zero is exactly expressible in this representation, one value (-128 in the

example) is outside the representable range, and must be clamped before use. This equation is used

everywhere that signed normalized fixed-point values are converted to floating-point.

2.8.2. Conversion from Floating-Point to Normalized Fixed-Point

The conversion from a floating-point value f to the corresponding unsigned normalized fixed-point

value c is defined by first clamping f to the range [0,1], then computing

c = convertFloatToUint(f × (2b
 - 1), b)

where convertFloatToUint}(r,b) returns one of the two unsigned binary integer values with exactly

b bits which are closest to the floating-point value r. Implementations should round to nearest. If r

is equal to an integer, then that integer value must be returned. In particular, if f is equal to 0.0 or

1.0, then c must be assigned 0 or 2
b
 - 1, respectively.

The conversion from a floating-point value f to the corresponding signed normalized fixed-point

value c is performed by clamping f to the range [-1,1], then computing

c = convertFloatToInt(f × (2b-1
 - 1), b)

where convertFloatToInt(r,b) returns one of the two signed two’s-complement binary integer

values with exactly b bits which are closest to the floating-point value r. Implementations should

round to nearest. If r is equal to an integer, then that integer value must be returned. In particular,

if f is equal to -1.0, 0.0, or 1.0, then c must be assigned -(2
b-1

 - 1), 0, or 2
b-1

 - 1, respectively.

This equation is used everywhere that floating-point values are converted to signed normalized

fixed-point.

28

2.9. API Version Numbers and Semantics

The Vulkan version number is used in several places in the API. In each such use, the API major

version number, minor version number, and patch version number are packed into a 32-bit integer as

follows:

• The major version number is a 10-bit integer packed into bits 31-22.

• The minor version number is a 10-bit integer packed into bits 21-12.

• The patch version number is a 12-bit integer packed into bits 11-0.

Differences in any of the Vulkan version numbers indicates a change to the API in some way, with

each part of the version number indicating a different scope of changes.

A difference in patch version numbers indicates that some usually small part of the specification or

header has been modified, typically to fix a bug, and may have an impact on the behavior of

existing functionality. Differences in this version number should not affect either full compatibility

or backwards compatibility between two versions, or add additional interfaces to the API.

A difference in minor version numbers indicates that some amount of new functionality has been

added. This will usually include new interfaces in the header, and may also include behavior

changes and bug fixes. Functionality may be deprecated in a minor revision, but will not be

removed. When a new minor version is introduced, the patch version is reset to 0, and each minor

revision maintains its own set of patch versions. Differences in this version should not affect

backwards compatibility, but will affect full compatibility.

A difference in major version numbers indicates a large set of changes to the API, potentially

including new functionality and header interfaces, behavioral changes, removal of deprecated

features, modification or outright replacement of any feature, and is thus very likely to break any

and all compatibility. Differences in this version will typically require significant modification to an

application in order for it to function.

C language macros for manipulating version numbers are defined in the Version Number Macros

appendix.

2.10. Common Object Types

Some types of Vulkan objects are used in many different structures and command parameters, and

are described here. These types include offsets, extents, and rectangles.

2.10.1. Offsets

Offsets are used to describe a pixel location within an image or framebuffer, as an (x,y) location for

two-dimensional images, or an (x,y,z) location for three-dimensional images.

A two-dimensional offsets is defined by the structure:

29

typedef struct VkOffset2D {

 int32_t x;

 int32_t y;

} VkOffset2D;

• x is the x offset.

• y is the y offset.

A three-dimensional offset is defined by the structure:

typedef struct VkOffset3D {

 int32_t x;

 int32_t y;

 int32_t z;

} VkOffset3D;

• x is the x offset.

• y is the y offset.

• z is the z offset.

2.10.2. Extents

Extents are used to describe the size of a rectangular region of pixels within an image or

framebuffer, as (width,height) for two-dimensional images, or as (width,height,depth) for three-

dimensional images.

A two-dimensional extent is defined by the structure:

typedef struct VkExtent2D {

 uint32_t width;

 uint32_t height;

} VkExtent2D;

• width is the width of the extent.

• height is the height of the extent.

A three-dimensional extent is defined by the structure:

typedef struct VkExtent3D {

 uint32_t width;

 uint32_t height;

 uint32_t depth;

} VkExtent3D;

30

• width is the width of the extent.

• height is the height of the extent.

• depth is the depth of the extent.

2.10.3. Rectangles

Rectangles are used to describe a specified rectangular region of pixels within an image or

framebuffer. Rectangles include both an offset and an extent of the same dimensionality, as

described above. Two-dimensional rectangles are defined by the structure

typedef struct VkRect2D {

 VkOffset2D offset;

 VkExtent2D extent;

} VkRect2D;

• offset is a VkOffset2D specifying the rectangle offset.

• extent is a VkExtent2D specifying the rectangle extent.

31

Chapter 3. Initialization

Before using Vulkan, an application must initialize it by loading the Vulkan commands, and

creating a VkInstance object.

3.1. Command Function Pointers

Vulkan commands are not necessarily exposed statically on a platform. Function pointers for all

Vulkan commands can be obtained with the command:

PFN_vkVoidFunction vkGetInstanceProcAddr(

 VkInstance instance,

 const char* pName);

• instance is the instance that the function pointer will be compatible with, or NULL for commands

not dependent on any instance.

• pName is the name of the command to obtain.

vkGetInstanceProcAddr itself is obtained in a platform- and loader- specific manner. Typically, the

loader library will export this command as a function symbol, so applications can link against the

loader library, or load it dynamically and look up the symbol using platform-specific APIs. Loaders

are encouraged to export function symbols for all other core Vulkan commands as well; if this is

done, then applications that use only the core Vulkan commands have no need to use

vkGetInstanceProcAddr.

The table below defines the various use cases for vkGetInstanceProcAddr and expected return value

("fp" is function pointer) for each case.

The returned function pointer is of type PFN_vkVoidFunction, and must be cast to the type of the

command being queried.

Table 1. vkGetInstanceProcAddr behavior

instance pName return value

* NULL undefined

invalid instance * undefined

NULL vkEnumerateInstanceExt

ensionProperties

fp

NULL vkEnumerateInstanceLa

yerProperties

fp

NULL vkCreateInstance fp

NULL * (any pName not covered

above)

NULL

instance core Vulkan command fp
1

32

instance pName return value

instance enabled instance

extension commands for
instance

fp
1

instance available device

extension
2
 commands for

instance

fp
1

instance * (any pName not covered

above)

NULL

1

The returned function pointer must only be called with a dispatchable object (the first

parameter) that is instance or a child of instance. e.g. VkInstance, VkPhysicalDevice, VkDevice,

VkQueue, or VkCommandBuffer.

2

An “available extension” is an extension function supported by any of the loader, driver or layer.

Valid Usage (Implicit)

• If instance is not NULL, instance must be a valid VkInstance handle

• pName must be a null-terminated UTF-8 string

In order to support systems with multiple Vulkan implementations comprising heterogeneous

collections of hardware and software, the function pointers returned by vkGetInstanceProcAddr may

point to dispatch code, which calls a different real implementation for different VkDevice objects

(and objects created from them). The overhead of this internal dispatch can be avoided by

obtaining device-specific function pointers for any commands that use a device or device-child

object as their dispatchable object. Such function pointers can be obtained with the command:

PFN_vkVoidFunction vkGetDeviceProcAddr(

 VkDevice device,

 const char* pName);

The table below defines the various use cases for vkGetDeviceProcAddr and expected return value for

each case.

The returned function pointer is of type PFN_vkVoidFunction, and must be cast to the type of the

command being queried.

Table 2. vkGetDeviceProcAddr behavior

device pName return value

NULL * undefined

invalid device * undefined

33

device pName return value

device NULL undefined

device core Vulkan command fp
1

device enabled extension

commands

fp
1

device * (any pName not covered

above)

NULL

1

The returned function pointer must only be called with a dispatchable object (the first

parameter) that is device or a child of device. e.g. VkDevice, VkQueue, or VkCommandBuffer.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pName must be a null-terminated UTF-8 string

The definition of PFN_vkVoidFunction is:

typedef void (VKAPI_PTR *PFN_vkVoidFunction)(void);

3.2. Instances

There is no global state in Vulkan and all per-application state is stored in a VkInstance object.

Creating a VkInstance object initializes the Vulkan library and allows the application to pass

information about itself to the implementation.

Instances are represented by VkInstance handles:

VK_DEFINE_HANDLE(VkInstance)

To create an instance object, call:

VkResult vkCreateInstance(

 const VkInstanceCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkInstance* pInstance);

• pCreateInfo points to an instance of VkInstanceCreateInfo controlling creation of the instance.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pInstance points a VkInstance handle in which the resulting instance is returned.

34

vkCreateInstance verifies that the requested layers exist. If not, vkCreateInstance will return

VK_ERROR_LAYER_NOT_PRESENT. Next vkCreateInstance verifies that the requested extensions are

supported (e.g. in the implementation or in any enabled instance layer) and if any requested

extension is not supported, vkCreateInstance must return VK_ERROR_EXTENSION_NOT_PRESENT. After

verifying and enabling the instance layers and extensions the VkInstance object is created and

returned to the application. If a requested extension is only supported by a layer, both the layer and

the extension need to be specified at vkCreateInstance time for the creation to succeed.

Valid Usage

• All required extensions for each extension in the VkInstanceCreateInfo

::ppEnabledExtensionNames list must also be present in that list.

Valid Usage (Implicit)

• pCreateInfo must be a pointer to a valid VkInstanceCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• pInstance must be a pointer to a VkInstance handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INITIALIZATION_FAILED

• VK_ERROR_LAYER_NOT_PRESENT

• VK_ERROR_EXTENSION_NOT_PRESENT

• VK_ERROR_INCOMPATIBLE_DRIVER

The VkInstanceCreateInfo structure is defined as:

35

typedef struct VkInstanceCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkInstanceCreateFlags flags;

 const VkApplicationInfo* pApplicationInfo;

 uint32_t enabledLayerCount;

 const char* const* ppEnabledLayerNames;

 uint32_t enabledExtensionCount;

 const char* const* ppEnabledExtensionNames;

} VkInstanceCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• pApplicationInfo is NULL or a pointer to an instance of VkApplicationInfo. If not NULL, this

information helps implementations recognize behavior inherent to classes of applications.

VkApplicationInfo is defined in detail below.

• enabledLayerCount is the number of global layers to enable.

• ppEnabledLayerNames is a pointer to an array of enabledLayerCount null-terminated UTF-8 strings

containing the names of layers to enable for the created instance. See the Layers section for

further details.

• enabledExtensionCount is the number of global extensions to enable.

• ppEnabledExtensionNames is a pointer to an array of enabledExtensionCount null-terminated UTF-8

strings containing the names of extensions to enable.

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO

• pNext must be NULL

• flags must be 0

• If pApplicationInfo is not NULL, pApplicationInfo must be a pointer to a valid

VkApplicationInfo structure

• If enabledLayerCount is not 0, ppEnabledLayerNames must be a pointer to an array of

enabledLayerCount null-terminated UTF-8 strings

• If enabledExtensionCount is not 0, ppEnabledExtensionNames must be a pointer to an array of

enabledExtensionCount null-terminated UTF-8 strings

The VkApplicationInfo structure is defined as:

36

typedef struct VkApplicationInfo {

 VkStructureType sType;

 const void* pNext;

 const char* pApplicationName;

 uint32_t applicationVersion;

 const char* pEngineName;

 uint32_t engineVersion;

 uint32_t apiVersion;

} VkApplicationInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• pApplicationName is NULL or is a pointer to a null-terminated UTF-8 string containing the name of

the application.

• applicationVersion is an unsigned integer variable containing the developer-supplied version

number of the application.

• pEngineName is NULL or is a pointer to a null-terminated UTF-8 string containing the name of the

engine (if any) used to create the application.

• engineVersion is an unsigned integer variable containing the developer-supplied version

number of the engine used to create the application.

• apiVersion is the version of the Vulkan API against which the application expects to run,

encoded as described in the API Version Numbers and Semantics section. If apiVersion is 0 the

implementation must ignore it, otherwise if the implementation does not support the requested

apiVersion, or an effective substitute for apiVersion, it must return

VK_ERROR_INCOMPATIBLE_DRIVER. The patch version number specified in apiVersion is ignored

when creating an instance object. Only the major and minor versions of the instance must

match those requested in apiVersion.

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_APPLICATION_INFO

• pNext must be NULL

• If pApplicationName is not NULL, pApplicationName must be a null-terminated UTF-8 string

• If pEngineName is not NULL, pEngineName must be a null-terminated UTF-8 string

To destroy an instance, call:

void vkDestroyInstance(

 VkInstance instance,

 const VkAllocationCallbacks* pAllocator);

• instance is the handle of the instance to destroy.

37

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• All child objects created using instance must have been destroyed prior to destroying
instance

• If VkAllocationCallbacks were provided when instance was created, a compatible set of

callbacks must be provided here

• If no VkAllocationCallbacks were provided when instance was created, pAllocator must

be NULL

Valid Usage (Implicit)

• If instance is not NULL, instance must be a valid VkInstance handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

Host Synchronization

• Host access to instance must be externally synchronized

38

Chapter 4. Devices and Queues

Once Vulkan is initialized, devices and queues are the primary objects used to interact with a

Vulkan implementation.

Vulkan separates the concept of physical and logical devices. A physical device usually represents a

single device in a system (perhaps made up of several individual hardware devices working

together), of which there are a finite number. A logical device represents an application’s view of

the device.

Physical devices are represented by VkPhysicalDevice handles:

VK_DEFINE_HANDLE(VkPhysicalDevice)

4.1. Physical Devices

To retrieve a list of physical device objects representing the physical devices installed in the system,

call:

VkResult vkEnumeratePhysicalDevices(

 VkInstance instance,

 uint32_t* pPhysicalDeviceCount,

 VkPhysicalDevice* pPhysicalDevices);

• instance is a handle to a Vulkan instance previously created with vkCreateInstance.

• pPhysicalDeviceCount is a pointer to an integer related to the number of physical devices

available or queried, as described below.

• pPhysicalDevices is either NULL or a pointer to an array of VkPhysicalDevice handles.

If pPhysicalDevices is NULL, then the number of physical devices available is returned in

pPhysicalDeviceCount. Otherwise, pPhysicalDeviceCount must point to a variable set by the user to

the number of elements in the pPhysicalDevices array, and on return the variable is overwritten

with the number of handles actually written to pPhysicalDevices. If pPhysicalDeviceCount is less

than the number of physical devices available, at most pPhysicalDeviceCount structures will be

written. If pPhysicalDeviceCount is smaller than the number of physical devices available,

VK_INCOMPLETE will be returned instead of VK_SUCCESS, to indicate that not all the available physical

devices were returned.

39

Valid Usage (Implicit)

• instance must be a valid VkInstance handle

• pPhysicalDeviceCount must be a pointer to a uint32_t value

• If the value referenced by pPhysicalDeviceCount is not 0, and pPhysicalDevices is not NULL,

pPhysicalDevices must be a pointer to an array of pPhysicalDeviceCount VkPhysicalDevice

handles

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INITIALIZATION_FAILED

To query general properties of physical devices once enumerated, call:

void vkGetPhysicalDeviceProperties(

 VkPhysicalDevice physicalDevice,

 VkPhysicalDeviceProperties* pProperties);

• physicalDevice is the handle to the physical device whose properties will be queried.

• pProperties points to an instance of the VkPhysicalDeviceProperties structure, that will be filled

with returned information.

Valid Usage (Implicit)

• physicalDevice must be a valid VkPhysicalDevice handle

• pProperties must be a pointer to a VkPhysicalDeviceProperties structure

The VkPhysicalDeviceProperties structure is defined as:

40

typedef struct VkPhysicalDeviceProperties {

 uint32_t apiVersion;

 uint32_t driverVersion;

 uint32_t vendorID;

 uint32_t deviceID;

 VkPhysicalDeviceType deviceType;

 char deviceName[VK_MAX_PHYSICAL_DEVICE_NAME_SIZE];

 uint8_t pipelineCacheUUID[VK_UUID_SIZE];

 VkPhysicalDeviceLimits limits;

 VkPhysicalDeviceSparseProperties sparseProperties;

} VkPhysicalDeviceProperties;

• apiVersion is the version of Vulkan supported by the device, encoded as described in the API

Version Numbers and Semantics section.

• driverVersion is the vendor-specified version of the driver.

• vendorID is a unique identifier for the vendor (see below) of the physical device.

• deviceID is a unique identifier for the physical device among devices available from the vendor.

• deviceType is a VkPhysicalDeviceType specifying the type of device.

• deviceName is a null-terminated UTF-8 string containing the name of the device.

• pipelineCacheUUID is an array of size VK_UUID_SIZE, containing 8-bit values that represent a

universally unique identifier for the device.

• limits is the VkPhysicalDeviceLimits structure which specifies device-specific limits of the

physical device. See Limits for details.

• sparseProperties is the VkPhysicalDeviceSparseProperties structure which specifies various

sparse related properties of the physical device. See Sparse Properties for details.

The vendorID and deviceID fields are provided to allow applications to adapt to device

characteristics that are not adequately exposed by other Vulkan queries. These may include

performance profiles, hardware errata, or other characteristics. In PCI-based implementations, the

low sixteen bits of vendorID and deviceID must contain (respectively) the PCI vendor and device IDs

associated with the hardware device, and the remaining bits must be set to zero. In non-PCI

implementations, the choice of what values to return may be dictated by operating system or

platform policies. It is otherwise at the discretion of the implementer, subject to the following

constraints and guidelines:

• For purposes of physical device identification, the vendor of a physical device is the entity

responsible for the most salient characteristics of the hardware represented by the physical

device handle. In the case of a discrete GPU, this should be the GPU chipset vendor. In the case

of a GPU or other accelerator integrated into a system-on-chip (SoC), this should be the supplier

of the silicon IP used to create the GPU or other accelerator.

• If the vendor of the physical device has a valid PCI vendor ID issued by PCI-SIG, that ID should

be used to construct vendorID as described above for PCI-based implementations.

Implementations that do not return a PCI vendor ID in vendorID must return a valid Khronos

vendor ID, obtained as described in the Vulkan Documentation and Extensions document in the

41

https://pcisig.com/

section “Registering a Vendor ID with Khronos”. Khronos vendor IDs are allocated starting at

0x10000, to distinguish them from the PCI vendor ID namespace.

• The vendor of the physical device is responsible for selecting deviceID. The value selected

should uniquely identify both the device version and any major configuration options (for

example, core count in the case of multicore devices). The same device ID should be used for all

physical implementations of that device version and configuration. For example, all uses of a

specific silicon IP GPU version and configuration should use the same device ID, even if those

uses occur in different SoCs.

The physical device types which may be returned in VkPhysicalDeviceProperties::deviceType are:

typedef enum VkPhysicalDeviceType {

 VK_PHYSICAL_DEVICE_TYPE_OTHER = 0,

 VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU = 1,

 VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU = 2,

 VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU = 3,

 VK_PHYSICAL_DEVICE_TYPE_CPU = 4,

} VkPhysicalDeviceType;

• VK_PHYSICAL_DEVICE_TYPE_OTHER - the device does not match any other available types.

• VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU - the device is typically one embedded in or tightly

coupled with the host.

• VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU - the device is typically a separate processor connected to

the host via an interlink.

• VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU - the device is typically a virtual node in a virtualization

environment.

• VK_PHYSICAL_DEVICE_TYPE_CPU - the device is typically running on the same processors as the host.

The physical device type is advertised for informational purposes only, and does not directly affect

the operation of the system. However, the device type may correlate with other advertised

properties or capabilities of the system, such as how many memory heaps there are.

To query properties of queues available on a physical device, call:

void vkGetPhysicalDeviceQueueFamilyProperties(

 VkPhysicalDevice physicalDevice,

 uint32_t* pQueueFamilyPropertyCount,

 VkQueueFamilyProperties* pQueueFamilyProperties);

• physicalDevice is the handle to the physical device whose properties will be queried.

• pQueueFamilyPropertyCount is a pointer to an integer related to the number of queue families

available or queried, as described below.

• pQueueFamilyProperties is either NULL or a pointer to an array of VkQueueFamilyProperties

structures.

42

If pQueueFamilyProperties is NULL, then the number of queue families available is returned in

pQueueFamilyPropertyCount. Otherwise, pQueueFamilyPropertyCount must point to a variable set by the

user to the number of elements in the pQueueFamilyProperties array, and on return the variable is

overwritten with the number of structures actually written to pQueueFamilyProperties. If

pQueueFamilyPropertyCount is less than the number of queue families available, at most

pQueueFamilyPropertyCount structures will be written.

Valid Usage (Implicit)

• physicalDevice must be a valid VkPhysicalDevice handle

• pQueueFamilyPropertyCount must be a pointer to a uint32_t value

• If the value referenced by pQueueFamilyPropertyCount is not 0, and pQueueFamilyProperties

is not NULL, pQueueFamilyProperties must be a pointer to an array of

pQueueFamilyPropertyCount VkQueueFamilyProperties structures

The VkQueueFamilyProperties structure is defined as:

typedef struct VkQueueFamilyProperties {

 VkQueueFlags queueFlags;

 uint32_t queueCount;

 uint32_t timestampValidBits;

 VkExtent3D minImageTransferGranularity;

} VkQueueFamilyProperties;

• queueFlags is a bitmask of VkQueueFlagBits indicating capabilities of the queues in this queue

family.

• queueCount is the unsigned integer count of queues in this queue family.

• timestampValidBits is the unsigned integer count of meaningful bits in the timestamps written

via vkCmdWriteTimestamp. The valid range for the count is 36..64 bits, or a value of 0, indicating no

support for timestamps. Bits outside the valid range are guaranteed to be zeros.

• minImageTransferGranularity is the minimum granularity supported for image transfer

operations on the queues in this queue family.

The value returned in minImageTransferGranularity has a unit of compressed texel blocks for images

having a block-compressed format, and a unit of texels otherwise.

Possible values of minImageTransferGranularity are:

• (0,0,0) which indicates that only whole mip levels must be transferred using the image transfer

operations on the corresponding queues. In this case, the following restrictions apply to all

offset and extent parameters of image transfer operations:

◦ The x, y, and z members of a VkOffset3D parameter must always be zero.

◦ The width, height, and depth members of a VkExtent3D parameter must always match the

width, height, and depth of the image subresource corresponding to the parameter,

43

respectively.

• (Ax, Ay, Az) where Ax, Ay, and Az are all integer powers of two. In this case the following

restrictions apply to all image transfer operations:

◦ x, y, and z of a VkOffset3D parameter must be integer multiples of Ax, Ay, and Az,

respectively.

◦ width of a VkExtent3D parameter must be an integer multiple of Ax, or else x + width must

equal the width of the image subresource corresponding to the parameter.

◦ height of a VkExtent3D parameter must be an integer multiple of Ay, or else y + height must

equal the height of the image subresource corresponding to the parameter.

◦ depth of a VkExtent3D parameter must be an integer multiple of Az, or else z + depth must

equal the depth of the image subresource corresponding to the parameter.

◦ If the format of the image corresponding to the parameters is one of the block-compressed

formats then for the purposes of the above calculations the granularity must be scaled up

by the compressed texel block dimensions.

Queues supporting graphics and/or compute operations must report (1,1,1) in

minImageTransferGranularity, meaning that there are no additional restrictions on the granularity of

image transfer operations for these queues. Other queues supporting image transfer operations are

only required to support whole mip level transfers, thus minImageTransferGranularity for queues

belonging to such queue families may be (0,0,0).

The Device Memory section describes memory properties queried from the physical device.

For physical device feature queries see the Features chapter.

Bits which may be set in VkQueueFamilyProperties::queueFlags indicating capabilities of queues in

a queue family are:

typedef enum VkQueueFlagBits {

 VK_QUEUE_GRAPHICS_BIT = 0x00000001,

 VK_QUEUE_COMPUTE_BIT = 0x00000002,

 VK_QUEUE_TRANSFER_BIT = 0x00000004,

 VK_QUEUE_SPARSE_BINDING_BIT = 0x00000008,

} VkQueueFlagBits;

• VK_QUEUE_GRAPHICS_BIT indicates that queues in this queue family support graphics operations.

• VK_QUEUE_COMPUTE_BIT indicates that queues in this queue family support compute operations.

• VK_QUEUE_TRANSFER_BIT indicates that queues in this queue family support transfer operations.

• VK_QUEUE_SPARSE_BINDING_BIT indicates that queues in this queue family support sparse memory

management operations (see Sparse Resources). If any of the sparse resource features are

enabled, then at least one queue family must support this bit.

If an implementation exposes any queue family that supports graphics operations, at least one

queue family of at least one physical device exposed by the implementation must support both

graphics and compute operations.

44



Note

All commands that are allowed on a queue that supports transfer operations are

also allowed on a queue that supports either graphics or compute operations.

Thus, if the capabilities of a queue family include VK_QUEUE_GRAPHICS_BIT or

VK_QUEUE_COMPUTE_BIT, then reporting the VK_QUEUE_TRANSFER_BIT capability

separately for that queue family is optional.

For further details see Queues.

4.2. Devices

Device objects represent logical connections to physical devices. Each device exposes a number of

queue families each having one or more queues. All queues in a queue family support the same

operations.

As described in Physical Devices, a Vulkan application will first query for all physical devices in a

system. Each physical device can then be queried for its capabilities, including its queue and queue

family properties. Once an acceptable physical device is identified, an application will create a

corresponding logical device. An application must create a separate logical device for each physical

device it will use. The created logical device is then the primary interface to the physical device.

How to enumerate the physical devices in a system and query those physical devices for their

queue family properties is described in the Physical Device Enumeration section above.

4.2.1. Device Creation

Logical devices are represented by VkDevice handles:

VK_DEFINE_HANDLE(VkDevice)

A logical device is created as a connection to a physical device. To create a logical device, call:

VkResult vkCreateDevice(

 VkPhysicalDevice physicalDevice,

 const VkDeviceCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkDevice* pDevice);

• physicalDevice must be one of the device handles returned from a call to

vkEnumeratePhysicalDevices (see Physical Device Enumeration).

• pCreateInfo is a pointer to a VkDeviceCreateInfo structure containing information about how to

create the device.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pDevice points to a handle in which the created VkDevice is returned.

45

vkCreateDevice verifies that extensions and features requested in the ppEnabledExtensionNames and

pEnabledFeatures members of pCreateInfo, respectively, are supported by the implementation. If any

requested extension is not supported, vkCreateDevice must return VK_ERROR_EXTENSION_NOT_PRESENT.

If any requested feature is not supported, vkCreateDevice must return

VK_ERROR_FEATURE_NOT_PRESENT. Support for extensions can be checked before creating a device by

querying vkEnumerateDeviceExtensionProperties. Support for features can similarly be checked

by querying vkGetPhysicalDeviceFeatures.

After verifying and enabling the extensions the VkDevice object is created and returned to the

application. If a requested extension is only supported by a layer, both the layer and the extension

need to be specified at vkCreateInstance time for the creation to succeed.

Multiple logical devices can be created from the same physical device. Logical device creation may

fail due to lack of device-specific resources (in addition to the other errors). If that occurs,

vkCreateDevice will return VK_ERROR_TOO_MANY_OBJECTS.

Valid Usage

• All required extensions for each extension in the VkDeviceCreateInfo

::ppEnabledExtensionNames list must also be present in that list.

Valid Usage (Implicit)

• physicalDevice must be a valid VkPhysicalDevice handle

• pCreateInfo must be a pointer to a valid VkDeviceCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• pDevice must be a pointer to a VkDevice handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INITIALIZATION_FAILED

• VK_ERROR_EXTENSION_NOT_PRESENT

• VK_ERROR_FEATURE_NOT_PRESENT

• VK_ERROR_TOO_MANY_OBJECTS

• VK_ERROR_DEVICE_LOST

46

The VkDeviceCreateInfo structure is defined as:

typedef struct VkDeviceCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkDeviceCreateFlags flags;

 uint32_t queueCreateInfoCount;

 const VkDeviceQueueCreateInfo* pQueueCreateInfos;

 uint32_t enabledLayerCount;

 const char* const* ppEnabledLayerNames;

 uint32_t enabledExtensionCount;

 const char* const* ppEnabledExtensionNames;

 const VkPhysicalDeviceFeatures* pEnabledFeatures;

} VkDeviceCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• queueCreateInfoCount is the unsigned integer size of the pQueueCreateInfos array. Refer to the

Queue Creation section below for further details.

• pQueueCreateInfos is a pointer to an array of VkDeviceQueueCreateInfo structures describing the

queues that are requested to be created along with the logical device. Refer to the Queue

Creation section below for further details.

• enabledLayerCount is deprecated and ignored.

• ppEnabledLayerNames is deprecated and ignored. See Device Layer Deprecation.

• enabledExtensionCount is the number of device extensions to enable.

• ppEnabledExtensionNames is a pointer to an array of enabledExtensionCount null-terminated UTF-8

strings containing the names of extensions to enable for the created device. See the Extensions

section for further details.

• pEnabledFeatures is NULL or a pointer to a VkPhysicalDeviceFeatures structure that contains

boolean indicators of all the features to be enabled. Refer to the Features section for further

details.

Valid Usage

• The queueFamilyIndex member of any given element of pQueueCreateInfos must be unique

within pQueueCreateInfos

47

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO

• pNext must be NULL

• flags must be 0

• pQueueCreateInfos must be a pointer to an array of queueCreateInfoCount valid

VkDeviceQueueCreateInfo structures

• If enabledLayerCount is not 0, ppEnabledLayerNames must be a pointer to an array of

enabledLayerCount null-terminated UTF-8 strings

• If enabledExtensionCount is not 0, ppEnabledExtensionNames must be a pointer to an array of

enabledExtensionCount null-terminated UTF-8 strings

• If pEnabledFeatures is not NULL, pEnabledFeatures must be a pointer to a valid

VkPhysicalDeviceFeatures structure

• queueCreateInfoCount must be greater than 0

4.2.2. Device Use

The following is a high-level list of VkDevice uses along with references on where to find more

information:

• Creation of queues. See the Queues section below for further details.

• Creation and tracking of various synchronization constructs. See Synchronization and Cache

Control for further details.

• Allocating, freeing, and managing memory. See Memory Allocation and Resource Creation for

further details.

• Creation and destruction of command buffers and command buffer pools. See Command

Buffers for further details.

• Creation, destruction, and management of graphics state. See Pipelines and Resource

Descriptors, among others, for further details.

4.2.3. Lost Device

A logical device may become lost because of hardware errors, execution timeouts, power

management events and/or platform-specific events. This may cause pending and future command

execution to fail and cause hardware resources to be corrupted. When this happens, certain

commands will return VK_ERROR_DEVICE_LOST (see Error Codes for a list of such commands). After

any such event, the logical device is considered lost. It is not possible to reset the logical device to a

non-lost state, however the lost state is specific to a logical device (VkDevice), and the corresponding

physical device (VkPhysicalDevice) may be otherwise unaffected. In some cases, the physical device

may also be lost, and attempting to create a new logical device will fail, returning

VK_ERROR_DEVICE_LOST. This is usually indicative of a problem with the underlying hardware, or its

connection to the host. If the physical device has not been lost, and a new logical device is

successfully created from that physical device, it must be in the non-lost state.

48



Note

Whilst logical device loss may be recoverable, in the case of physical device loss, it

is unlikely that an application will be able to recover unless additional, unaffected

physical devices exist on the system. The error is largely informational and

intended only to inform the user that their hardware has probably developed a

fault or become physically disconnected, and should be investigated further. In

many cases, physical device loss may cause other more serious issues such as the

operating system crashing; in which case it may not be reported via the Vulkan

API.



Note

Undefined behavior caused by an application error may cause a device to become

lost. However, such undefined behavior may also cause unrecoverable damage to

the process, and it is then not guaranteed that the API objects, including the

VkPhysicalDevice or the VkInstance are still valid or that the error is recoverable.

When a device is lost, its child objects are not implicitly destroyed and their handles are still valid.

Those objects must still be destroyed before their parents or the device can be destroyed (see the

Object Lifetime section). The host address space corresponding to device memory mapped using

vkMapMemory is still valid, and host memory accesses to these mapped regions are still valid, but

the contents are undefined. It is still legal to call any API command on the device and child objects.

Once a device is lost, command execution may fail, and commands that return a VkResult may

return VK_ERROR_DEVICE_LOST. Commands that do not allow run-time errors must still operate

correctly for valid usage and, if applicable, return valid data.

Commands that wait indefinitely for device execution (namely vkDeviceWaitIdle, vkQueueWaitIdle,

vkWaitForFences with a maximum timeout, and vkGetQueryPoolResults with the

VK_QUERY_RESULT_WAIT_BIT bit set in flags) must return in finite time even in the case of a lost device,

and return either VK_SUCCESS or VK_ERROR_DEVICE_LOST. For any command that may return

VK_ERROR_DEVICE_LOST, for the purpose of determining whether a command buffer is in the pending

state, or whether resources are considered in-use by the device, a return value of

VK_ERROR_DEVICE_LOST is equivalent to VK_SUCCESS.

4.2.4. Device Destruction

To destroy a device, call:

void vkDestroyDevice(

 VkDevice device,

 const VkAllocationCallbacks* pAllocator);

• device is the logical device to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

To ensure that no work is active on the device, vkDeviceWaitIdle can be used to gate the

49

destruction of the device. Prior to destroying a device, an application is responsible for

destroying/freeing any Vulkan objects that were created using that device as the first parameter of

the corresponding vkCreate* or vkAllocate* command.



Note

The lifetime of each of these objects is bound by the lifetime of the VkDevice object.

Therefore, to avoid resource leaks, it is critical that an application explicitly free

all of these resources prior to calling vkDestroyDevice.

Valid Usage

• All child objects created on device must have been destroyed prior to destroying device

• If VkAllocationCallbacks were provided when device was created, a compatible set of

callbacks must be provided here

• If no VkAllocationCallbacks were provided when device was created, pAllocator must be
NULL

Valid Usage (Implicit)

• If device is not NULL, device must be a valid VkDevice handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

Host Synchronization

• Host access to device must be externally synchronized

4.3. Queues

4.3.1. Queue Family Properties

As discussed in the Physical Device Enumeration section above, the

vkGetPhysicalDeviceQueueFamilyProperties command is used to retrieve details about the queue

families and queues supported by a device.

Each index in the pQueueFamilyProperties array returned by

vkGetPhysicalDeviceQueueFamilyProperties describes a unique queue family on that physical

device. These indices are used when creating queues, and they correspond directly with the

queueFamilyIndex that is passed to the vkCreateDevice command via the VkDeviceQueueCreateInfo

structure as described in the Queue Creation section below.

Grouping of queue families within a physical device is implementation-dependent.

50



Note

The general expectation is that a physical device groups all queues of matching

capabilities into a single family. However, while implementations should do this, it

is possible that a physical device may return two separate queue families with the

same capabilities.

Once an application has identified a physical device with the queue(s) that it desires to use, it will

create those queues in conjunction with a logical device. This is described in the following section.

4.3.2. Queue Creation

Creating a logical device also creates the queues associated with that device. The queues to create

are described by a set of VkDeviceQueueCreateInfo structures that are passed to vkCreateDevice in

pQueueCreateInfos.

Queues are represented by VkQueue handles:

VK_DEFINE_HANDLE(VkQueue)

The VkDeviceQueueCreateInfo structure is defined as:

typedef struct VkDeviceQueueCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkDeviceQueueCreateFlags flags;

 uint32_t queueFamilyIndex;

 uint32_t queueCount;

 const float* pQueuePriorities;

} VkDeviceQueueCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• queueFamilyIndex is an unsigned integer indicating the index of the queue family to create on

this device. This index corresponds to the index of an element of the pQueueFamilyProperties

array that was returned by vkGetPhysicalDeviceQueueFamilyProperties.

• queueCount is an unsigned integer specifying the number of queues to create in the queue family

indicated by queueFamilyIndex.

• pQueuePriorities is an array of queueCount normalized floating point values, specifying priorities

of work that will be submitted to each created queue. See Queue Priority for more information.

51

Valid Usage

• queueFamilyIndex must be less than pQueueFamilyPropertyCount returned by
vkGetPhysicalDeviceQueueFamilyProperties

• queueCount must be less than or equal to the queueCount member of the

VkQueueFamilyProperties structure, as returned by

vkGetPhysicalDeviceQueueFamilyProperties in the pQueueFamilyProperties[

queueFamilyIndex]

• Each element of pQueuePriorities must be between 0.0 and 1.0 inclusive

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO

• pNext must be NULL

• flags must be 0

• pQueuePriorities must be a pointer to an array of queueCount float values

• queueCount must be greater than 0

To retrieve a handle to a VkQueue object, call:

void vkGetDeviceQueue(

 VkDevice device,

 uint32_t queueFamilyIndex,

 uint32_t queueIndex,

 VkQueue* pQueue);

• device is the logical device that owns the queue.

• queueFamilyIndex is the index of the queue family to which the queue belongs.

• queueIndex is the index within this queue family of the queue to retrieve.

• pQueue is a pointer to a VkQueue object that will be filled with the handle for the requested queue.

Valid Usage

• queueFamilyIndex must be one of the queue family indices specified when device was

created, via the VkDeviceQueueCreateInfo structure

• queueIndex must be less than the number of queues created for the specified queue family

index when device was created, via the queueCount member of the VkDeviceQueueCreateInfo

structure

52

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pQueue must be a pointer to a VkQueue handle

4.3.3. Queue Family Index

The queue family index is used in multiple places in Vulkan in order to tie operations to a specific

family of queues.

When retrieving a handle to the queue via vkGetDeviceQueue, the queue family index is used to

select which queue family to retrieve the VkQueue handle from as described in the previous section.

When creating a VkCommandPool object (see Command Pools), a queue family index is specified in the

VkCommandPoolCreateInfo structure. Command buffers from this pool can only be submitted on

queues corresponding to this queue family.

When creating VkImage (see Images) and VkBuffer (see Buffers) resources, a set of queue families is

included in the VkImageCreateInfo and VkBufferCreateInfo structures to specify the queue families

that can access the resource.

When inserting a VkBufferMemoryBarrier or VkImageMemoryBarrier (see Events) a source and

destination queue family index is specified to allow the ownership of a buffer or image to be

transferred from one queue family to another. See the Resource Sharing section for details.

4.3.4. Queue Priority

Each queue is assigned a priority, as set in the VkDeviceQueueCreateInfo structures when creating

the device. The priority of each queue is a normalized floating point value between 0.0 and 1.0,

which is then translated to a discrete priority level by the implementation. Higher values indicate a

higher priority, with 0.0 being the lowest priority and 1.0 being the highest.

Within the same device, queues with higher priority may be allotted more processing time than

queues with lower priority. The implementation makes no guarantees with regards to ordering or

scheduling among queues with the same priority, other than the constraints defined by any explicit

synchronization primitives. The implementation make no guarantees with regards to queues across

different devices.

An implementation may allow a higher-priority queue to starve a lower-priority queue on the same

VkDevice until the higher-priority queue has no further commands to execute. The relationship of

queue priorities must not cause queues on one VkDevice to starve queues on another VkDevice.

No specific guarantees are made about higher priority queues receiving more processing time or

better quality of service than lower priority queues.

4.3.5. Queue Submission

Work is submitted to a queue via queue submission commands such as vkQueueSubmit. Queue

53

submission commands define a set of queue operations to be executed by the underlying physical

device, including synchronization with semaphores and fences.

Submission commands take as parameters a target queue, zero or more batches of work, and an

optional fence to signal upon completion. Each batch consists of three distinct parts:

1. Zero or more semaphores to wait on before execution of the rest of the batch.

◦ If present, these describe a semaphore wait operation.

2. Zero or more work items to execute.

◦ If present, these describe a queue operation matching the work described.

3. Zero or more semaphores to signal upon completion of the work items.

◦ If present, these describe a semaphore signal operation.

If a fence is present in a queue submission, it describes a fence signal operation.

All work described by a queue submission command must be submitted to the queue before the

command returns.

Sparse Memory Binding

In Vulkan it is possible to sparsely bind memory to buffers and images as described in the Sparse

Resource chapter. Sparse memory binding is a queue operation. A queue whose flags include the

VK_QUEUE_SPARSE_BINDING_BIT must be able to support the mapping of a virtual address to a physical

address on the device. This causes an update to the page table mappings on the device. This update

must be synchronized on a queue to avoid corrupting page table mappings during execution of

graphics commands. By binding the sparse memory resources on queues, all commands that are

dependent on the updated bindings are synchronized to only execute after the binding is updated.

See the Synchronization and Cache Control chapter for how this synchronization is accomplished.

4.3.6. Queue Destruction

Queues are created along with a logical device during vkCreateDevice. All queues associated with a

logical device are destroyed when vkDestroyDevice is called on that device.

54

Chapter 5. Command Buffers

Command buffers are objects used to record commands which can be subsequently submitted to a

device queue for execution. There are two levels of command buffers - primary command buffers,

which can execute secondary command buffers, and which are submitted to queues, and secondary

command buffers, which can be executed by primary command buffers, and which are not directly

submitted to queues.

Command buffers are represented by VkCommandBuffer handles:

VK_DEFINE_HANDLE(VkCommandBuffer)

Recorded commands include commands to bind pipelines and descriptor sets to the command

buffer, commands to modify dynamic state, commands to draw (for graphics rendering),

commands to dispatch (for compute), commands to execute secondary command buffers (for

primary command buffers only), commands to copy buffers and images, and other commands.

Each command buffer manages state independently of other command buffers. There is no

inheritance of state across primary and secondary command buffers, or between secondary

command buffers. When a command buffer begins recording, all state in that command buffer is

undefined. When secondary command buffer(s) are recorded to execute on a primary command

buffer, the secondary command buffer inherits no state from the primary command buffer, and all

state of the primary command buffer is undefined after an execute secondary command buffer

command is recorded. There is one exception to this rule - if the primary command buffer is inside

a render pass instance, then the render pass and subpass state is not disturbed by executing

secondary command buffers. Whenever the state of a command buffer is undefined, the

application must set all relevant state on the command buffer before any state dependent

commands such as draws and dispatches are recorded, otherwise the behavior of executing that

command buffer is undefined.

Unless otherwise specified, and without explicit synchronization, the various commands submitted

to a queue via command buffers may execute in arbitrary order relative to each other, and/or

concurrently. Also, the memory side-effects of those commands may not be directly visible to other

commands without explicit memory dependencies. This is true within a command buffer, and

across command buffers submitted to a given queue. See the synchronization chapter for

information on implicit and explicit synchronization between commands.

5.1. Command Buffer Lifecycle

Each command buffer is always in one of the following states:

Initial

When a command buffer is first allocated is in the initial state. Some commands are able to reset

a command buffer, or a set of command buffers, back to this state from any of the executable,

recording or invalid state. Command buffers in the initial state can only be moved to the

recording state, or freed.

55

Recording

vkBeginCommandBuffer changes the state of a command buffer from the initial state to the

recording state. Once a command buffer is in the recording state, vkCmd* commands can be

used to record to the command buffer.

Executable

vkEndCommandBuffer ends the recording of a command buffer, and moves it from the

recording state to the executable state. Executable command buffers can be submitted, reset, or

recorded to another command buffer.

Pending

Queue submission of a command buffer changes the state of a command buffer from the

executable state to the pending state. Whilst in the pending state, applications must not attempt

to modify the command buffer in any way - the device may be processing the commands

recorded to it. Once execution of a command buffer completes, the command buffer reverts

back to the executable state. A synchronization command should be used to detect when this

occurs.

Invalid

Some operations, such as modifying or deleting a resource that was used in a command

recorded to a command buffer, will transition the state of a command buffer into the invalid

state. Command buffers in the invalid state can only be reset, moved to the recording state, or

freed.

Any given command that operates on a command buffer has its own requirements on what state a

command buffer must be in, which are detailed in the valid usage constraints for that command.

Resetting a command buffer is an operation that discards any previously recorded commands and

puts a command buffer in the initial state. Resetting occurs as a result of vkResetCommandBuffer

or vkResetCommandPool, or as part of vkBeginCommandBuffer (which additionally puts the

command buffer in the recording state).

Secondary command buffers can be recorded to a primary command buffer via

vkCmdExecuteCommands. This partially ties the lifecycle of the two command buffers together - if

the primary is submitted to a queue, both the primary and any secondaries recorded to it move to

the pending state. Once execution of the primary completes, so does any secondary recorded within

it, and once all executions of each command buffer complete, they move to the executable state. If a

secondary moves to any other state whilst it is recorded to another command buffer, the primary

moves to the invalid state. A primary moving to any other state does not affect the state of the

secondary. Resetting or freeing a primary command buffer removes the linkage to any secondary

command buffers that were recorded to it.

5.2. Command Pools

Command pools are opaque objects that command buffer memory is allocated from, and which

allow the implementation to amortize the cost of resource creation across multiple command

buffers. Command pools are externally synchronized, meaning that a command pool must not be

used concurrently in multiple threads. That includes use via recording commands on any

56

command buffers allocated from the pool, as well as operations that allocate, free, and reset

command buffers or the pool itself.

Command pools are represented by VkCommandPool handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkCommandPool)

To create a command pool, call:

VkResult vkCreateCommandPool(

 VkDevice device,

 const VkCommandPoolCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkCommandPool* pCommandPool);

• device is the logical device that creates the command pool.

• pCreateInfo contains information used to create the command pool.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pCommandPool points to a VkCommandPool handle in which the created pool is returned.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkCommandPoolCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• pCommandPool must be a pointer to a VkCommandPool handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkCommandPoolCreateInfo structure is defined as:

57

typedef struct VkCommandPoolCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkCommandPoolCreateFlags flags;

 uint32_t queueFamilyIndex;

} VkCommandPoolCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is a bitmask of VkCommandPoolCreateFlagBits indicating usage behavior for the pool and

command buffers allocated from it.

• queueFamilyIndex designates a queue family as described in section Queue Family Properties. All

command buffers allocated from this command pool must be submitted on queues from the

same queue family.

Valid Usage

• queueFamilyIndex must be the index of a queue family available in the calling command’s

device parameter

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO

• pNext must be NULL

• flags must be a valid combination of VkCommandPoolCreateFlagBits values

Bits which can be set in VkCommandPoolCreateInfo::flags to specify usage behavior for a

command pool are:

typedef enum VkCommandPoolCreateFlagBits {

 VK_COMMAND_POOL_CREATE_TRANSIENT_BIT = 0x00000001,

 VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT = 0x00000002,

} VkCommandPoolCreateFlagBits;

• VK_COMMAND_POOL_CREATE_TRANSIENT_BIT indicates that command buffers allocated from the pool

will be short-lived, meaning that they will be reset or freed in a relatively short timeframe. This

flag may be used by the implementation to control memory allocation behavior within the pool.

• VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT allows any command buffer allocated from a

pool to be individually reset to the initial state; either by calling vkResetCommandBuffer, or via

the implicit reset when calling vkBeginCommandBuffer. If this flag is not set on a pool, then

vkResetCommandBuffer must not be called for any command buffer allocated from that pool.

58

To reset a command pool, call:

VkResult vkResetCommandPool(

 VkDevice device,

 VkCommandPool commandPool,

 VkCommandPoolResetFlags flags);

• device is the logical device that owns the command pool.

• commandPool is the command pool to reset.

• flags is a bitmask of VkCommandPoolResetFlagBits controlling the reset operation.

Resetting a command pool recycles all of the resources from all of the command buffers allocated

from the command pool back to the command pool. All command buffers that have been allocated

from the command pool are put in the initial state.

Any primary command buffer allocated from another VkCommandPool that is in the recording or

executable state and has a secondary command buffer allocated from commandPool recorded into it,

becomes invalid.

Valid Usage

• All VkCommandBuffer objects allocated from commandPool must not be in the pending state

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• commandPool must be a valid VkCommandPool handle

• flags must be a valid combination of VkCommandPoolResetFlagBits values

• commandPool must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to commandPool must be externally synchronized

59

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

Bits which can be set in vkResetCommandPool::flags to control the reset operation are:

typedef enum VkCommandPoolResetFlagBits {

 VK_COMMAND_POOL_RESET_RELEASE_RESOURCES_BIT = 0x00000001,

} VkCommandPoolResetFlagBits;

• VK_COMMAND_POOL_RESET_RELEASE_RESOURCES_BIT specifies that resetting a command pool recycles

all of the resources from the command pool back to the system.

To destroy a command pool, call:

void vkDestroyCommandPool(

 VkDevice device,

 VkCommandPool commandPool,

 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the command pool.

• commandPool is the handle of the command pool to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

When a pool is destroyed, all command buffers allocated from the pool are freed.

Any primary command buffer allocated from another VkCommandPool that is in the recording or

executable state and has a secondary command buffer allocated from commandPool recorded into it,

becomes invalid.

Valid Usage

• All VkCommandBuffer objects allocated from commandPool must not be in the pending state.

• If VkAllocationCallbacks were provided when commandPool was created, a compatible set of

callbacks must be provided here

• If no VkAllocationCallbacks were provided when commandPool was created, pAllocator

must be NULL

60

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If commandPool is not VK_NULL_HANDLE, commandPool must be a valid VkCommandPool handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• If commandPool is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to commandPool must be externally synchronized

5.3. Command Buffer Allocation and Management

To allocate command buffers, call:

VkResult vkAllocateCommandBuffers(

 VkDevice device,

 const VkCommandBufferAllocateInfo* pAllocateInfo,

 VkCommandBuffer* pCommandBuffers);

• device is the logical device that owns the command pool.

• pAllocateInfo is a pointer to an instance of the VkCommandBufferAllocateInfo structure describing

parameters of the allocation.

• pCommandBuffers is a pointer to an array of VkCommandBuffer handles in which the resulting

command buffer objects are returned. The array must be at least the length specified by the

commandBufferCount member of pAllocateInfo. Each allocated command buffer begins in the

initial state.

When command buffers are first allocated, they are in the initial state.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pAllocateInfo must be a pointer to a valid VkCommandBufferAllocateInfo structure

• pCommandBuffers must be a pointer to an array of pAllocateInfo::commandBufferCount

VkCommandBuffer handles

61

Host Synchronization

• Host access to pAllocateInfo::commandPool must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkCommandBufferAllocateInfo structure is defined as:

typedef struct VkCommandBufferAllocateInfo {

 VkStructureType sType;

 const void* pNext;

 VkCommandPool commandPool;

 VkCommandBufferLevel level;

 uint32_t commandBufferCount;

} VkCommandBufferAllocateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• commandPool is the command pool from which the command buffers are allocated.

• level is an VkCommandBufferLevel value specifying the command buffer level.

• commandBufferCount is the number of command buffers to allocate from the pool.

Valid Usage

• commandBufferCount must be greater than 0

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO

• pNext must be NULL

• commandPool must be a valid VkCommandPool handle

• level must be a valid VkCommandBufferLevel value

Possible values of VkCommandBufferAllocateInfo::flags, specifying the command buffer level, are:

62

typedef enum VkCommandBufferLevel {

 VK_COMMAND_BUFFER_LEVEL_PRIMARY = 0,

 VK_COMMAND_BUFFER_LEVEL_SECONDARY = 1,

} VkCommandBufferLevel;

• VK_COMMAND_BUFFER_LEVEL_PRIMARY specifies a primary command buffer.

• VK_COMMAND_BUFFER_LEVEL_SECONDARY specifies a secondary command buffer.

To reset command buffers, call:

VkResult vkResetCommandBuffer(

 VkCommandBuffer commandBuffer,

 VkCommandBufferResetFlags flags);

• commandBuffer is the command buffer to reset. The command buffer can be in any state other

than pending, and is moved into the initial state.

• flags is a bitmask of VkCommandBufferResetFlagBits controlling the reset operation.

Any primary command buffer that is in the recording or executable state and has commandBuffer

recorded into it, becomes invalid.

Valid Usage

• commandBuffer must not be in the pending state

• commandBuffer must have been allocated from a pool that was created with the
VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• flags must be a valid combination of VkCommandBufferResetFlagBits values

Host Synchronization

• Host access to commandBuffer must be externally synchronized

63

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

Bits which can be set in vkResetCommandBuffer::flags to control the reset operation are:

typedef enum VkCommandBufferResetFlagBits {

 VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT = 0x00000001,

} VkCommandBufferResetFlagBits;

• VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT specifies that most or all memory resources

currently owned by the command buffer should be returned to the parent command pool. If

this flag is not set, then the command buffer may hold onto memory resources and reuse them

when recording commands. commandBuffer is moved to the initial state.

To free command buffers, call:

void vkFreeCommandBuffers(

 VkDevice device,

 VkCommandPool commandPool,

 uint32_t commandBufferCount,

 const VkCommandBuffer* pCommandBuffers);

• device is the logical device that owns the command pool.

• commandPool is the command pool from which the command buffers were allocated.

• commandBufferCount is the length of the pCommandBuffers array.

• pCommandBuffers is an array of handles of command buffers to free.

Any primary command buffer that is in the recording or executable state and has any element of

pCommandBuffers recorded into it, becomes invalid.

Valid Usage

• All elements of pCommandBuffers must not be in the pending state

• pCommandBuffers must be a pointer to an array of commandBufferCount VkCommandBuffer

handles, each element of which must either be a valid handle or NULL

64

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• commandPool must be a valid VkCommandPool handle

• commandBufferCount must be greater than 0

• commandPool must have been created, allocated, or retrieved from device

• Each element of pCommandBuffers that is a valid handle must have been created, allocated,

or retrieved from commandPool

Host Synchronization

• Host access to commandPool must be externally synchronized

• Host access to each member of pCommandBuffers must be externally synchronized

5.4. Command Buffer Recording

To begin recording a command buffer, call:

VkResult vkBeginCommandBuffer(

 VkCommandBuffer commandBuffer,

 const VkCommandBufferBeginInfo* pBeginInfo);

• commandBuffer is the handle of the command buffer which is to be put in the recording state.

• pBeginInfo is an instance of the VkCommandBufferBeginInfo structure, which defines additional

information about how the command buffer begins recording.

Valid Usage

• commandBuffer must not be in the recording or pending state.

• If commandBuffer was allocated from a VkCommandPool which did not have the

VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, commandBuffer must be in the

initial state.

• If commandBuffer is a secondary command buffer, the pInheritanceInfo member of

pBeginInfo must be a valid VkCommandBufferInheritanceInfo structure

• If commandBuffer is a secondary command buffer and either the occlusionQueryEnable

member of the pInheritanceInfo member of pBeginInfo is VK_FALSE, or the precise

occlusion queries feature is not enabled, the queryFlags member of the pInheritanceInfo

member pBeginInfo must not contain VK_QUERY_CONTROL_PRECISE_BIT

65

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• pBeginInfo must be a pointer to a valid VkCommandBufferBeginInfo structure

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkCommandBufferBeginInfo structure is defined as:

typedef struct VkCommandBufferBeginInfo {

 VkStructureType sType;

 const void* pNext;

 VkCommandBufferUsageFlags flags;

 const VkCommandBufferInheritanceInfo* pInheritanceInfo;

} VkCommandBufferBeginInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is a bitmask of VkCommandBufferUsageFlagBits specifying usage behavior for the

command buffer.

• pInheritanceInfo is a pointer to a VkCommandBufferInheritanceInfo structure, which is used if

commandBuffer is a secondary command buffer. If this is a primary command buffer, then this

value is ignored.

66

Valid Usage

• If flags contains VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT, the renderPass

member of pInheritanceInfo must be a valid VkRenderPass

• If flags contains VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT, the subpass member

of pInheritanceInfo must be a valid subpass index within the renderPass member of
pInheritanceInfo

• If flags contains VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT, the framebuffer

member of pInheritanceInfo must be either VK_NULL_HANDLE, or a valid VkFramebuffer

that is compatible with the renderPass member of pInheritanceInfo

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO

• pNext must be NULL

• flags must be a valid combination of VkCommandBufferUsageFlagBits values

Bits which can be set in VkCommandBufferBeginInfo::flags to specify usage behavior for a

command buffer are:

typedef enum VkCommandBufferUsageFlagBits {

 VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT = 0x00000001,

 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT = 0x00000002,

 VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT = 0x00000004,

} VkCommandBufferUsageFlagBits;

• VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT specifies that each recording of the command

buffer will only be submitted once, and the command buffer will be reset and recorded again

between each submission.

• VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT specifies that a secondary command buffer

is considered to be entirely inside a render pass. If this is a primary command buffer, then this

bit is ignored.

• VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT specifies that a command buffer can be

resubmitted to a queue while it is in the pending state, and recorded into multiple primary

command buffers.

If the command buffer is a secondary command buffer, then the VkCommandBufferInheritanceInfo

structure defines any state that will be inherited from the primary command buffer:

67

typedef struct VkCommandBufferInheritanceInfo {

 VkStructureType sType;

 const void* pNext;

 VkRenderPass renderPass;

 uint32_t subpass;

 VkFramebuffer framebuffer;

 VkBool32 occlusionQueryEnable;

 VkQueryControlFlags queryFlags;

 VkQueryPipelineStatisticFlags pipelineStatistics;

} VkCommandBufferInheritanceInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• renderPass is a VkRenderPass object defining which render passes the VkCommandBuffer will be

compatible with and can be executed within. If the VkCommandBuffer will not be executed within

a render pass instance, renderPass is ignored.

• subpass is the index of the subpass within the render pass instance that the VkCommandBuffer will

be executed within. If the VkCommandBuffer will not be executed within a render pass instance,

subpass is ignored.

• framebuffer optionally refers to the VkFramebuffer object that the VkCommandBuffer will be

rendering to if it is executed within a render pass instance. It can be VK_NULL_HANDLE if the

framebuffer is not known, or if the VkCommandBuffer will not be executed within a render pass

instance.



Note

Specifying the exact framebuffer that the secondary command buffer will be

executed with may result in better performance at command buffer execution

time.

• occlusionQueryEnable indicates whether the command buffer can be executed while an

occlusion query is active in the primary command buffer. If this is VK_TRUE, then this command

buffer can be executed whether the primary command buffer has an occlusion query active or

not. If this is VK_FALSE, then the primary command buffer must not have an occlusion query

active.

• queryFlags indicates the query flags that can be used by an active occlusion query in the

primary command buffer when this secondary command buffer is executed. If this value

includes the VK_QUERY_CONTROL_PRECISE_BIT bit, then the active query can return boolean results

or actual sample counts. If this bit is not set, then the active query must not use the

VK_QUERY_CONTROL_PRECISE_BIT bit.

• pipelineStatistics is a bitmask of VkQueryPipelineStatisticFlagBits specifying the set of

pipeline statistics that can be counted by an active query in the primary command buffer when

this secondary command buffer is executed. If this value includes a given bit, then this

command buffer can be executed whether the primary command buffer has a pipeline

statistics query active that includes this bit or not. If this value excludes a given bit, then the

active pipeline statistics query must not be from a query pool that counts that statistic.

68

Valid Usage

• If the inherited queries feature is not enabled, occlusionQueryEnable must be VK_FALSE

• If the inherited queries feature is enabled, queryFlags must be a valid combination of

VkQueryControlFlagBits values

• If the pipeline statistics queries feature is not enabled, pipelineStatistics must be 0

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO

• pNext must be NULL

• Both of framebuffer, and renderPass that are valid handles must have been created,

allocated, or retrieved from the same VkDevice

If VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT was not set when creating a command buffer, that

command buffer must not be submitted to a queue whilst it is already in the pending state. If

VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT is not set on a secondary command buffer, that

command buffer must not be used more than once in a given primary command buffer.



Note

On some implementations, not using the

VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT bit enables command buffers to be

patched in-place if needed, rather than creating a copy of the command buffer.

If a command buffer is in the invalid, or executable state, and the command buffer was allocated

from a command pool with the VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then

vkBeginCommandBuffer implicitly resets the command buffer, behaving as if vkResetCommandBuffer had

been called with VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. After the implicit reset,

commandBuffer is moved to the recording state.

Once recording starts, an application records a sequence of commands (vkCmd*) to set state in the

command buffer, draw, dispatch, and other commands.

To complete recording of a command buffer, call:

VkResult vkEndCommandBuffer(

 VkCommandBuffer commandBuffer);

• commandBuffer is the command buffer to complete recording.

If there was an error during recording, the application will be notified by an unsuccessful return

code returned by vkEndCommandBuffer. If the application wishes to further use the command buffer,

the command buffer must be reset. The command buffer must have been in the recording state,

and is moved to the executable state.

69

Valid Usage

• commandBuffer must be in the recording state.

• If commandBuffer is a primary command buffer, there must not be an active render pass

instance

• All queries made active during the recording of commandBuffer must have been made

inactive

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

When a command buffer is in the executable state, it can be submitted to a queue for execution.

5.5. Command Buffer Submission

To submit command buffers to a queue, call:

VkResult vkQueueSubmit(

 VkQueue queue,

 uint32_t submitCount,

 const VkSubmitInfo* pSubmits,

 VkFence fence);

• queue is the queue that the command buffers will be submitted to.

• submitCount is the number of elements in the pSubmits array.

70

• pSubmits is a pointer to an array of VkSubmitInfo structures, each specifying a command buffer

submission batch.

• fence is an optional handle to a fence to be signaled. If fence is not VK_NULL_HANDLE, it defines

a fence signal operation.


Note

Submission can be a high overhead operation, and applications should attempt to

batch work together into as few calls to vkQueueSubmit as possible.

vkQueueSubmit is a queue submission command, with each batch defined by an element of pSubmits

as an instance of the VkSubmitInfo structure. Batches begin execution in the order they appear in

pSubmits, but may complete out of order.

Fence and semaphore operations submitted with vkQueueSubmit have additional ordering

constraints compared to other submission commands, with dependencies involving previous and

subsequent queue operations. Information about these additional constraints can be found in the

semaphore and fence sections of the synchronization chapter.

Details on the interaction of pWaitDstStageMask with synchronization are described in the

semaphore wait operation section of the synchronization chapter.

The order that batches appear in pSubmits is used to determine submission order, and thus all the

implicit ordering guarantees that respect it. Other than these implicit ordering guarantees and any

explicit synchronization primitives, these batches may overlap or otherwise execute out of order.

If any command buffer submitted to this queue is in the executable state, it is moved to the pending

state. Once execution of all submissions of a command buffer complete, it moves from the pending

state, back to the executable state. If a command buffer was recorded with the

VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT flag, it instead moves back to the invalid state.

If vkQueueSubmit fails, it may return VK_ERROR_OUT_OF_HOST_MEMORY or VK_ERROR_OUT_OF_DEVICE_MEMORY.

If it does, the implementation must ensure that the state and contents of any resources or

synchronization primitives referenced by the submitted command buffers and any semaphores

referenced by pSubmits is unaffected by the call or its failure. If vkQueueSubmit fails in such a way

that the implementation can not make that guarantee, the implementation must return

VK_ERROR_DEVICE_LOST. See Lost Device.

71

Valid Usage

• If fence is not VK_NULL_HANDLE, fence must be unsignaled

• If fence is not VK_NULL_HANDLE, fence must not be associated with any other queue

command that has not yet completed execution on that queue

• Any calls to vkCmdSetEvent, vkCmdResetEvent or vkCmdWaitEvents that have been

recorded into any of the command buffer elements of the pCommandBuffers member of any

element of pSubmits, must not reference any VkEvent that is referenced by any of those

commands in a command buffer that has been submitted to another queue and is still in

the pending state.

• Any stage flag included in any element of the pWaitDstStageMask member of any element

of pSubmits must be a pipeline stage supported by one of the capabilities of queue, as

specified in the table of supported pipeline stages.

• Any given element of the pSignalSemaphores member of any element of pSubmits must be

unsignaled when the semaphore signal operation it defines is executed on the device

• When a semaphore unsignal operation defined by any element of the pWaitSemaphores

member of any element of pSubmits executes on queue, no other queue must be waiting on

the same semaphore.

• All elements of the pWaitSemaphores member of all elements of pSubmits must be

semaphores that are signaled, or have semaphore signal operations previously submitted

for execution.

• Any given element of the pCommandBuffers member of any element of pSubmits must be in

the pending or executable state.

• If any given element of the pCommandBuffers member of any element of pSubmits was not

recorded with the VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT, it must not be in the

pending state.

• Any secondary command buffers recorded into any given element of the pCommandBuffers

member of any element of pSubmits must be in the pending or executable state.

• If any secondary command buffers recorded into any given element of the

pCommandBuffers member of any element of pSubmits was not recorded with the

VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT, it must not be in the pending state.

• Any given element of the pCommandBuffers member of any element of pSubmits must have

been allocated from a VkCommandPool that was created for the same queue family queue

belongs to.

72

Valid Usage (Implicit)

• queue must be a valid VkQueue handle

• If submitCount is not 0, pSubmits must be a pointer to an array of submitCount valid

VkSubmitInfo structures

• If fence is not VK_NULL_HANDLE, fence must be a valid VkFence handle

• Both of fence, and queue that are valid handles must have been created, allocated, or

retrieved from the same VkDevice

Host Synchronization

• Host access to queue must be externally synchronized

• Host access to pSubmits[].pWaitSemaphores[] must be externally synchronized

• Host access to pSubmits[].pSignalSemaphores[] must be externally synchronized

• Host access to fence must be externally synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

- - Any -

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

The VkSubmitInfo structure is defined as:

73

typedef struct VkSubmitInfo {

 VkStructureType sType;

 const void* pNext;

 uint32_t waitSemaphoreCount;

 const VkSemaphore* pWaitSemaphores;

 const VkPipelineStageFlags* pWaitDstStageMask;

 uint32_t commandBufferCount;

 const VkCommandBuffer* pCommandBuffers;

 uint32_t signalSemaphoreCount;

 const VkSemaphore* pSignalSemaphores;

} VkSubmitInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• waitSemaphoreCount is the number of semaphores upon which to wait before executing the

command buffers for the batch.

• pWaitSemaphores is a pointer to an array of semaphores upon which to wait before the command

buffers for this batch begin execution. If semaphores to wait on are provided, they define a

semaphore wait operation.

• pWaitDstStageMask is a pointer to an array of pipeline stages at which each corresponding

semaphore wait will occur.

• commandBufferCount is the number of command buffers to execute in the batch.

• pCommandBuffers is a pointer to an array of command buffers to execute in the batch.

• signalSemaphoreCount is the number of semaphores to be signaled once the commands specified

in pCommandBuffers have completed execution.

• pSignalSemaphores is a pointer to an array of semaphores which will be signaled when the

command buffers for this batch have completed execution. If semaphores to be signaled are

provided, they define a semaphore signal operation.

The order that command buffers appear in pCommandBuffers is used to determine submission order,

and thus all the implicit ordering guarantees that respect it. Other than these implicit ordering

guarantees and any explicit synchronization primitives, these command buffers may overlap or

otherwise execute out of order.

74

Valid Usage

• Any given element of pCommandBuffers must not have been allocated with
VK_COMMAND_BUFFER_LEVEL_SECONDARY

• If the geometry shaders feature is not enabled, any given element of pWaitDstStageMask

must not contain VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• If the tessellation shaders feature is not enabled, any given element of pWaitDstStageMask

must not contain VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• Any given element of pWaitDstStageMask must not include VK_PIPELINE_STAGE_HOST_BIT.

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_SUBMIT_INFO

• pNext must be NULL

• If waitSemaphoreCount is not 0, pWaitSemaphores must be a pointer to an array of

waitSemaphoreCount valid VkSemaphore handles

• If waitSemaphoreCount is not 0, pWaitDstStageMask must be a pointer to an array of

waitSemaphoreCount valid combinations of VkPipelineStageFlagBits values

• Each element of pWaitDstStageMask must not be 0

• If commandBufferCount is not 0, pCommandBuffers must be a pointer to an array of

commandBufferCount valid VkCommandBuffer handles

• If signalSemaphoreCount is not 0, pSignalSemaphores must be a pointer to an array of

signalSemaphoreCount valid VkSemaphore handles

• Each of the elements of pCommandBuffers, the elements of pSignalSemaphores, and the

elements of pWaitSemaphores that are valid handles must have been created, allocated, or

retrieved from the same VkDevice

5.6. Queue Forward Progress

The application must ensure that command buffer submissions will be able to complete without

any subsequent operations by the application on any queue. After any call to vkQueueSubmit, for

every queued wait on a semaphore there must be a prior signal of that semaphore that will not be

consumed by a different wait on the semaphore.

Command buffers in the submission can include vkCmdWaitEvents commands that wait on events

that will not be signaled by earlier commands in the queue. Such events must be signaled by the

application using vkSetEvent, and the vkCmdWaitEvents commands that wait upon them must not be

inside a render pass instance. Implementations may have limits on how long the command buffer

will wait, in order to avoid interfering with progress of other clients of the device. If the event is not

signaled within these limits, results are undefined and may include device loss.

75

5.7. Secondary Command Buffer Execution

A secondary command buffer must not be directly submitted to a queue. Instead, secondary

command buffers are recorded to execute as part of a primary command buffer with the

command:

void vkCmdExecuteCommands(

 VkCommandBuffer commandBuffer,

 uint32_t commandBufferCount,

 const VkCommandBuffer* pCommandBuffers);

• commandBuffer is a handle to a primary command buffer that the secondary command buffers

are executed in.

• commandBufferCount is the length of the pCommandBuffers array.

• pCommandBuffers is an array of secondary command buffer handles, which are recorded to

execute in the primary command buffer in the order they are listed in the array.

If any element of pCommandBuffers was not recorded with the

VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT flag, and it was recorded into any other primary

command buffer which is currently in the executable or recording state, that primary command

buffer becomes invalid.

76

Valid Usage

• commandBuffer must have been allocated with a level of VK_COMMAND_BUFFER_LEVEL_PRIMARY

• Any given element of pCommandBuffers must have been allocated with a level of
VK_COMMAND_BUFFER_LEVEL_SECONDARY

• Any given element of pCommandBuffers must be in the pending or executable state.

• If any element of pCommandBuffers was not recorded with the

VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT flag, and it was recorded into any other

primary command buffer, that primary command buffer must not be in the pending state

• If any given element of pCommandBuffers was not recorded with the

VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT flag, it must not be in the pending state.

• If any given element of pCommandBuffers was not recorded with the

VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT flag, it must not have already been

recorded to commandBuffer.

• If any given element of pCommandBuffers was not recorded with the

VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT flag, it must not appear more than once in

pCommandBuffers.

• Any given element of pCommandBuffers must have been allocated from a VkCommandPool that

was created for the same queue family as the VkCommandPool from which commandBuffer

was allocated

• If vkCmdExecuteCommands is being called within a render pass instance, that render pass

instance must have been begun with the contents parameter of vkCmdBeginRenderPass set

to VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS

• If vkCmdExecuteCommands is being called within a render pass instance, any given element of

pCommandBuffers must have been recorded with the
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT

• If vkCmdExecuteCommands is being called within a render pass instance, any given element of

pCommandBuffers must have been recorded with VkCommandBufferInheritanceInfo::subpass

set to the index of the subpass which the given command buffer will be executed in

• If vkCmdExecuteCommands is being called within a render pass instance, the render passes

specified in the pname::pBeginInfo::pInheritanceInfo::renderPass members of the

vkBeginCommandBuffer commands used to begin recording each element of

pCommandBuffers must be compatible with the current render pass.

• If vkCmdExecuteCommands is being called within a render pass instance, and any given

element of pCommandBuffers was recorded with VkCommandBufferInheritanceInfo

::framebuffer not equal to VK_NULL_HANDLE, that VkFramebuffer must match the

VkFramebuffer used in the current render pass instance

• If vkCmdExecuteCommands is not being called within a render pass instance, any given

element of pCommandBuffers must not have been recorded with the
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT

• If the inherited queries feature is not enabled, commandBuffer must not have any queries

active

77

• If commandBuffer has a VK_QUERY_TYPE_OCCLUSION query active, then each element of

pCommandBuffers must have been recorded with VkCommandBufferInheritanceInfo

::occlusionQueryEnable set to VK_TRUE

• If commandBuffer has a VK_QUERY_TYPE_OCCLUSION query active, then each element of

pCommandBuffers must have been recorded with VkCommandBufferInheritanceInfo

::queryFlags having all bits set that are set for the query

• If commandBuffer has a VK_QUERY_TYPE_PIPELINE_STATISTICS query active, then each element

of pCommandBuffers must have been recorded with VkCommandBufferInheritanceInfo

::pipelineStatistics having all bits set that are set in the VkQueryPool the query uses

• Any given element of pCommandBuffers must not begin any query types that are active in
commandBuffer

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• pCommandBuffers must be a pointer to an array of commandBufferCount valid VkCommandBuffer

handles

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,

or compute operations

• commandBuffer must be a primary VkCommandBuffer

• commandBufferCount must be greater than 0

• Both of commandBuffer, and the elements of pCommandBuffers must have been created,

allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary Both Transfer

graphics

compute

78

Chapter 6. Synchronization and Cache

Control

Synchronization of access to resources is primarily the responsibility of the application in Vulkan.

The order of execution of commands with respect to the host and other commands on the device

has few implicit guarantees, and needs to be explicitly specified. Memory caches and other

optimizations are also explicitly managed, requiring that the flow of data through the system is

largely under application control.

Whilst some implicit guarantees exist between commands, four explicit synchronization primitives

are exposed by Vulkan:

Fences

Fences can be used to communicate to the host that execution of some task on the device has

completed.

Semaphores

Semaphores can be used to control resource access across multiple queues.

Events

Events provide a fine-grained synchronization primitive which can be signaled either within a

command buffer or by the host, and can be waited upon within a command buffer or queried

on the host.

Pipeline Barriers

Pipeline barriers also provide synchronization control within a command buffer, but at a single

point, rather than with separate signal and wait operations.

In addition to the base primitives provided here, Render Passes provide a useful synchronization

framework for most rendering tasks, built upon the concepts in this chapter. Many cases that would

otherwise need an application to use synchronization primitives in this chapter can be expressed

more efficiently as part of a render pass.

6.1. Execution and Memory Dependencies

An operation is an arbitrary amount of work to be executed on the host, a device, or an external

entity such as a presentation engine. Synchronization commands introduce explicit execution

dependencies, and memory dependencies between two sets of operations defined by the command’s

two synchronization scopes.

The synchronization scopes define which other operations a synchronization command is able to

create execution dependencies with. Any type of operation that is not in a synchronization

command’s synchronization scopes will not be included in the resulting dependency. For example,

for many synchronization commands, the synchronization scopes can be limited to just operations

executing in specific pipeline stages, which allows other pipeline stages to be excluded from a

dependency. Other scoping options are possible, depending on the particular command.

79

An execution dependency is a guarantee that for two sets of operations, the first set must happen-

before the second set. If an operation happens-before another operation, then the first operation

must complete before the second operation is initiated. More precisely:

• Let A and B be separate sets of operations.

• Let S be a synchronization command.

• Let AS and BS be the synchronization scopes of S.

• Let A' be the intersection of sets A and AS.

• Let B' be the intersection of sets B and BS.

• Submitting A, S and B for execution, in that order, will result in execution dependency E

between A' and B'.

• Execution dependency E guarantees that A' happens-before B'.

An execution dependency chain is a sequence of execution dependencies that form a happens-before

relation between the first dependency’s A' and the final dependency’s B'. For each consecutive pair

of execution dependencies, a chain exists if the intersection of BS in the first dependency and AS in

the second dependency is not an empty set. The formation of a single execution dependency from

an execution dependency chain can be described by substituting the following in the description of

execution dependencies:

• Let S be a set of synchronization commands that generate an execution dependency chain.

• Let AS be the first synchronization scope of the first command in S.

• Let BS be the second synchronization scope of the last command in S.



Note

An execution dependency is inherently also multiple execution dependencies - a

dependency exists between each subset of A' and each subset of B', and the same is

true for execution dependency chains. For example, a synchronization command

with multiple pipeline stages in its stage masks effectively generates one

dependency between each source stage and each destination stage. This can be

useful to think about when considering how execution chains are formed if they

do not involve all parts of a synchronization command’s dependency. Similarly,

any set of adjacent dependencies in an execution dependency chain can be

considered an execution dependency chain in its own right.

Execution dependencies alone are not sufficient to guarantee that values resulting from writes in

one set of operations can be read from another set of operations.

Two additional types of operation are used to control memory access. Availability operations cause

the values generated by specified memory write accesses to become available for future access. Any

available value remains available until a subsequent write to the same memory location occurs

(whether it is made available or not) or the memory is freed. Visibility operations cause any

available values to become visible to specified memory accesses.

A memory dependency is an execution dependency which includes availability and visibility

operations such that:

80

• The first set of operations happens-before the availability operation.

• The availability operation happens-before the visibility operation.

• The visibility operation happens-before the second set of operations.

Once written values are made visible to a particular type of memory access, they can be read or

written by that type of memory access. Most synchronization commands in Vulkan define a

memory dependency.

The specific memory accesses that are made available and visible are defined by the access scopes

of a memory dependency. Any type of access that is in a memory dependency’s first access scope

and occurs in A' is made available. Any type of access that is in a memory dependency’s second

access scope and occurs in B' has any available writes made visible to it. Any type of operation that

is not in a synchronization command’s access scopes will not be included in the resulting

dependency.

A memory dependency enforces availability and visibility of memory accesses and execution order

between two sets of operations. Adding to the description of execution dependency chains:

• Let a be the set of memory accesses performed by A'.

• Let b be the set of memory accesses performed by B'.

• Let aS be the first access scope of the first command in S.

• Let bS be the second access scope of the last command in S.

• Let a' be the intersection of sets a and aS.

• Let b' be the intersection of sets b and bS.

• Submitting A, S and B for execution, in that order, will result in a memory dependency m

between A' and B'.

• Memory dependency m guarantees that:

◦ Memory writes in a' are made available.

◦ Available memory writes, including those from a', are made visible to b'.



Note

Execution and memory dependencies are used to solve data hazards, i.e. to ensure

that read and write operations occur in a well-defined order. Write-after-read

hazards can be solved with just an execution dependency, but read-after-write and

write-after-write hazards need appropriate memory dependencies to be included

between them. If an application does not include dependencies to solve these

hazards, the results and execution orders of memory accesses are undefined.

6.1.1. Image Layout Transitions

Image subresources can be transitioned from one layout to another as part of a memory

dependency (e.g. by using an image memory barrier). When a layout transition is specified in a

memory dependency, it happens-after the availability operations in the memory dependency, and

happens-before the visibility operations. Image layout transitions may perform read and write

81

accesses on all memory bound to the image subresource range, so applications must ensure that all

memory writes have been made available before a layout transition is executed. Available memory

is automatically made visible to a layout transition, and writes performed by a layout transition are

automatically made available.

Layout transitions always apply to a particular image subresource range, and specify both an old

layout and new layout. If the old layout does not match the new layout, a transition occurs. The old

layout must match the current layout of the image subresource range, with one exception. The old

layout can always be specified as VK_IMAGE_LAYOUT_UNDEFINED, though doing so invalidates the

contents of the image subresource range.



Note

Setting the old layout to VK_IMAGE_LAYOUT_UNDEFINED implies that the contents of the

image subresource need not be preserved. Implementations may use this

information to avoid performing expensive data transition operations.



Note

Applications must ensure that layout transitions happen-after all operations

accessing the image with the old layout, and happen-before any operations that

will access the image with the new layout. Layout transitions are potentially

read/write operations, so not defining appropriate memory dependencies to

guarantee this will result in a data race.

Image layout transitions interact with memory aliasing.

6.1.2. Pipeline Stages

The work performed by an action command consists of multiple operations, which are performed

by a sequence of logically independent execution units known as pipeline stages. The exact pipeline

stages executed depend on the particular action command that is used, and current command

buffer state when the action command was recorded. Drawing commands, dispatching commands,

copy commands, and clear commands all execute in different sets of pipeline stages.

Execution of operations across pipeline stages must adhere to implicit ordering guarantees,

particularly including pipeline stage order. Otherwise, execution across pipeline stages may

overlap or execute out of order with regards to other stages, unless otherwise enforced by an

execution dependency.

Several of the synchronization commands include pipeline stage parameters, restricting the

synchronization scopes for that command to just those stages. This allows fine grained control over

the exact execution dependencies and accesses performed by action commands. Implementations

should use these pipeline stages to avoid unnecessary stalls or cache flushing.

Bits which can be set, specifying pipeline stages, are:

82

typedef enum VkPipelineStageFlagBits {

 VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT = 0x00000001,

 VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT = 0x00000002,

 VK_PIPELINE_STAGE_VERTEX_INPUT_BIT = 0x00000004,

 VK_PIPELINE_STAGE_VERTEX_SHADER_BIT = 0x00000008,

 VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT = 0x00000010,

 VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT = 0x00000020,

 VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT = 0x00000040,

 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT = 0x00000080,

 VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT = 0x00000100,

 VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT = 0x00000200,

 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT = 0x00000400,

 VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT = 0x00000800,

 VK_PIPELINE_STAGE_TRANSFER_BIT = 0x00001000,

 VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT = 0x00002000,

 VK_PIPELINE_STAGE_HOST_BIT = 0x00004000,

 VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT = 0x00008000,

 VK_PIPELINE_STAGE_ALL_COMMANDS_BIT = 0x00010000,

} VkPipelineStageFlagBits;

• VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT specifies the stage of the pipeline where any commands are

initially received by the queue.

• VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT specifies the stage of the pipeline where

Draw/DispatchIndirect data structures are consumed.

• VK_PIPELINE_STAGE_VERTEX_INPUT_BIT specifies the stage of the pipeline where vertex and index

buffers are consumed.

• VK_PIPELINE_STAGE_VERTEX_SHADER_BIT specifies the vertex shader stage.

• VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT specifies the tessellation control shader

stage.

• VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT specifies the tessellation evaluation

shader stage.

• VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT specifies the geometry shader stage.

• VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT specifies the fragment shader stage.

• VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT specifies the stage of the pipeline where early

fragment tests (depth and stencil tests before fragment shading) are performed. This stage also

includes subpass load operations for framebuffer attachments with a depth/stencil format.

• VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT specifies the stage of the pipeline where late

fragment tests (depth and stencil tests after fragment shading) are performed. This stage also

includes subpass store operations for framebuffer attachments with a depth/stencil format.

• VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT specifies the stage of the pipeline after blending

where the final color values are output from the pipeline. This stage also includes subpass load

and store operations and multisample resolve operations for framebuffer attachments with a

color format.

83

• VK_PIPELINE_STAGE_TRANSFER_BIT specifies the execution of copy commands. This includes the

operations resulting from all copy commands, clear commands (with the exception of

vkCmdClearAttachments), and vkCmdCopyQueryPoolResults.

• VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT specifies the execution of a compute shader.

• VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT specifies the final stage in the pipeline where operations

generated by all commands complete execution.

• VK_PIPELINE_STAGE_HOST_BIT specifies a pseudo-stage indicating execution on the host of

reads/writes of device memory. This stage is not invoked by any commands recorded in a

command buffer.

• VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT specifies the execution of all graphics pipeline stages, and is

equivalent to the logical OR of:

◦ VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT

◦ VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT

◦ VK_PIPELINE_STAGE_VERTEX_INPUT_BIT

◦ VK_PIPELINE_STAGE_VERTEX_SHADER_BIT

◦ VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT

◦ VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

◦ VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

◦ VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT

◦ VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT

◦ VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT

◦ VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT

◦ VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT

• VK_PIPELINE_STAGE_ALL_COMMANDS_BIT is equivalent to the logical OR of every other pipeline stage

flag that is supported on the queue it is used with.



Note

An execution dependency with only VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT in the

destination stage mask will only prevent that stage from executing in subsequently

submitted commands. As this stage does not perform any actual execution, this is

not observable - in effect, it does not delay processing of subsequent commands.

Similarly an execution dependency with only VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT

in the source stage mask will effectively not wait for any prior commands to

complete.

When defining a memory dependency, using only

VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT or VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT would

never make any accesses available and/or visible because these stages do not

access memory.

VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT and VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT are

useful for accomplishing layout transitions and queue ownership operations when

the required execution dependency is satisfied by other means - for example,

semaphore operations between queues.

84

If a synchronization command includes a source stage mask, its first synchronization scope only

includes execution of the pipeline stages specified in that mask, as well as any logically earlier

stages. If a synchronization command includes a destination stage mask, its second synchronization

scope only includes execution of the pipeline stages specified in that mask, as well as any logically

later stages.

Access scopes are affected in a similar way. If a synchronization command includes a source stage

mask, its first access scope only includes memory access performed by pipeline stages specified in

that mask. If a synchronization command includes a destination stage mask, its second access scope

only includes memory access performed by pipeline stages specified in that mask.



Note

Implementations may not support synchronization at every pipeline stage for

every synchronization operation. If a pipeline stage that an implementation does

not support synchronization for appears in a source stage mask, then it may

substitute that stage for any logically later stage. If a pipeline stage that an

implementation does not support synchronization for appears in a destination

stage mask, then it may substitute that stage for any logically earlier stage.

For example, if an implementation is unable to signal an event immediately after

vertex shader execution is complete, it may instead signal the event after color

attachment output has completed.

If an implementation makes such a substitution, it must not affect the semantics of

execution or memory dependencies or image and buffer memory barriers.

Certain pipeline stages are only available on queues that support a particular set of operations. The

following table lists, for each pipeline stage flag, which queue capability flag must be supported by

the queue. When multiple flags are enumerated in the second column of the table, it means that the

pipeline stage is supported on the queue if it supports any of the listed capability flags. For further

details on queue capabilities see Physical Device Enumeration and Queues.

Table 3. Supported pipeline stage flags

Pipeline stage flag Required queue capability flag

VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT None required

VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT

VK_PIPELINE_STAGE_VERTEX_INPUT_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_VERTEX_SHADER_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT VK_QUEUE_GRAPHICS_BIT

85

Pipeline stage flag Required queue capability flag

VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT VK_QUEUE_COMPUTE_BIT

VK_PIPELINE_STAGE_TRANSFER_BIT VK_QUEUE_GRAPHICS_BIT,

VK_QUEUE_COMPUTE_BIT or
VK_QUEUE_TRANSFER_BIT

VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT None required

VK_PIPELINE_STAGE_HOST_BIT None required

VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_ALL_COMMANDS_BIT None required

Pipeline stages that execute as a result of a command logically complete execution in a specific

order, such that completion of a logically later pipeline stage must not happen-before completion of

a logically earlier stage. This means that including any given stage in the source stage mask for a

particular synchronization command also implies that any logically earlier stages are included in

AS for that command.

Similarly, initiation of a logically earlier pipeline stage must not happen-after initiation of a

logically later pipeline stage. Including any given stage in the destination stage mask for a

particular synchronization command also implies that any logically later stages are included in BS

for that command.


Note

Logically earlier/later stages are not included when defining the access scopes of a

memory barrier.

The order of pipeline stages depends on the particular pipeline; graphics, compute, transfer or host.

For the graphics pipeline, the following stages occur in this order:

• VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT

• VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT

• VK_PIPELINE_STAGE_VERTEX_INPUT_BIT

• VK_PIPELINE_STAGE_VERTEX_SHADER_BIT

• VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT

• VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT

• VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT

• VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT

• VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT

• VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT

For the compute pipeline, the following stages occur in this order:

• VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT

• VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT

86

• VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT

• VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT

For the transfer pipeline, the following stages occur in this order:

• VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT

• VK_PIPELINE_STAGE_TRANSFER_BIT

• VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT

For host operations, only one pipeline stage occurs, so no order is guaranteed:

• VK_PIPELINE_STAGE_HOST_BIT

6.1.3. Access Types

Memory in Vulkan can be accessed from within shader invocations and via some fixed-function

stages of the pipeline. The access type is a function of the descriptor type used, or how a fixed-

function stage accesses memory. Each access type corresponds to a bit flag in VkAccessFlagBits.

Some synchronization commands take sets of access types as parameters to define the access

scopes of a memory dependency. If a synchronization command includes a source access mask, its

first access scope only includes accesses via the access types specified in that mask. Similarly, if a

synchronization command includes a destination access mask, its second access scope only

includes accesses via the access types specified in that mask.

Access types that can be set in an access mask include:

typedef enum VkAccessFlagBits {

 VK_ACCESS_INDIRECT_COMMAND_READ_BIT = 0x00000001,

 VK_ACCESS_INDEX_READ_BIT = 0x00000002,

 VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT = 0x00000004,

 VK_ACCESS_UNIFORM_READ_BIT = 0x00000008,

 VK_ACCESS_INPUT_ATTACHMENT_READ_BIT = 0x00000010,

 VK_ACCESS_SHADER_READ_BIT = 0x00000020,

 VK_ACCESS_SHADER_WRITE_BIT = 0x00000040,

 VK_ACCESS_COLOR_ATTACHMENT_READ_BIT = 0x00000080,

 VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT = 0x00000100,

 VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT = 0x00000200,

 VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT = 0x00000400,

 VK_ACCESS_TRANSFER_READ_BIT = 0x00000800,

 VK_ACCESS_TRANSFER_WRITE_BIT = 0x00001000,

 VK_ACCESS_HOST_READ_BIT = 0x00002000,

 VK_ACCESS_HOST_WRITE_BIT = 0x00004000,

 VK_ACCESS_MEMORY_READ_BIT = 0x00008000,

 VK_ACCESS_MEMORY_WRITE_BIT = 0x00010000,

} VkAccessFlagBits;

• VK_ACCESS_INDIRECT_COMMAND_READ_BIT specifies read access to an indirect command structure

read as part of an indirect drawing or dispatch command.

87

• VK_ACCESS_INDEX_READ_BIT specifies read access to an index buffer as part of an indexed drawing

command, bound by vkCmdBindIndexBuffer.

• VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT specifies read access to a vertex buffer as part of a

drawing command, bound by vkCmdBindVertexBuffers.

• VK_ACCESS_UNIFORM_READ_BIT specifies read access to a uniform buffer.

• VK_ACCESS_INPUT_ATTACHMENT_READ_BIT specifies read access to an input attachment within a

renderpass during fragment shading.

• VK_ACCESS_SHADER_READ_BIT specifies read access to a storage buffer, uniform texel buffer, storage

texel buffer, sampled image, or storage image.

• VK_ACCESS_SHADER_WRITE_BIT specifies write access to a storage buffer, storage texel buffer, or

storage image.

• VK_ACCESS_COLOR_ATTACHMENT_READ_BIT specifies read access to a color attachment, such as via

blending, logic operations, or via certain subpass load operations.

• VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT specifies write access to a color or resolve attachment

during a render pass or via certain subpass load and store operations.

• VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT specifies read access to a depth/stencil

attachment, via depth or stencil operations or via certain subpass load operations.

• VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT specifies write access to a depth/stencil

attachment, via depth or stencil operations or via certain subpass load and store operations.

• VK_ACCESS_TRANSFER_READ_BIT specifies read access to an image or buffer in a copy operation.

• VK_ACCESS_TRANSFER_WRITE_BIT specifies write access to an image or buffer in a clear or copy

operation.

• VK_ACCESS_HOST_READ_BIT specifies read access by a host operation. Accesses of this type are not

performed through a resource, but directly on memory.

• VK_ACCESS_HOST_WRITE_BIT specifies write access by a host operation. Accesses of this type are not

performed through a resource, but directly on memory.

• VK_ACCESS_MEMORY_READ_BIT specifies read access via non-specific entities. These entities include

the Vulkan device and host, but may also include entities external to the Vulkan device or

otherwise not part of the core Vulkan pipeline. When included in a destination access mask,

makes all available writes visible to all future read accesses on entities known to the Vulkan

device.

• VK_ACCESS_MEMORY_WRITE_BIT specifies write access via non-specific entities. These entities include

the Vulkan device and host, but may also include entities external to the Vulkan device or

otherwise not part of the core Vulkan pipeline. When included in a source access mask, all

writes that are performed by entities known to the Vulkan device are made available. When

included in a destination access mask, makes all available writes visible to all future write

accesses on entities known to the Vulkan device.

Certain access types are only performed by a subset of pipeline stages. Any synchronization

command that takes both stage masks and access masks uses both to define the access scopes - only

the specified access types performed by the specified stages are included in the access scope. An

application must not specify an access flag in a synchronization command if it does not include a

88

pipeline stage in the corresponding stage mask that is able to perform accesses of that type. The

following table lists, for each access flag, which pipeline stages can perform that type of access.

Table 4. Supported access types

Access flag Supported pipeline stages

VK_ACCESS_INDIRECT_COMMAND_READ_BIT VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT

VK_ACCESS_INDEX_READ_BIT VK_PIPELINE_STAGE_VERTEX_INPUT_BIT

VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT VK_PIPELINE_STAGE_VERTEX_INPUT_BIT

VK_ACCESS_UNIFORM_READ_BIT VK_PIPELINE_STAGE_VERTEX_SHADER_BIT,
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_

BIT,
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHAD

ER_BIT, VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT,

VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, or
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT

VK_ACCESS_INPUT_ATTACHMENT_READ_BIT VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT

VK_ACCESS_SHADER_READ_BIT VK_PIPELINE_STAGE_VERTEX_SHADER_BIT,
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_

BIT,
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHAD

ER_BIT, VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT,

VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, or
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT

VK_ACCESS_SHADER_WRITE_BIT VK_PIPELINE_STAGE_VERTEX_SHADER_BIT,
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_

BIT,
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHAD

ER_BIT, VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT,

VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, or
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT

VK_ACCESS_COLOR_ATTACHMENT_READ_BIT VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT

VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT

VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT, or
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT

VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT, or
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT

VK_ACCESS_TRANSFER_READ_BIT VK_PIPELINE_STAGE_TRANSFER_BIT

VK_ACCESS_TRANSFER_WRITE_BIT VK_PIPELINE_STAGE_TRANSFER_BIT

VK_ACCESS_HOST_READ_BIT VK_PIPELINE_STAGE_HOST_BIT

VK_ACCESS_HOST_WRITE_BIT VK_PIPELINE_STAGE_HOST_BIT

VK_ACCESS_MEMORY_READ_BIT N/A

VK_ACCESS_MEMORY_WRITE_BIT N/A

If a memory object does not have the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT property, then

vkFlushMappedMemoryRanges must be called in order to guarantee that writes to the memory

object from the host are made visible to the VK_ACCESS_HOST_WRITE_BIT access type, where it can be

further made available to the device by synchronization commands. Similarly,

vkInvalidateMappedMemoryRanges must be called to guarantee that writes which are visible to

the VK_ACCESS_HOST_READ_BIT access type are made visible to host operations.

89

If the memory object does have the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT property flag, writes to

the memory object from the host are automatically made visible to the VK_ACCESS_HOST_WRITE_BIT

access type. Similarly, writes made visible to the VK_ACCESS_HOST_READ_BIT access type are

automatically made visible to the host.



Note

The vkQueueSubmit command automatically guarantees that host writes flushed

to VK_ACCESS_HOST_WRITE_BIT are made available if they were flushed before the

command executed, so in most cases an explicit memory barrier is not needed for

this case. In the few circumstances where a submit does not occur between the

host write and the device read access, writes can be made available by using an

explicit memory barrier.

6.1.4. Framebuffer Region Dependencies

Pipeline stages that operate on, or with respect to, the framebuffer are collectively the framebuffer-

space pipeline stages. These stages are:

• VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT

• VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT

• VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT

• VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT

For these pipeline stages, an execution or memory dependency from the first set of operations to

the second set can either be a single framebuffer-global dependency, or split into multiple

framebuffer-local dependencies. A dependency with non-framebuffer-space pipeline stages is

neither framebuffer-global nor framebuffer-local.

A framebuffer region is a set of sample (x, y, layer, sample) coordinates that is a subset of the entire

framebuffer.

Both synchronization scopes of a framebuffer-local dependency include only operations on the

same single framebuffer region. No ordering guarantees are made between framebuffer regions for

a framebuffer-local dependency.

Both synchronization scopes of a framebuffer-global dependency include operations on all

framebuffer-regions.



Note

Since fragment invocations are not specified to run in any particular groupings,

the size of a framebuffer region is implementation-dependent, not known to the

application, and must be assumed to be no larger than a single sample.

If a synchronization command includes a dependencyFlags parameter, and specifies the

VK_DEPENDENCY_BY_REGION_BIT flag, then it defines framebuffer-local dependencies for the

framebuffer-space pipeline stages in that synchronization command, for all framebuffer regions. If

no dependencyFlags parameter is included, or the VK_DEPENDENCY_BY_REGION_BIT flag is not specified,

then a framebuffer-global dependency is specified for those stages. The

90

VK_DEPENDENCY_BY_REGION_BIT flag does not affect the dependencies between non-framebuffer-space

pipeline stages, nor does it affect the dependencies between framebuffer-space and non-

framebuffer-space pipeline stages.



Note

Framebuffer-local dependencies are more optimal for most architectures;

particularly tile-based architectures - which can keep framebuffer-regions entirely

in on-chip registers and thus avoid external bandwidth across such a dependency.

Including a framebuffer-global dependency in your rendering will usually force all

implementations to flush data to memory, or to a higher level cache, breaking any

potential locality optimizations.

6.2. Implicit Synchronization Guarantees

A small number of implicit ordering guarantees are provided by Vulkan, ensuring that the order in

which commands are submitted is meaningful, and avoiding unnecessary complexity in common

operations.

Submission order is a fundamental ordering in Vulkan, giving meaning to the order in which action

and synchronization commands are recorded and submitted to a single queue. Explicit and implicit

ordering guarantees between commands in Vulkan all work on the premise that this ordering is

meaningful.

Submission order for any given set of commands is based on the order in which they were

recorded to command buffers and then submitted. This order is determined as follows:

1. The initial order is determined by the order in which vkQueueSubmit commands are executed

on the host, for a single queue, from first to last.

2. The order in which VkSubmitInfo structures are specified in the pSubmits parameter of

vkQueueSubmit, from lowest index to highest.

3. The order in which command buffers are specified in the pCommandBuffers member of

VkSubmitInfo, from lowest index to highest.

4. The order in which commands were recorded to a command buffer on the host, from first to

last:

◦ For commands recorded outside a render pass, this includes all other commands recorded

outside a renderpass, including vkCmdBeginRenderPass and vkCmdEndRenderPass

commands; it does not directly include commands inside a render pass.

◦ For commands recorded inside a render pass, this includes all other commands recorded

inside the same subpass, including the vkCmdBeginRenderPass and vkCmdEndRenderPass

commands that delimit the same renderpass instance; it does not include commands

recorded to other subpasses.

Action and synchronization commands recorded to a command buffer execute the

VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT pipeline stage in submission order - forming an implicit

execution dependency between this stage in each command.

91

State commands do not execute any operations on the device, instead they set the state of the

command buffer when they execute on the host, in the order that they are recorded. Action

commands consume the current state of the command buffer when they are recorded, and will

execute state changes on the device as required to match the recorded state.

Query commands, the order of primitives passing through the graphics pipeline and image layout

transitions as part of an image memory barrier provide additional guarantees based on submission

order.

Execution of pipeline stages within a given command also has a loose ordering, dependent only on

a single command.

6.3. Fences

Fences are a synchronization primitive that can be used to insert a dependency from a queue to the

host. Fences have two states - signaled and unsignaled. A fence can be signaled as part of the

execution of a queue submission command. Fences can be unsignaled on the host with

vkResetFences. Fences can be waited on by the host with the vkWaitForFences command, and the

current state can be queried with vkGetFenceStatus.

Fences are represented by VkFence handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkFence)

To create a fence, call:

VkResult vkCreateFence(

 VkDevice device,

 const VkFenceCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkFence* pFence);

• device is the logical device that creates the fence.

• pCreateInfo is a pointer to an instance of the VkFenceCreateInfo structure which contains

information about how the fence is to be created.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pFence points to a handle in which the resulting fence object is returned.

92

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkFenceCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• pFence must be a pointer to a VkFence handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkFenceCreateInfo structure is defined as:

typedef struct VkFenceCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkFenceCreateFlags flags;

} VkFenceCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is a bitmask of VkFenceCreateFlagBits specifying the initial state and behavior of the

fence.

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_FENCE_CREATE_INFO

• pNext must be NULL

• flags must be a valid combination of VkFenceCreateFlagBits values

typedef enum VkFenceCreateFlagBits {

 VK_FENCE_CREATE_SIGNALED_BIT = 0x00000001,

} VkFenceCreateFlagBits;

• VK_FENCE_CREATE_SIGNALED_BIT specifies that the fence object is created in the signaled state.

93

Otherwise, it is created in the unsignaled state.

To destroy a fence, call:

void vkDestroyFence(

 VkDevice device,

 VkFence fence,

 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the fence.

• fence is the handle of the fence to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• All queue submission commands that refer to fence must have completed execution

• If VkAllocationCallbacks were provided when fence was created, a compatible set of

callbacks must be provided here

• If no VkAllocationCallbacks were provided when fence was created, pAllocator must be
NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If fence is not VK_NULL_HANDLE, fence must be a valid VkFence handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• If fence is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to fence must be externally synchronized

To query the status of a fence from the host, call:

VkResult vkGetFenceStatus(

 VkDevice device,

 VkFence fence);

• device is the logical device that owns the fence.

• fence is the handle of the fence to query.

94

Upon success, vkGetFenceStatus returns the status of the fence object, with the following return

codes:

Table 5. Fence Object Status Codes

Status Meaning

VK_SUCCESS The fence specified by fence is

signaled.

VK_NOT_READY The fence specified by fence is

unsignaled.

VK_DEVICE_LOST The device has been lost. See Lost

Device.

If a queue submission command is pending execution, then the value returned by this command

may immediately be out of date.

If the device has been lost (see Lost Device), vkGetFenceStatus may return any of the above status

codes. If the device has been lost and vkGetFenceStatus is called repeatedly, it will eventually return

either VK_SUCCESS or VK_DEVICE_LOST.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• fence must be a valid VkFence handle

• fence must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

• VK_NOT_READY

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

To set the state of fences to unsignaled from the host, call:

VkResult vkResetFences(

 VkDevice device,

 uint32_t fenceCount,

 const VkFence* pFences);

• device is the logical device that owns the fences.

95

• fenceCount is the number of fences to reset.

• pFences is a pointer to an array of fence handles to reset.

When vkResetFences is executed on the host, it defines a fence unsignal operation for each fence,

which resets the fence to the unsignaled state.

If any member of pFences is already in the unsignaled state when vkResetFences is executed, then

vkResetFences has no effect on that fence.

Valid Usage

• Any given element of pFences must not currently be associated with any queue command

that has not yet completed execution on that queue

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pFences must be a pointer to an array of fenceCount valid VkFence handles

• fenceCount must be greater than 0

• Each element of pFences must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to each member of pFences must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

When a fence is submitted to a queue as part of a queue submission command, it defines a memory

dependency on the batches that were submitted as part of that command, and defines a fence signal

operation which sets the fence to the signaled state.

The first synchronization scope includes every batch submitted in the same queue submission

command. Fence signal operations that are defined by vkQueueSubmit additionally include in the

first synchronization scope all previous queue submissions to the same queue via vkQueueSubmit.

The second synchronization scope only includes the fence signal operation.

96

The first access scope includes all memory access performed by the device.

The second access scope is empty.

To wait for one or more fences to enter the signaled state on the host, call:

VkResult vkWaitForFences(

 VkDevice device,

 uint32_t fenceCount,

 const VkFence* pFences,

 VkBool32 waitAll,

 uint64_t timeout);

• device is the logical device that owns the fences.

• fenceCount is the number of fences to wait on.

• pFences is a pointer to an array of fenceCount fence handles.

• waitAll is the condition that must be satisfied to successfully unblock the wait. If waitAll is

VK_TRUE, then the condition is that all fences in pFences are signaled. Otherwise, the condition is

that at least one fence in pFences is signaled.

• timeout is the timeout period in units of nanoseconds. timeout is adjusted to the closest value

allowed by the implementation-dependent timeout accuracy, which may be substantially longer

than one nanosecond, and may be longer than the requested period.

If the condition is satisfied when vkWaitForFences is called, then vkWaitForFences returns

immediately. If the condition is not satisfied at the time vkWaitForFences is called, then

vkWaitForFences will block and wait up to timeout nanoseconds for the condition to become

satisfied.

If timeout is zero, then vkWaitForFences does not wait, but simply returns the current state of the

fences. VK_TIMEOUT will be returned in this case if the condition is not satisfied, even though no

actual wait was performed.

If the specified timeout period expires before the condition is satisfied, vkWaitForFences returns

VK_TIMEOUT. If the condition is satisfied before timeout nanoseconds has expired, vkWaitForFences

returns VK_SUCCESS.

If device loss occurs (see Lost Device) before the timeout has expired, vkWaitForFences must return

in finite time with either VK_SUCCESS or VK_DEVICE_LOST.



Note

While we guarantee that vkWaitForFences must return in finite time, no guarantees

are made that it returns immediately upon device loss. However, the client can

reasonably expect that the delay will be on the order of seconds and that calling

vkWaitForFences will not result in a permanently (or seemingly permanently) dead

process.

97

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pFences must be a pointer to an array of fenceCount valid VkFence handles

• fenceCount must be greater than 0

• Each element of pFences must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

• VK_TIMEOUT

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

An execution dependency is defined by waiting for a fence to become signaled, either via

vkWaitForFences or by polling on vkGetFenceStatus.

The first synchronization scope includes only the fence signal operation.

The second synchronization scope includes the host operations of vkWaitForFences or

vkGetFenceStatus indicating that the fence has become signaled.



Note

Signaling a fence and waiting on the host does not guarantee that the results of

memory accesses will be visible to the host, as the access scope of a memory

dependency defined by a fence only includes device access. A memory barrier or

other memory dependency must be used to guarantee this. See the description of

host access types for more information.

6.4. Semaphores

Semaphores are a synchronization primitive that can be used to insert a dependency between

batches submitted to queues. Semaphores have two states - signaled and unsignaled. The state of a

semaphore can be signaled after execution of a batch of commands is completed. A batch can wait

for a semaphore to become signaled before it begins execution, and the semaphore is also

unsignaled before the batch begins execution.

Semaphores are represented by VkSemaphore handles:

98

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkSemaphore)

To create a semaphore, call:

VkResult vkCreateSemaphore(

 VkDevice device,

 const VkSemaphoreCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkSemaphore* pSemaphore);

• device is the logical device that creates the semaphore.

• pCreateInfo is a pointer to an instance of the VkSemaphoreCreateInfo structure which contains

information about how the semaphore is to be created.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pSemaphore points to a handle in which the resulting semaphore object is returned.

When created, the semaphore is in the unsignaled state.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkSemaphoreCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• pSemaphore must be a pointer to a VkSemaphore handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkSemaphoreCreateInfo structure is defined as:

99

typedef struct VkSemaphoreCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkSemaphoreCreateFlags flags;

} VkSemaphoreCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO

• pNext must be NULL

• flags must be 0

To destroy a semaphore, call:

void vkDestroySemaphore(

 VkDevice device,

 VkSemaphore semaphore,

 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the semaphore.

• semaphore is the handle of the semaphore to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• All submitted batches that refer to semaphore must have completed execution

• If VkAllocationCallbacks were provided when semaphore was created, a compatible set of

callbacks must be provided here

• If no VkAllocationCallbacks were provided when semaphore was created, pAllocator must

be NULL

100

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If semaphore is not VK_NULL_HANDLE, semaphore must be a valid VkSemaphore handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• If semaphore is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to semaphore must be externally synchronized

6.4.1. Semaphore Signaling

When a batch is submitted to a queue via a queue submission, and it includes semaphores to be

signaled, it defines a memory dependency on the batch, and defines semaphore signal operations

which set the semaphores to the signaled state.

The first synchronization scope includes every command submitted in the same batch. Semaphore

signal operations that are defined by vkQueueSubmit additionally include all batches previously

submitted to the same queue via vkQueueSubmit, including batches that are submitted in the same

queue submission command, but at a lower index within the array of batches.

The second synchronization scope includes only the semaphore signal operation.

The first access scope includes all memory access performed by the device.

The second access scope is empty.

6.4.2. Semaphore Waiting & Unsignaling

When a batch is submitted to a queue via a queue submission, and it includes semaphores to be

waited on, it defines a memory dependency between prior semaphore signal operations and the

batch, and defines semaphore unsignal operations which set the semaphores to the unsignaled state.

The first synchronization scope includes all semaphore signal operations that operate on

semaphores waited on in the same batch, and that happen-before the wait completes.

The second synchronization scope includes every command submitted in the same batch. In the

case of vkQueueSubmit, the second synchronization scope is limited to operations on the pipeline

stages determined by the destination stage mask specified by the corresponding element of

pWaitDstStageMask. Also, in the case of vkQueueSubmit, the second synchronization scope

additionally includes all batches subsequently submitted to the same queue via vkQueueSubmit,

including batches that are submitted in the same queue submission command, but at a higher

index within the array of batches.

101

The first access scope is empty.

The second access scope includes all memory access performed by the device.

The semaphore unsignal operation happens-after the first set of operations in the execution

dependency, and happens-before the second set of operations in the execution dependency.



Note

Unlike fences or events, the act of waiting for a semaphore also unsignals that

semaphore. If two operations are separately specified to wait for the same

semaphore, and there are no other execution dependencies between those

operations, behaviour is undefined. An execution dependency must be present

that guarantees that the semaphore unsignal operation for the first of those waits,

happens-before the semaphore is signalled again, and before the second unsignal

operation. Semaphore waits and signals should thus occur in discrete 1:1 pairs.

6.4.3. Semaphore State Requirements For Wait Operations

Before waiting on a semaphore, the application must ensure the semaphore is in a valid state for a

wait operation. Specifically, when a semaphore wait and unsignal operation is submitted to a

queue:

• The semaphore must be signaled, or have an associated semaphore signal operation that is

pending execution.

• There must be no other queue waiting on the same semaphore when the operation executes.

6.5. Events

Events are a synchronization primitive that can be used to insert a fine-grained dependency

between commands submitted to the same queue, or between the host and a queue. Events have

two states - signaled and unsignaled. An application can signal an event, or unsignal it, on either

the host or the device. A device can wait for an event to become signaled before executing further

operations. No command exists to wait for an event to become signaled on the host, but the current

state of an event can be queried.

Events are represented by VkEvent handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkEvent)

To create an event, call:

VkResult vkCreateEvent(

 VkDevice device,

 const VkEventCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkEvent* pEvent);

102

• device is the logical device that creates the event.

• pCreateInfo is a pointer to an instance of the VkEventCreateInfo structure which contains

information about how the event is to be created.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pEvent points to a handle in which the resulting event object is returned.

When created, the event object is in the unsignaled state.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkEventCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• pEvent must be a pointer to a VkEvent handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkEventCreateInfo structure is defined as:

typedef struct VkEventCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkEventCreateFlags flags;

} VkEventCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

103

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_EVENT_CREATE_INFO

• pNext must be NULL

• flags must be 0

To destroy an event, call:

void vkDestroyEvent(

 VkDevice device,

 VkEvent event,

 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the event.

• event is the handle of the event to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• All submitted commands that refer to event must have completed execution

• If VkAllocationCallbacks were provided when event was created, a compatible set of

callbacks must be provided here

• If no VkAllocationCallbacks were provided when event was created, pAllocator must be
NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If event is not VK_NULL_HANDLE, event must be a valid VkEvent handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• If event is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to event must be externally synchronized

To query the state of an event from the host, call:

104

VkResult vkGetEventStatus(

 VkDevice device,

 VkEvent event);

• device is the logical device that owns the event.

• event is the handle of the event to query.

Upon success, vkGetEventStatus returns the state of the event object with the following return codes:

Table 6. Event Object Status Codes

Status Meaning

VK_EVENT_SET The event specified by event is

signaled.

VK_EVENT_RESET The event specified by event is

unsignaled.

If a vkCmdSetEvent or vkCmdResetEvent command is in a command buffer that is in the pending state,

then the value returned by this command may immediately be out of date.

The state of an event can be updated by the host. The state of the event is immediately changed,

and subsequent calls to vkGetEventStatus will return the new state. If an event is already in the

requested state, then updating it to the same state has no effect.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• event must be a valid VkEvent handle

• event must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_EVENT_SET

• VK_EVENT_RESET

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

To set the state of an event to signaled from the host, call:

105

VkResult vkSetEvent(

 VkDevice device,

 VkEvent event);

• device is the logical device that owns the event.

• event is the event to set.

When vkSetEvent is executed on the host, it defines an event signal operation which sets the event

to the signaled state.

If event is already in the signaled state when vkSetEvent is executed, then vkSetEvent has no effect,

and no event signal operation occurs.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• event must be a valid VkEvent handle

• event must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to event must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To set the state of an event to unsignaled from the host, call:

VkResult vkResetEvent(

 VkDevice device,

 VkEvent event);

• device is the logical device that owns the event.

• event is the event to reset.

When vkResetEvent is executed on the host, it defines an event unsignal operation which resets the

106

event to the unsignaled state.

If event is already in the unsignaled state when vkResetEvent is executed, then vkResetEvent has no

effect, and no event unsignal operation occurs.

Valid Usage

• event must not be waited on by a vkCmdWaitEvents command that is currently executing

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• event must be a valid VkEvent handle

• event must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to event must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The state of an event can also be updated on the device by commands inserted in command

buffers.

To set the state of an event to signaled from a device, call:

void vkCmdSetEvent(

 VkCommandBuffer commandBuffer,

 VkEvent event,

 VkPipelineStageFlags stageMask);

• commandBuffer is the command buffer into which the command is recorded.

• event is the event that will be signaled.

• stageMask specifies the source stage mask used to determine when the event is signaled.

107

When vkCmdSetEvent is submitted to a queue, it defines an execution dependency on commands

that were submitted before it, and defines an event signal operation which sets the event to the

signaled state.

The first synchronization scope includes every command previously submitted to the same queue,

including those in the same command buffer and batch. The synchronization scope is limited to

operations on the pipeline stages determined by the source stage mask specified by stageMask.

The second synchronization scope includes only the event signal operation.

If event is already in the signaled state when vkCmdSetEvent is executed on the device, then

vkCmdSetEvent has no effect, no event signal operation occurs, and no execution dependency is

generated.

Valid Usage

• stageMask must not include VK_PIPELINE_STAGE_HOST_BIT

• If the geometry shaders feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• If the tessellation shaders feature is not enabled, stageMask must not contain

VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• event must be a valid VkEvent handle

• stageMask must be a valid combination of VkPipelineStageFlagBits values

• stageMask must not be 0

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics, or

compute operations

• This command must only be called outside of a render pass instance

• Both of commandBuffer, and event must have been created, allocated, or retrieved from the

same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

108

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Outside Graphics

compute

To set the state of an event to unsignaled from a device, call:

void vkCmdResetEvent(

 VkCommandBuffer commandBuffer,

 VkEvent event,

 VkPipelineStageFlags stageMask);

• commandBuffer is the command buffer into which the command is recorded.

• event is the event that will be unsignaled.

• stageMask is a bitmask of VkPipelineStageFlagBits specifying the source stage mask used to

determine when the event is unsignaled.

When vkCmdResetEvent is submitted to a queue, it defines an execution dependency on commands

that were submitted before it, and defines an event unsignal operation which resets the event to

the unsignaled state.

The first synchronization scope includes every command previously submitted to the same queue,

including those in the same command buffer and batch. The synchronization scope is limited to

operations on the pipeline stages determined by the source stage mask specified by stageMask.

The second synchronization scope includes only the event unsignal operation.

If event is already in the unsignaled state when vkCmdResetEvent is executed on the device, then

vkCmdResetEvent has no effect, no event unsignal operation occurs, and no execution dependency

is generated.

Valid Usage

• stageMask must not include VK_PIPELINE_STAGE_HOST_BIT

• If the geometry shaders feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• If the tessellation shaders feature is not enabled, stageMask must not contain

VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• When this command executes, event must not be waited on by a vkCmdWaitEvents

command that is currently executing

109

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• event must be a valid VkEvent handle

• stageMask must be a valid combination of VkPipelineStageFlagBits values

• stageMask must not be 0

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics, or

compute operations

• This command must only be called outside of a render pass instance

• Both of commandBuffer, and event must have been created, allocated, or retrieved from the

same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Outside Graphics

compute

To wait for one or more events to enter the signaled state on a device, call:

void vkCmdWaitEvents(

 VkCommandBuffer commandBuffer,

 uint32_t eventCount,

 const VkEvent* pEvents,

 VkPipelineStageFlags srcStageMask,

 VkPipelineStageFlags dstStageMask,

 uint32_t memoryBarrierCount,

 const VkMemoryBarrier* pMemoryBarriers,

 uint32_t bufferMemoryBarrierCount,

 const VkBufferMemoryBarrier* pBufferMemoryBarriers,

 uint32_t imageMemoryBarrierCount,

 const VkImageMemoryBarrier* pImageMemoryBarriers);

110

• commandBuffer is the command buffer into which the command is recorded.

• eventCount is the length of the pEvents array.

• pEvents is an array of event object handles to wait on.

• srcStageMask is a bitmask of VkPipelineStageFlagBits specifying the source stage mask.

• dstStageMask is a bitmask of VkPipelineStageFlagBits specifying the destination stage mask.

• memoryBarrierCount is the length of the pMemoryBarriers array.

• pMemoryBarriers is a pointer to an array of VkMemoryBarrier structures.

• bufferMemoryBarrierCount is the length of the pBufferMemoryBarriers array.

• pBufferMemoryBarriers is a pointer to an array of VkBufferMemoryBarrier structures.

• imageMemoryBarrierCount is the length of the pImageMemoryBarriers array.

• pImageMemoryBarriers is a pointer to an array of VkImageMemoryBarrier structures.

When vkCmdWaitEvents is submitted to a queue, it defines a memory dependency between prior

event signal operations, and subsequent commands.

The first synchronization scope only includes event signal operations that operate on members of

pEvents, and the operations that happened-before the event signal operations. Event signal

operations performed by vkCmdSetEvent that were previously submitted to the same queue are

included in the first synchronization scope, if the logically latest pipeline stage in their stageMask

parameter is logically earlier than or equal to the logically latest pipeline stage in srcStageMask.

Event signal operations performed by vkSetEvent are only included in the first synchronization

scope if VK_PIPELINE_STAGE_HOST_BIT is included in srcStageMask.

The second synchronization scope includes commands subsequently submitted to the same queue,

including those in the same command buffer and batch. The second synchronization scope is

limited to operations on the pipeline stages determined by the destination stage mask specified by

dstStageMask.

The first access scope is limited to access in the pipeline stages determined by the source stage

mask specified by srcStageMask. Within that, the first access scope only includes the first access

scopes defined by elements of the pMemoryBarriers, pBufferMemoryBarriers and pImageMemoryBarriers

arrays, which each define a set of memory barriers. If no memory barriers are specified, then the

first access scope includes no accesses.

The second access scope is limited to access in the pipeline stages determined by the destination

stage mask specified by dstStageMask. Within that, the second access scope only includes the second

access scopes defined by elements of the pMemoryBarriers, pBufferMemoryBarriers and

pImageMemoryBarriers arrays, which each define a set of memory barriers. If no memory barriers

are specified, then the second access scope includes no accesses.

111



Note

vkCmdWaitEvents is used with vkCmdSetEvent to define a memory dependency

between two sets of action commands, roughly in the same way as pipeline

barriers, but split into two commands such that work between the two may

execute unhindered.



Note

Applications should be careful to avoid race conditions when using events. There

is no direct ordering guarantee between a vkCmdResetEvent command and a

vkCmdWaitEvents command submitted after it, so some other execution

dependency must be included between these commands (e.g. a semaphore).

Valid Usage

• srcStageMask must be the bitwise OR of the stageMask parameter used in previous calls to

vkCmdSetEvent with any of the members of pEvents and VK_PIPELINE_STAGE_HOST_BIT if any

of the members of pEvents was set using vkSetEvent

• If the geometry shaders feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• If the geometry shaders feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• If the tessellation shaders feature is not enabled, srcStageMask must not contain

VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• If the tessellation shaders feature is not enabled, dstStageMask must not contain

VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• If pEvents includes one or more events that will be signaled by vkSetEvent after

commandBuffer has been submitted to a queue, then vkCmdWaitEvents must not be called

inside a render pass instance

• Any pipeline stage included in srcStageMask or dstStageMask must be supported by the

capabilities of the queue family specified by the queueFamilyIndex member of the

VkCommandPoolCreateInfo structure that was used to create the VkCommandPool that

commandBuffer was allocated from, as specified in the table of supported pipeline stages.

• Any given element of pMemoryBarriers, pBufferMemoryBarriers or pImageMemoryBarriers

must not have any access flag included in its srcAccessMask member if that bit is not

supported by any of the pipeline stages in srcStageMask, as specified in the table of

supported access types.

• Any given element of pMemoryBarriers, pBufferMemoryBarriers or pImageMemoryBarriers

must not have any access flag included in its dstAccessMask member if that bit is not

supported by any of the pipeline stages in dstStageMask, as specified in the table of

supported access types.

112

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• pEvents must be a pointer to an array of eventCount valid VkEvent handles

• srcStageMask must be a valid combination of VkPipelineStageFlagBits values

• srcStageMask must not be 0

• dstStageMask must be a valid combination of VkPipelineStageFlagBits values

• dstStageMask must not be 0

• If memoryBarrierCount is not 0, pMemoryBarriers must be a pointer to an array of

memoryBarrierCount valid VkMemoryBarrier structures

• If bufferMemoryBarrierCount is not 0, pBufferMemoryBarriers must be a pointer to an array

of bufferMemoryBarrierCount valid VkBufferMemoryBarrier structures

• If imageMemoryBarrierCount is not 0, pImageMemoryBarriers must be a pointer to an array of

imageMemoryBarrierCount valid VkImageMemoryBarrier structures

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics, or

compute operations

• eventCount must be greater than 0

• Both of commandBuffer, and the elements of pEvents must have been created, allocated, or

retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Both Graphics

compute

6.6. Pipeline Barriers

vkCmdPipelineBarrier is a synchronization command that inserts a dependency between

commands submitted to the same queue, or between commands in the same subpass.

113

To record a pipeline barrier, call:

void vkCmdPipelineBarrier(

 VkCommandBuffer commandBuffer,

 VkPipelineStageFlags srcStageMask,

 VkPipelineStageFlags dstStageMask,

 VkDependencyFlags dependencyFlags,

 uint32_t memoryBarrierCount,

 const VkMemoryBarrier* pMemoryBarriers,

 uint32_t bufferMemoryBarrierCount,

 const VkBufferMemoryBarrier* pBufferMemoryBarriers,

 uint32_t imageMemoryBarrierCount,

 const VkImageMemoryBarrier* pImageMemoryBarriers);

• commandBuffer is the command buffer into which the command is recorded.

• srcStageMask is a bitmask of VkPipelineStageFlagBits specifying the source stage mask.

• dstStageMask is a bitmask of VkPipelineStageFlagBits specifying the destination stage mask.

• dependencyFlags is a bitmask of VkDependencyFlagBits specifying how execution and memory

dependencies are formed.

• memoryBarrierCount is the length of the pMemoryBarriers array.

• pMemoryBarriers is a pointer to an array of VkMemoryBarrier structures.

• bufferMemoryBarrierCount is the length of the pBufferMemoryBarriers array.

• pBufferMemoryBarriers is a pointer to an array of VkBufferMemoryBarrier structures.

• imageMemoryBarrierCount is the length of the pImageMemoryBarriers array.

• pImageMemoryBarriers is a pointer to an array of VkImageMemoryBarrier structures.

When vkCmdPipelineBarrier is submitted to a queue, it defines a memory dependency between

commands that were submitted before it, and those submitted after it.

If vkCmdPipelineBarrier was recorded outside a render pass instance, the first synchronization

scope includes every command submitted to the same queue before it, including those in the same

command buffer and batch. If vkCmdPipelineBarrier was recorded inside a render pass instance,

the first synchronization scope includes only commands submitted before it within the same

subpass. In either case, the first synchronization scope is limited to operations on the pipeline

stages determined by the source stage mask specified by srcStageMask.

If vkCmdPipelineBarrier was recorded outside a render pass instance, the second synchronization

scope includes every command submitted to the same queue after it, including those in the same

command buffer and batch. If vkCmdPipelineBarrier was recorded inside a render pass instance,

the second synchronization scope includes only commands submitted after it within the same

subpass. In either case, the second synchronization scope is limited to operations on the pipeline

stages determined by the destination stage mask specified by dstStageMask.

The first access scope is limited to access in the pipeline stages determined by the source stage

mask specified by srcStageMask. Within that, the first access scope only includes the first access

114

scopes defined by elements of the pMemoryBarriers, pBufferMemoryBarriers and pImageMemoryBarriers

arrays, which each define a set of memory barriers. If no memory barriers are specified, then the

first access scope includes no accesses.

The second access scope is limited to access in the pipeline stages determined by the destination

stage mask specified by dstStageMask. Within that, the second access scope only includes the second

access scopes defined by elements of the pMemoryBarriers, pBufferMemoryBarriers and

pImageMemoryBarriers arrays, which each define a set of memory barriers. If no memory barriers

are specified, then the second access scope includes no accesses.

If dependencyFlags includes VK_DEPENDENCY_BY_REGION_BIT, then any dependency between

framebuffer-space pipeline stages is framebuffer-local - otherwise it is framebuffer-global.

115

Valid Usage

• If the geometry shaders feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• If the geometry shaders feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• If the tessellation shaders feature is not enabled, srcStageMask must not contain

VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• If the tessellation shaders feature is not enabled, dstStageMask must not contain

VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• If vkCmdPipelineBarrier is called within a render pass instance, the render pass must have

been created with a VkSubpassDependency instance in pDependencies that expresses a

dependency from the current subpass to itself.

• If vkCmdPipelineBarrier is called within a render pass instance, srcStageMask must contain

a subset of the bit values in the srcStageMask member of that instance of
VkSubpassDependency

• If vkCmdPipelineBarrier is called within a render pass instance, dstStageMask must contain

a subset of the bit values in the dstStageMask member of that instance of
VkSubpassDependency

• If vkCmdPipelineBarrier is called within a render pass instance, the srcAccessMask of any

element of pMemoryBarriers or pImageMemoryBarriers must contain a subset of the bit

values the srcAccessMask member of that instance of VkSubpassDependency

• If vkCmdPipelineBarrier is called within a render pass instance, the dstAccessMask of any

element of pMemoryBarriers or pImageMemoryBarriers must contain a subset of the bit

values the dstAccessMask member of that instance of VkSubpassDependency

• If vkCmdPipelineBarrier is called within a render pass instance, dependencyFlags must be

equal to the dependencyFlags member of that instance of VkSubpassDependency

• If vkCmdPipelineBarrier is called within a render pass instance, bufferMemoryBarrierCount

must be 0

• If vkCmdPipelineBarrier is called within a render pass instance, the image member of any

element of pImageMemoryBarriers must be equal to one of the elements of pAttachments that

the current framebuffer was created with, that is also referred to by one of the elements of

the pColorAttachments, pResolveAttachments or pDepthStencilAttachment members of the

VkSubpassDescription instance that the current subpass was created with

• If vkCmdPipelineBarrier is called within a render pass instance, the oldLayout and

newLayout members of any element of pImageMemoryBarriers must be equal to the layout

member of an element of the pColorAttachments, pResolveAttachments or

pDepthStencilAttachment members of the VkSubpassDescription instance that the current

subpass was created with, that refers to the same image

• If vkCmdPipelineBarrier is called within a render pass instance, the oldLayout and

newLayout members of an element of pImageMemoryBarriers must be equal

116

• If vkCmdPipelineBarrier is called within a render pass instance, the srcQueueFamilyIndex

and dstQueueFamilyIndex members of any element of pImageMemoryBarriers must be
VK_QUEUE_FAMILY_IGNORED

• Any pipeline stage included in srcStageMask or dstStageMask must be supported by the

capabilities of the queue family specified by the queueFamilyIndex member of the

VkCommandPoolCreateInfo structure that was used to create the VkCommandPool that

commandBuffer was allocated from, as specified in the table of supported pipeline stages.

• Any given element of pMemoryBarriers, pBufferMemoryBarriers or pImageMemoryBarriers

must not have any access flag included in its srcAccessMask member if that bit is not

supported by any of the pipeline stages in srcStageMask, as specified in the table of

supported access types.

• Any given element of pMemoryBarriers, pBufferMemoryBarriers or pImageMemoryBarriers

must not have any access flag included in its dstAccessMask member if that bit is not

supported by any of the pipeline stages in dstStageMask, as specified in the table of

supported access types.

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• srcStageMask must be a valid combination of VkPipelineStageFlagBits values

• srcStageMask must not be 0

• dstStageMask must be a valid combination of VkPipelineStageFlagBits values

• dstStageMask must not be 0

• dependencyFlags must be a valid combination of VkDependencyFlagBits values

• If memoryBarrierCount is not 0, pMemoryBarriers must be a pointer to an array of

memoryBarrierCount valid VkMemoryBarrier structures

• If bufferMemoryBarrierCount is not 0, pBufferMemoryBarriers must be a pointer to an array

of bufferMemoryBarrierCount valid VkBufferMemoryBarrier structures

• If imageMemoryBarrierCount is not 0, pImageMemoryBarriers must be a pointer to an array of

imageMemoryBarrierCount valid VkImageMemoryBarrier structures

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,

or compute operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

117

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Both Transfer

graphics

compute

Bits which can be set in vkCmdPipelineBarrier::dependencyFlags, specifying how execution and

memory dependencies are formed, are:

typedef enum VkDependencyFlagBits {

 VK_DEPENDENCY_BY_REGION_BIT = 0x00000001,

} VkDependencyFlagBits;

• VK_DEPENDENCY_BY_REGION_BIT specifies that dependencies will be framebuffer-local.

6.6.1. Subpass Self-dependency

If vkCmdPipelineBarrier is called inside a render pass instance, the following restrictions apply. For a

given subpass to allow a pipeline barrier, the render pass must declare a self-dependency from that

subpass to itself. That is, there must exist a VkSubpassDependency in the subpass dependency list for

the render pass with srcSubpass and dstSubpass equal to that subpass index. More than one self-

dependency can be declared for each subpass. Self-dependencies must only include pipeline stage

bits that are graphics stages. Self-dependencies must not have any earlier pipeline stages depend

on any later pipeline stages (according to the order of graphics pipeline stages), unless all of the

stages are framebuffer-space stages. If the source and destination stage masks both include

framebuffer-space stages, then dependencyFlags must include VK_DEPENDENCY_BY_REGION_BIT.

A vkCmdPipelineBarrier command inside a render pass instance must be a subset of one of the self-

dependencies of the subpass it is used in, meaning that the stage masks and access masks must

each include only a subset of the bits of the corresponding mask in that self-dependency. If the self-

dependency has VK_DEPENDENCY_BY_REGION_BIT set, then so must the pipeline barrier. Pipeline

barriers within a render pass instance can only be types VkMemoryBarrier or VkImageMemoryBarrier. If

a VkImageMemoryBarrier is used, the image and image subresource range specified in the barrier

must be a subset of one of the image views used by the framebuffer in the current subpass.

Additionally, oldLayout must be equal to newLayout, and both the srcQueueFamilyIndex and

dstQueueFamilyIndex must be VK_QUEUE_FAMILY_IGNORED.

6.7. Memory Barriers

Memory barriers are used to explicitly control access to buffer and image subresource ranges.

Memory barriers are used to transfer ownership between queue families, change image layouts,

and define availability and visibility operations. They explicitly define the access types and buffer

and image subresource ranges that are included in the access scopes of a memory dependency that

is created by a synchronization command that includes them.

118

6.7.1. Global Memory Barriers

Global memory barriers apply to memory accesses involving all memory objects that exist at the

time of its execution.

The VkMemoryBarrier structure is defined as:

typedef struct VkMemoryBarrier {

 VkStructureType sType;

 const void* pNext;

 VkAccessFlags srcAccessMask;

 VkAccessFlags dstAccessMask;

} VkMemoryBarrier;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• srcAccessMask is a bitmask of VkAccessFlagBits specifying a source access mask.

• dstAccessMask is a bitmask of VkAccessFlagBits specifying a destination access mask.

The first access scope is limited to access types in the source access mask specified by srcAccessMask.

The second access scope is limited to access types in the destination access mask specified by

dstAccessMask.

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_MEMORY_BARRIER

• pNext must be NULL

• srcAccessMask must be a valid combination of VkAccessFlagBits values

• dstAccessMask must be a valid combination of VkAccessFlagBits values

6.7.2. Buffer Memory Barriers

Buffer memory barriers only apply to memory accesses involving a specific buffer range. That is, a

memory dependency formed from an buffer memory barrier is scoped to access via the specified

buffer range. Buffer memory barriers can also be used to define a queue family ownership transfer

for the specified buffer range.

The VkBufferMemoryBarrier structure is defined as:

119

typedef struct VkBufferMemoryBarrier {

 VkStructureType sType;

 const void* pNext;

 VkAccessFlags srcAccessMask;

 VkAccessFlags dstAccessMask;

 uint32_t srcQueueFamilyIndex;

 uint32_t dstQueueFamilyIndex;

 VkBuffer buffer;

 VkDeviceSize offset;

 VkDeviceSize size;

} VkBufferMemoryBarrier;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• srcAccessMask is a bitmask of VkAccessFlagBits specifying a source access mask.

• dstAccessMask is a bitmask of VkAccessFlagBits specifying a destination access mask.

• srcQueueFamilyIndex is the source queue family for a queue family ownership transfer.

• dstQueueFamilyIndex is the destination queue family for a queue family ownership transfer.

• buffer is a handle to the buffer whose backing memory is affected by the barrier.

• offset is an offset in bytes into the backing memory for buffer; this is relative to the base offset

as bound to the buffer (see vkBindBufferMemory).

• size is a size in bytes of the affected area of backing memory for buffer, or VK_WHOLE_SIZE to use

the range from offset to the end of the buffer.

The first access scope is limited to access to memory through the specified buffer range, via access

types in the source access mask specified by srcAccessMask. If srcAccessMask includes

VK_ACCESS_HOST_WRITE_BIT, memory writes performed by that access type are also made visible, as

that access type is not performed through a resource.

The second access scope is limited to access to memory through the specified buffer range, via

access types in the destination access mask. specified by dstAccessMask. If dstAccessMask includes

VK_ACCESS_HOST_WRITE_BIT or VK_ACCESS_HOST_READ_BIT, available memory writes are also made

visible to accesses of those types, as those access types are not performed through a resource.

If srcQueueFamilyIndex is not equal to dstQueueFamilyIndex, and srcQueueFamilyIndex is equal to the

current queue family, then the memory barrier defines a queue family release operation for the

specified buffer range, and the second access scope includes no access, as if dstAccessMask was 0.

If dstQueueFamilyIndex is not equal to srcQueueFamilyIndex, and dstQueueFamilyIndex is equal to the

current queue family, then the memory barrier defines a queue family acquire operation for the

specified buffer range, and the first access scope includes no access, as if srcAccessMask was 0.

120

Valid Usage

• offset must be less than the size of buffer

• If size is not equal to VK_WHOLE_SIZE, size must be greater than 0

• If size is not equal to VK_WHOLE_SIZE, size must be less than or equal to than the size of

buffer minus offset

• If buffer was created with a sharing mode of VK_SHARING_MODE_CONCURRENT,

srcQueueFamilyIndex and dstQueueFamilyIndex must both be VK_QUEUE_FAMILY_IGNORED

• If buffer was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE,

srcQueueFamilyIndex and dstQueueFamilyIndex must either both be

VK_QUEUE_FAMILY_IGNORED, or both be a valid queue family (see Queue Family Properties)

• If buffer was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE, and

srcQueueFamilyIndex and dstQueueFamilyIndex are not VK_QUEUE_FAMILY_IGNORED, at least one

of them must be the same as the family of the queue that will execute this barrier

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER

• pNext must be NULL

• srcAccessMask must be a valid combination of VkAccessFlagBits values

• dstAccessMask must be a valid combination of VkAccessFlagBits values

• buffer must be a valid VkBuffer handle

6.7.3. Image Memory Barriers

Image memory barriers only apply to memory accesses involving a specific image subresource

range. That is, a memory dependency formed from an image memory barrier is scoped to access

via the specified image subresource range. Image memory barriers can also be used to define

image layout transitions or a queue family ownership transfer for the specified image subresource

range.

The VkImageMemoryBarrier structure is defined as:

121

typedef struct VkImageMemoryBarrier {

 VkStructureType sType;

 const void* pNext;

 VkAccessFlags srcAccessMask;

 VkAccessFlags dstAccessMask;

 VkImageLayout oldLayout;

 VkImageLayout newLayout;

 uint32_t srcQueueFamilyIndex;

 uint32_t dstQueueFamilyIndex;

 VkImage image;

 VkImageSubresourceRange subresourceRange;

} VkImageMemoryBarrier;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• srcAccessMask is a bitmask of VkAccessFlagBits specifying a source access mask.

• dstAccessMask is a bitmask of VkAccessFlagBits specifying a destination access mask.

• oldLayout is the old layout in an image layout transition.

• newLayout is the new layout in an image layout transition.

• srcQueueFamilyIndex is the source queue family for a queue family ownership transfer.

• dstQueueFamilyIndex is the destination queue family for a queue family ownership transfer.

• image is a handle to the image affected by this barrier.

• subresourceRange describes the image subresource range within image that is affected by this

barrier.

The first access scope is limited to access to memory through the specified image subresource

range, via access types in the source access mask specified by srcAccessMask. If srcAccessMask

includes VK_ACCESS_HOST_WRITE_BIT, memory writes performed by that access type are also made

visible, as that access type is not performed through a resource.

The second access scope is limited to access to memory through the specified image subresource

range, via access types in the destination access mask specified by dstAccessMask. If dstAccessMask

includes VK_ACCESS_HOST_WRITE_BIT or VK_ACCESS_HOST_READ_BIT, available memory writes are also

made visible to accesses of those types, as those access types are not performed through a resource.

If srcQueueFamilyIndex is not equal to dstQueueFamilyIndex, and srcQueueFamilyIndex is equal to the

current queue family, then the memory barrier defines a queue family release operation for the

specified image subresource range, and the second access scope includes no access, as if

dstAccessMask was 0.

If dstQueueFamilyIndex is not equal to srcQueueFamilyIndex, and dstQueueFamilyIndex is equal to the

current queue family, then the memory barrier defines a queue family acquire operation for the

specified image subresource range, and the first access scope includes no access, as if srcAccessMask

was 0.

122

If oldLayout is not equal to newLayout, then the memory barrier defines an image layout transition

for the specified image subresource range.

Layout transitions that are performed via image memory barriers execute in their entirety in

submission order, relative to other image layout transitions submitted to the same queue, including

those performed by render passes. In effect there is an implicit execution dependency from each

such layout transition to all layout transitions previously submitted to the same queue.

123

Valid Usage

• oldLayout must be VK_IMAGE_LAYOUT_UNDEFINED or the current layout of the image

subresources affected by the barrier

• newLayout must not be VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED

• If image was created with a sharing mode of VK_SHARING_MODE_CONCURRENT,

srcQueueFamilyIndex and dstQueueFamilyIndex must both be VK_QUEUE_FAMILY_IGNORED

• If image was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE,

srcQueueFamilyIndex and dstQueueFamilyIndex must either both be

VK_QUEUE_FAMILY_IGNORED, or both be a valid queue family (see Queue Family Properties).

• If image was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE, and

srcQueueFamilyIndex and dstQueueFamilyIndex are not VK_QUEUE_FAMILY_IGNORED, at least one

of them must be the same as the family of the queue that will execute this barrier

• subresourceRange::baseMipLevel must be less than the mipLevels specified in

VkImageCreateInfo when image was created

• If subresourceRange::levelCount is not VK_REMAINING_MIP_LEVELS, subresourceRange

::levelCount must be non-zero and subresourceRange::baseMipLevel + subresourceRange

::levelCount must be less than or equal to the mipLevels specified in VkImageCreateInfo

when image was created

• subresourceRange::baseArrayLayer must be less than the arrayLayers specified in

VkImageCreateInfo when image was created

• If subresourceRange::layerCount is not VK_REMAINING_ARRAY_LAYERS, subresourceRange

::layerCount must be non-zero and subresourceRange::baseArrayLayer + subresourceRange

::layerCount must be less than or equal to the arrayLayers specified in VkImageCreateInfo

when image was created

• If image has a depth/stencil format with both depth and stencil components, then

aspectMask member of subresourceRange must include both VK_IMAGE_ASPECT_DEPTH_BIT and
VK_IMAGE_ASPECT_STENCIL_BIT

• If either oldLayout or newLayout is VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL then image

must have been created with VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT set

• If either oldLayout or newLayout is VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL then

image must have been created with VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT set

• If either oldLayout or newLayout is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL then

image must have been created with VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT set

• If either oldLayout or newLayout is VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL then image

must have been created with VK_IMAGE_USAGE_SAMPLED_BIT or

VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT set

• If either oldLayout or newLayout is VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL then image must

have been created with VK_IMAGE_USAGE_TRANSFER_SRC_BIT set

• If either oldLayout or newLayout is VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL then image must

have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT set

124

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER

• pNext must be NULL

• srcAccessMask must be a valid combination of VkAccessFlagBits values

• dstAccessMask must be a valid combination of VkAccessFlagBits values

• oldLayout must be a valid VkImageLayout value

• newLayout must be a valid VkImageLayout value

• image must be a valid VkImage handle

• subresourceRange must be a valid VkImageSubresourceRange structure

6.7.4. Queue Family Ownership Transfer

Resources created with a VkSharingMode of VK_SHARING_MODE_EXCLUSIVE must have their ownership

explicitly transferred from one queue family to another in order to access their content in a well-

defined manner on a queue in a different queue family. If memory dependencies are correctly

expressed between uses of such a resource between two queues in different families, but no

ownership transfer is defined, the contents of that resource are undefined for any read accesses

performed by the second queue family.



Note

If an application does not need the contents of a resource to remain valid when

transferring from one queue family to another, then the ownership transfer

should be skipped.

A queue family ownership transfer consists of two distinct parts:

1. Release exclusive ownership from the source queue family

2. Acquire exclusive ownership for the destination queue family

An application must ensure that these operations occur in the correct order by defining an

execution dependency between them, e.g. using a semaphore.

A release operation is used to release exclusive ownership of a range of a buffer or image

subresource range. A release operation is defined by executing a buffer memory barrier (for a

buffer range) or an image memory barrier (for an image subresource range), on a queue from the

source queue family. The srcQueueFamilyIndex parameter of the barrier must be set to the source

queue family index, and the dstQueueFamilyIndex parameter to the destination queue family index.

dstStageMask is ignored for such a barrier, such that no visibility operation is executed - the value of

this mask does not affect the validity of the barrier. The release operation happens-after the

availability operation.

An acquire operation is used to acquire exclusive ownership of a range of a buffer or image

subresource range. An acquire operation is defined by executing a buffer memory barrier (for a

125

buffer range) or an image memory barrier (for an image subresource range), on a queue from the

destination queue family. The srcQueueFamilyIndex parameter of the barrier must be set to the

source queue family index, and the dstQueueFamilyIndex parameter to the destination queue family

index. srcStageMask is ignored for such a barrier, such that no availability operation is executed -

the value of this mask does not affect the validity of the barrier. The acquire operation happens-

before the visibility operation.



Note

Whilst it is not invalid to provide destination or source access masks for memory

barriers used for release or acquire operations, respectively, they have no practical

effect. Access after a release operation has undefined results, and so visibility for

those accesses has no practical effect. Similarly, write access before an acquire

operation will produce undefined results for future access, so availability of those

writes has no practical use. In an earlier version of the specification, these were

required to match on both sides - but this was subsequently relaxed. These masks

should be set to 0.

If the transfer is via an image memory barrier, and an image layout transition is desired, then the

values of oldLayout and newLayout in the release memory barrier must be equal to values of

oldLayout and newLayout in the acquire memory barrier. Although the image layout transition is

submitted twice, it will only be executed once. A layout transition specified in this way happens-

after the release operation and happens-before the acquire operation.

If the values of srcQueueFamilyIndex and dstQueueFamilyIndex are equal, no ownership transfer is

performed, and the barrier operates as if they were both set to VK_QUEUE_FAMILY_IGNORED.

Queue family ownership transfers may perform read and write accesses on all memory bound to

the image subresource or buffer range, so applications must ensure that all memory writes have

been made available before a queue family ownership transfer is executed. Available memory is

automatically made visible to queue family release and acquire operations, and writes performed

by those operations are automatically made available.

Once a queue family has acquired ownership of a buffer range or image subresource range of an

VK_SHARING_MODE_EXCLUSIVE resource, its contents are undefined to other queue families unless

ownership is transferred. The contents of any portion of another resource which aliases memory

that is bound to the transferred buffer or image subresource range are undefined after a release or

acquire operation.

6.8. Wait Idle Operations

To wait on the host for the completion of outstanding queue operations for a given queue, call:

VkResult vkQueueWaitIdle(

 VkQueue queue);

• queue is the queue on which to wait.

126

vkQueueWaitIdle is equivalent to submitting a fence to a queue and waiting with an infinite timeout

for that fence to signal.

Valid Usage (Implicit)

• queue must be a valid VkQueue handle

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

- - Any -

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

To wait on the host for the completion of outstanding queue operations for all queues on a given

logical device, call:

VkResult vkDeviceWaitIdle(

 VkDevice device);

• device is the logical device to idle.

vkDeviceWaitIdle is equivalent to calling vkQueueWaitIdle for all queues owned by device.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

Host Synchronization

• Host access to all VkQueue objects created from device must be externally synchronized

127

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

6.9. Host Write Ordering Guarantees

When batches of command buffers are submitted to a queue via vkQueueSubmit, it defines a

memory dependency with prior host operations, and execution of command buffers submitted to

the queue.

The first synchronization scope is defined by the host execution model, but includes execution of

vkQueueSubmit on the host and anything that happened-before it.

The second synchronization scope includes every command submitted in the same queue

submission command, and all future submissions to the same queue.

The first access scope includes all host writes to mappable device memory that are either coherent,

or have been flushed with vkFlushMappedMemoryRanges.

The second access scope includes all memory access performed by the device.

128

Chapter 7. Render Pass

A render pass represents a collection of attachments, subpasses, and dependencies between the

subpasses, and describes how the attachments are used over the course of the subpasses. The use of

a render pass in a command buffer is a render pass instance.

Render passes are represented by VkRenderPass handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkRenderPass)

An attachment description describes the properties of an attachment including its format, sample

count, and how its contents are treated at the beginning and end of each render pass instance.

A subpass represents a phase of rendering that reads and writes a subset of the attachments in a

render pass. Rendering commands are recorded into a particular subpass of a render pass instance.

A subpass description describes the subset of attachments that is involved in the execution of a

subpass. Each subpass can read from some attachments as input attachments, write to some as

color attachments or depth/stencil attachments, and perform multisample resolve operations to

resolve attachments. A subpass description can also include a set of preserve attachments, which are

attachments that are not read or written by the subpass but whose contents must be preserved

throughout the subpass.

A subpass uses an attachment if the attachment is a color, depth/stencil, resolve, or input

attachment for that subpass (as determined by the pColorAttachments, pDepthStencilAttachment,

pResolveAttachments, and pInputAttachments members of VkSubpassDescription, respectively). A

subpass does not use an attachment if that attachment is preserved by the subpass. The first use of

an attachment is in the lowest numbered subpass that uses that attachment. Similarly, the last use of

an attachment is in the highest numbered subpass that uses that attachment.

The subpasses in a render pass all render to the same dimensions, and fragments for pixel

(x,y,layer) in one subpass can only read attachment contents written by previous subpasses at that

same (x,y,layer) location.



Note

By describing a complete set of subpasses in advance, render passes provide the

implementation an opportunity to optimize the storage and transfer of attachment

data between subpasses.

In practice, this means that subpasses with a simple framebuffer-space

dependency may be merged into a single tiled rendering pass, keeping the

attachment data on-chip for the duration of a render pass instance. However, it is

also quite common for a render pass to only contain a single subpass.

Subpass dependencies describe execution and memory dependencies between subpasses.

A subpass dependency chain is a sequence of subpass dependencies in a render pass, where the

source subpass of each subpass dependency (after the first) equals the destination subpass of the

129

previous dependency.

Execution of subpasses may overlap or execute out of order with regards to other subpasses, unless

otherwise enforced by an execution dependency. Each subpass only respects submission order for

commands recorded in the same subpass, and the vkCmdBeginRenderPass and

vkCmdEndRenderPass commands that delimit the render pass - commands within other subpasses

are not included. This affects most other implicit ordering guarantees.

A render pass describes the structure of subpasses and attachments independent of any specific

image views for the attachments. The specific image views that will be used for the attachments,

and their dimensions, are specified in VkFramebuffer objects. Framebuffers are created with respect

to a specific render pass that the framebuffer is compatible with (see Render Pass Compatibility).

Collectively, a render pass and a framebuffer define the complete render target state for one or

more subpasses as well as the algorithmic dependencies between the subpasses.

The various pipeline stages of the drawing commands for a given subpass may execute

concurrently and/or out of order, both within and across drawing commands, whilst still respecting

pipeline order. However for a given (x,y,layer,sample) sample location, certain per-sample

operations are performed in rasterization order.

7.1. Render Pass Creation

To create a render pass, call:

VkResult vkCreateRenderPass(

 VkDevice device,

 const VkRenderPassCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkRenderPass* pRenderPass);

• device is the logical device that creates the render pass.

• pCreateInfo is a pointer to an instance of the VkRenderPassCreateInfo structure that describes

the parameters of the render pass.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pRenderPass points to a VkRenderPass handle in which the resulting render pass object is

returned.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkRenderPassCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• pRenderPass must be a pointer to a VkRenderPass handle

130

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkRenderPassCreateInfo structure is defined as:

typedef struct VkRenderPassCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkRenderPassCreateFlags flags;

 uint32_t attachmentCount;

 const VkAttachmentDescription* pAttachments;

 uint32_t subpassCount;

 const VkSubpassDescription* pSubpasses;

 uint32_t dependencyCount;

 const VkSubpassDependency* pDependencies;

} VkRenderPassCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• attachmentCount is the number of attachments used by this render pass, or zero indicating no

attachments. Attachments are referred to by zero-based indices in the range [0,attachmentCount).

• pAttachments points to an array of attachmentCount number of VkAttachmentDescription

structures describing properties of the attachments, or NULL if attachmentCount is zero.

• subpassCount is the number of subpasses to create for this render pass. Subpasses are referred to

by zero-based indices in the range [0,subpassCount). A render pass must have at least one

subpass.

• pSubpasses points to an array of subpassCount number of VkSubpassDescription structures

describing properties of the subpasses.

• dependencyCount is the number of dependencies between pairs of subpasses, or zero indicating

no dependencies.

• pDependencies points to an array of dependencyCount number of VkSubpassDependency

structures describing dependencies between pairs of subpasses, or NULL if dependencyCount is

zero.

131

Valid Usage

• If any two subpasses operate on attachments with overlapping ranges of the same

VkDeviceMemory object, and at least one subpass writes to that area of VkDeviceMemory, a

subpass dependency must be included (either directly or via some intermediate

subpasses) between them

• If the attachment member of any element of pInputAttachments, pColorAttachments,

pResolveAttachments or pDepthStencilAttachment, or the attachment indexed by any

element of pPreserveAttachments in any given element of pSubpasses is bound to a range of

a VkDeviceMemory object that overlaps with any other attachment in any subpass (including

the same subpass), the VkAttachmentDescription structures describing them must include

VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT in flags

• If the attachment member of any element of pInputAttachments, pColorAttachments,

pResolveAttachments or pDepthStencilAttachment, or any element of pPreserveAttachments

in any given element of pSubpasses is not VK_ATTACHMENT_UNUSED, it must be less than
attachmentCount

• The value of any element of the pPreserveAttachments member in any given element of

pSubpasses must not be VK_ATTACHMENT_UNUSED

• For any member of pAttachments with a loadOp equal to VK_ATTACHMENT_LOAD_OP_CLEAR, the

first use of that attachment must not specify a layout equal to

VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL or

VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL.

• For any element of pDependencies, if the srcSubpass is not VK_SUBPASS_EXTERNAL, all stage

flags included in the srcStageMask member of that dependency must be a pipeline stage

supported by the pipeline identified by the pipelineBindPoint member of the source

subpass.

• For any element of pDependencies, if the dstSubpass is not VK_SUBPASS_EXTERNAL, all stage

flags included in the dstStageMask member of that dependency must be a pipeline stage

supported by the pipeline identified by the pipelineBindPoint member of the source

subpass.

132

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO

• pNext must be NULL

• flags must be 0

• If attachmentCount is not 0, pAttachments must be a pointer to an array of attachmentCount

valid VkAttachmentDescription structures

• pSubpasses must be a pointer to an array of subpassCount valid VkSubpassDescription

structures

• If dependencyCount is not 0, pDependencies must be a pointer to an array of dependencyCount

valid VkSubpassDependency structures

• subpassCount must be greater than 0

The VkAttachmentDescription structure is defined as:

typedef struct VkAttachmentDescription {

 VkAttachmentDescriptionFlags flags;

 VkFormat format;

 VkSampleCountFlagBits samples;

 VkAttachmentLoadOp loadOp;

 VkAttachmentStoreOp storeOp;

 VkAttachmentLoadOp stencilLoadOp;

 VkAttachmentStoreOp stencilStoreOp;

 VkImageLayout initialLayout;

 VkImageLayout finalLayout;

} VkAttachmentDescription;

• flags is a bitmask of VkAttachmentDescriptionFlagBits specifying additional properties of the

attachment.

• format is a VkFormat value specifying the format of the image that will be used for the

attachment.

• samples is the number of samples of the image as defined in VkSampleCountFlagBits.

• loadOp is a VkAttachmentLoadOp value specifying how the contents of color and depth

components of the attachment are treated at the beginning of the subpass where it is first used.

• storeOp is a VkAttachmentStoreOp value specifying how the contents of color and depth

components of the attachment are treated at the end of the subpass where it is last used.

• stencilLoadOp is a VkAttachmentLoadOp value specifying how the contents of stencil

components of the attachment are treated at the beginning of the subpass where it is first used.

• stencilStoreOp is a VkAttachmentStoreOp value specifying how the contents of stencil

components of the attachment are treated at the end of the last subpass where it is used.

• initialLayout is the layout the attachment image subresource will be in when a render pass

133

instance begins.

• finalLayout is the layout the attachment image subresource will be transitioned to when a

render pass instance ends. During a render pass instance, an attachment can use a different

layout in each subpass, if desired.

If the attachment uses a color format, then loadOp and storeOp are used, and stencilLoadOp and

stencilStoreOp are ignored. If the format has depth and/or stencil components, loadOp and storeOp

apply only to the depth data, while stencilLoadOp and stencilStoreOp define how the stencil data is

handled. loadOp and stencilLoadOp define the load operations that execute as part of the first

subpass that uses the attachment. storeOp and stencilStoreOp define the store operations that

execute as part of the last subpass that uses the attachment.

The load operation for each value in an attachment used by a subpass happens-before any

command recorded into that subpass reads from that value. Load operations for attachments with

a depth/stencil format execute in the VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT pipeline stage.

Load operations for attachments with a color format execute in the

VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage.

Store operations for each value in an attachment used by a subpass happen-after any command

recorded into that subpass writes to that value. Store operations for attachments with a

depth/stencil format execute in the VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT pipeline stage. Store

operations for attachments with a color format execute in the

VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage.

If an attachment is not used by any subpass, then loadOp, storeOp, stencilStoreOp, and stencilLoadOp

are ignored, and the attachment’s memory contents will not be modified by execution of a render

pass instance.

During a render pass instance, input/color attachments with color formats that have a component

size of 8, 16, or 32 bits must be represented in the attachment’s format throughout the instance.

Attachments with other floating- or fixed-point color formats, or with depth components may be

represented in a format with a precision higher than the attachment format, but must be

represented with the same range. When such a component is loaded via the loadOp, it will be

converted into an implementation-dependent format used by the render pass. Such components

must be converted from the render pass format, to the format of the attachment, before they are

resolved or stored at the end of a render pass instance via storeOp. Conversions occur as described

in Numeric Representation and Computation and Fixed-Point Data Conversions.

If flags includes VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT, then the attachment is treated as if it

shares physical memory with another attachment in the same render pass. This information limits

the ability of the implementation to reorder certain operations (like layout transitions and the

loadOp) such that it is not improperly reordered against other uses of the same physical memory via

a different attachment. This is described in more detail below.

Valid Usage

• finalLayout must not be VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED

134

Valid Usage (Implicit)

• flags must be a valid combination of VkAttachmentDescriptionFlagBits values

• format must be a valid VkFormat value

• samples must be a valid VkSampleCountFlagBits value

• loadOp must be a valid VkAttachmentLoadOp value

• storeOp must be a valid VkAttachmentStoreOp value

• stencilLoadOp must be a valid VkAttachmentLoadOp value

• stencilStoreOp must be a valid VkAttachmentStoreOp value

• initialLayout must be a valid VkImageLayout value

• finalLayout must be a valid VkImageLayout value

Bits which can be set in VkAttachmentDescription::flags describing additional properties of the

attachment are:

typedef enum VkAttachmentDescriptionFlagBits {

 VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT = 0x00000001,

} VkAttachmentDescriptionFlagBits;

• VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT specifies that the attachment aliases the same device

memory as other attachments.

Possible values of VkAttachmentDescription::loadOp and stencilLoadOp, specifying how the contents

of the attachment are treated, are:

typedef enum VkAttachmentLoadOp {

 VK_ATTACHMENT_LOAD_OP_LOAD = 0,

 VK_ATTACHMENT_LOAD_OP_CLEAR = 1,

 VK_ATTACHMENT_LOAD_OP_DONT_CARE = 2,

} VkAttachmentLoadOp;

• VK_ATTACHMENT_LOAD_OP_LOAD specifies that the previous contents of the image within the render

area will be preserved. For attachments with a depth/stencil format, this uses the access type

VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT. For attachments with a color format, this uses the

access type VK_ACCESS_COLOR_ATTACHMENT_READ_BIT.

• VK_ATTACHMENT_LOAD_OP_CLEAR specifies that the contents within the render area will be cleared to

a uniform value, which is specified when a render pass instance is begun. For attachments with

a depth/stencil format, this uses the access type VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT.

For attachments with a color format, this uses the access type

VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT.

• VK_ATTACHMENT_LOAD_OP_DONT_CARE specifies that the previous contents within the area need not

be preserved; the contents of the attachment will be undefined inside the render area. For

135

attachments with a depth/stencil format, this uses the access type

VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT. For attachments with a color format, this uses

the access type VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT.

Possible values of VkAttachmentDescription::storeOp and stencilStoreOp, specifying how the

contents of the attachment are treated, are:

typedef enum VkAttachmentStoreOp {

 VK_ATTACHMENT_STORE_OP_STORE = 0,

 VK_ATTACHMENT_STORE_OP_DONT_CARE = 1,

} VkAttachmentStoreOp;

• VK_ATTACHMENT_STORE_OP_STORE specifies the contents generated during the render pass and

within the render area are written to memory. For attachments with a depth/stencil format, this

uses the access type VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT. For attachments with a

color format, this uses the access type VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT.

• VK_ATTACHMENT_STORE_OP_DONT_CARE specifies the contents within the render area are not needed

after rendering, and may be discarded; the contents of the attachment will be undefined inside

the render area. For attachments with a depth/stencil format, this uses the access type

VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT. For attachments with a color format, this uses

the access type VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT.

If a render pass uses multiple attachments that alias the same device memory, those attachments

must each include the VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT bit in their attachment description

flags. Attachments aliasing the same memory occurs in multiple ways:

• Multiple attachments being assigned the same image view as part of framebuffer creation.

• Attachments using distinct image views that correspond to the same image subresource of an

image.

• Attachments using views of distinct image subresources which are bound to overlapping

memory ranges.



Note

Render passes must include subpass dependencies (either directly or via a subpass

dependency chain) between any two subpasses that operate on the same

attachment or aliasing attachments and those subpass dependencies must include

execution and memory dependencies separating uses of the aliases, if at least one

of those subpasses writes to one of the aliases. These dependencies must not

include the VK_DEPENDENCY_BY_REGION_BIT if the aliases are views of distinct image

subresources which overlap in memory.

Multiple attachments that alias the same memory must not be used in a single subpass. A given

attachment index must not be used multiple times in a single subpass, with one exception: two

subpass attachments can use the same attachment index if at least one use is as an input

attachment and neither use is as a resolve or preserve attachment. In other words, the same view

can be used simultaneously as an input and color or depth/stencil attachment, but must not be

136

used as multiple color or depth/stencil attachments nor as resolve or preserve attachments. The

precise set of valid scenarios is described in more detail below.

If a set of attachments alias each other, then all except the first to be used in the render pass must

use an initialLayout of VK_IMAGE_LAYOUT_UNDEFINED, since the earlier uses of the other aliases make

their contents undefined. Once an alias has been used and a different alias has been used after it,

the first alias must not be used in any later subpasses. However, an application can assign the same

image view to multiple aliasing attachment indices, which allows that image view to be used

multiple times even if other aliases are used in between.



Note

Once an attachment needs the VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT bit, there

should be no additional cost of introducing additional aliases, and using these

additional aliases may allow more efficient clearing of the attachments on

multiple uses via VK_ATTACHMENT_LOAD_OP_CLEAR.

The VkSubpassDescription structure is defined as:

typedef struct VkSubpassDescription {

 VkSubpassDescriptionFlags flags;

 VkPipelineBindPoint pipelineBindPoint;

 uint32_t inputAttachmentCount;

 const VkAttachmentReference* pInputAttachments;

 uint32_t colorAttachmentCount;

 const VkAttachmentReference* pColorAttachments;

 const VkAttachmentReference* pResolveAttachments;

 const VkAttachmentReference* pDepthStencilAttachment;

 uint32_t preserveAttachmentCount;

 const uint32_t* pPreserveAttachments;

} VkSubpassDescription;

• flags is a bitmask of VkSubpassDescriptionFlagBits specifying usage of the subpass.

• pipelineBindPoint is a VkPipelineBindPoint value specifying whether this is a compute or

graphics subpass. Currently, only graphics subpasses are supported.

• inputAttachmentCount is the number of input attachments.

• pInputAttachments is an array of VkAttachmentReference structures (defined below) that lists

which of the render pass’s attachments can be read in the shader during the subpass, and what

layout each attachment will be in during the subpass. Each element of the array corresponds to

an input attachment unit number in the shader, i.e. if the shader declares an input variable

layout(input_attachment_index=X, set=Y, binding=Z) then it uses the attachment provided in

pInputAttachments[X]. Input attachments must also be bound to the pipeline with a descriptor

set, with the input attachment descriptor written in the location (set=Y, binding=Z).

• colorAttachmentCount is the number of color attachments.

• pColorAttachments is an array of colorAttachmentCount VkAttachmentReference structures that

lists which of the render pass’s attachments will be used as color attachments in the subpass,

and what layout each attachment will be in during the subpass. Each element of the array

137

corresponds to a fragment shader output location, i.e. if the shader declared an output variable

layout(location=X) then it uses the attachment provided in pColorAttachments[X].

• pResolveAttachments is NULL or an array of colorAttachmentCount VkAttachmentReference

structures that lists which of the render pass’s attachments are resolved to at the end of the

subpass, and what layout each attachment will be in during the multisample resolve operation.

If pResolveAttachments is not NULL, each of its elements corresponds to a color attachment (the

element in pColorAttachments at the same index), and a multisample resolve operation is defined

for each attachment. At the end of each subpass, multisample resolve operations read the

subpass’s color attachments, and resolve the samples for each pixel to the same pixel location in

the corresponding resolve attachments, unless the resolve attachment index is

VK_ATTACHMENT_UNUSED. If the first use of an attachment in a render pass is as a resolve

attachment, then the loadOp is effectively ignored as the resolve is guaranteed to overwrite all

pixels in the render area.

• pDepthStencilAttachment is a pointer to a VkAttachmentReference specifying which attachment

will be used for depth/stencil data and the layout it will be in during the subpass. Setting the

attachment index to VK_ATTACHMENT_UNUSED or leaving this pointer as NULL indicates that no

depth/stencil attachment will be used in the subpass.

• preserveAttachmentCount is the number of preserved attachments.

• pPreserveAttachments is an array of preserveAttachmentCount render pass attachment indices

describing the attachments that are not used by a subpass, but whose contents must be

preserved throughout the subpass.

The contents of an attachment within the render area become undefined at the start of a subpass S

if all of the following conditions are true:

• The attachment is used as a color, depth/stencil, or resolve attachment in any subpass in the

render pass.

• There is a subpass S1 that uses or preserves the attachment, and a subpass dependency from S1

to S.

• The attachment is not used or preserved in subpass S.

Once the contents of an attachment become undefined in subpass S, they remain undefined for

subpasses in subpass dependency chains starting with subpass S until they are written again.

However, they remain valid for subpasses in other subpass dependency chains starting with

subpass S1 if those subpasses use or preserve the attachment.

138

Valid Usage

• pipelineBindPoint must be VK_PIPELINE_BIND_POINT_GRAPHICS

• colorAttachmentCount must be less than or equal to VkPhysicalDeviceLimits

::maxColorAttachments

• If the first use of an attachment in this render pass is as an input attachment, and the

attachment is not also used as a color or depth/stencil attachment in the same subpass,

then loadOp must not be VK_ATTACHMENT_LOAD_OP_CLEAR

• If pResolveAttachments is not NULL, for each resolve attachment that does not have the

value VK_ATTACHMENT_UNUSED, the corresponding color attachment must not have the value
VK_ATTACHMENT_UNUSED

• If pResolveAttachments is not NULL, the sample count of each element of pColorAttachments

must be anything other than VK_SAMPLE_COUNT_1_BIT

• Any given element of pResolveAttachments must have a sample count of
VK_SAMPLE_COUNT_1_BIT

• Any given element of pResolveAttachments must have the same VkFormat as its

corresponding color attachment

• All attachments in pColorAttachments that are not VK_ATTACHMENT_UNUSED must have the

same sample count

• If pDepthStencilAttachment is not VK_ATTACHMENT_UNUSED and any attachments in

pColorAttachments are not VK_ATTACHMENT_UNUSED, they must have the same sample count

• If any input attachments are VK_ATTACHMENT_UNUSED, then any pipelines bound during the

subpass must not access those input attachments from the fragment shader

• The attachment member of any element of pPreserveAttachments must not be
VK_ATTACHMENT_UNUSED

• Any given element of pPreserveAttachments must not also be an element of any other

member of the subpass description

• If any attachment is used as both an input attachment and a color or depth/stencil

attachment, then each use must use the same layout

139

Valid Usage (Implicit)

• flags must be a valid combination of VkSubpassDescriptionFlagBits values

• pipelineBindPoint must be a valid VkPipelineBindPoint value

• If inputAttachmentCount is not 0, pInputAttachments must be a pointer to an array of

inputAttachmentCount valid VkAttachmentReference structures

• If colorAttachmentCount is not 0, pColorAttachments must be a pointer to an array of

colorAttachmentCount valid VkAttachmentReference structures

• If colorAttachmentCount is not 0, and pResolveAttachments is not NULL, pResolveAttachments

must be a pointer to an array of colorAttachmentCount valid VkAttachmentReference

structures

• If pDepthStencilAttachment is not NULL, pDepthStencilAttachment must be a pointer to a

valid VkAttachmentReference structure

• If preserveAttachmentCount is not 0, pPreserveAttachments must be a pointer to an array of

preserveAttachmentCount uint32_t values

Bits which can be set in VkSubpassDescription::flags, specifying usage of the subpass, are:

typedef enum VkSubpassDescriptionFlagBits {

} VkSubpassDescriptionFlagBits;

The VkAttachmentReference structure is defined as:

typedef struct VkAttachmentReference {

 uint32_t attachment;

 VkImageLayout layout;

} VkAttachmentReference;

• attachment is the index of the attachment of the render pass, and corresponds to the index of the

corresponding element in the pAttachments array of the VkRenderPassCreateInfo structure. If any

color or depth/stencil attachments are VK_ATTACHMENT_UNUSED, then no writes occur for those

attachments.

• layout is a VkImageLayout value specifying the layout the attachment uses during the subpass.

Valid Usage

• layout must not be VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED

140

Valid Usage (Implicit)

• layout must be a valid VkImageLayout value

The VkSubpassDependency structure is defined as:

typedef struct VkSubpassDependency {

 uint32_t srcSubpass;

 uint32_t dstSubpass;

 VkPipelineStageFlags srcStageMask;

 VkPipelineStageFlags dstStageMask;

 VkAccessFlags srcAccessMask;

 VkAccessFlags dstAccessMask;

 VkDependencyFlags dependencyFlags;

} VkSubpassDependency;

• srcSubpass is the subpass index of the first subpass in the dependency, or VK_SUBPASS_EXTERNAL.

• dstSubpass is the subpass index of the second subpass in the dependency, or

VK_SUBPASS_EXTERNAL.

• srcStageMask is a bitmask of VkPipelineStageFlagBits specifying the source stage mask.

• dstStageMask is a bitmask of VkPipelineStageFlagBits specifying the destination stage mask

• srcAccessMask is a bitmask of VkAccessFlagBits specifying a source access mask.

• dstAccessMask is a bitmask of VkAccessFlagBits specifying a destination access mask.

• dependencyFlags is a bitmask of VkDependencyFlagBits.

If srcSubpass is equal to dstSubpass then the VkSubpassDependency describes a subpass self-

dependency, and only constrains the pipeline barriers allowed within a subpass instance.

Otherwise, when a render pass instance which includes a subpass dependency is submitted to a

queue, it defines a memory dependency between the subpasses identified by srcSubpass and

dstSubpass.

If srcSubpass is equal to VK_SUBPASS_EXTERNAL, the first synchronization scope includes commands

submitted to the queue before the render pass instance began. Otherwise, the first set of commands

includes all commands submitted as part of the subpass instance identified by srcSubpass and any

load, store or multisample resolve operations on attachments used in srcSubpass. In either case, the

first synchronization scope is limited to operations on the pipeline stages determined by the source

stage mask specified by srcStageMask.

If dstSubpass is equal to VK_SUBPASS_EXTERNAL, the second synchronization scope includes commands

submitted after the render pass instance is ended. Otherwise, the second set of commands includes

all commands submitted as part of the subpass instance identified by dstSubpass and any load, store

or multisample resolve operations on attachments used in dstSubpass. In either case, the second

synchronization scope is limited to operations on the pipeline stages determined by the destination

stage mask specified by dstStageMask.

141

The first access scope is limited to access in the pipeline stages determined by the source stage

mask specified by srcStageMask. It is also limited to access types in the source access mask specified

by srcAccessMask.

The second access scope is limited to access in the pipeline stages determined by the destination

stage mask specified by dstStageMask. It is also limited to access types in the destination access mask

specified by dstAccessMask.

The availability and visibility operations defined by a subpass dependency affect the execution of

image layout transitions within the render pass.

142

Valid Usage

• If srcSubpass is not VK_SUBPASS_EXTERNAL, srcStageMask must not include
VK_PIPELINE_STAGE_HOST_BIT

• If dstSubpass is not VK_SUBPASS_EXTERNAL, dstStageMask must not include
VK_PIPELINE_STAGE_HOST_BIT

• If the geometry shaders feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• If the geometry shaders feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• If the tessellation shaders feature is not enabled, srcStageMask must not contain

VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• If the tessellation shaders feature is not enabled, dstStageMask must not contain

VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• srcSubpass must be less than or equal to dstSubpass, unless one of them is

VK_SUBPASS_EXTERNAL, to avoid cyclic dependencies and ensure a valid execution order

• srcSubpass and dstSubpass must not both be equal to VK_SUBPASS_EXTERNAL

• If srcSubpass is equal to dstSubpass, srcStageMask and dstStageMask must only contain one

of VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT,

VK_PIPELINE_STAGE_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_VERTEX_SHADER_BIT,

VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT,

VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT,

VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,

VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT,

VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, or
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT

• If srcSubpass is equal to dstSubpass and not all of the stages in srcStageMask and

dstStageMask are framebuffer-space stages, the logically latest pipeline stage in

srcStageMask must be logically earlier than or equal to the logically earliest pipeline stage

in dstStageMask

• Any access flag included in srcAccessMask must be supported by one of the pipeline stages

in srcStageMask, as specified in the table of supported access types.

• Any access flag included in dstAccessMask must be supported by one of the pipeline stages

in dstStageMask, as specified in the table of supported access types.

143

Valid Usage (Implicit)

• srcStageMask must be a valid combination of VkPipelineStageFlagBits values

• srcStageMask must not be 0

• dstStageMask must be a valid combination of VkPipelineStageFlagBits values

• dstStageMask must not be 0

• srcAccessMask must be a valid combination of VkAccessFlagBits values

• dstAccessMask must be a valid combination of VkAccessFlagBits values

• dependencyFlags must be a valid combination of VkDependencyFlagBits values

If there is no subpass dependency from VK_SUBPASS_EXTERNAL to the first subpass that uses an

attachment, then an implicit subpass dependency exists from VK_SUBPASS_EXTERNAL to the first

subpass it is used in. The subpass dependency operates as if defined with the following parameters:

VkSubpassDependency implicitDependency = {

 .srcSubpass = VK_SUBPASS_EXTERNAL;

 .dstSubpass = firstSubpass; // First subpass attachment is used in

 .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;

 .dstStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;

 .srcAccessMask = 0;

 .dstAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT |

 VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |

 VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |

 VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |

 VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;

 .dependencyFlags = 0;

};

Similarly, if there is no subpass dependency from the last subpass that uses an attachment to

VK_SUBPASS_EXTERNAL, then an implicit subpass dependency exists from the last subpass it is used in

to VK_SUBPASS_EXTERNAL. The subpass dependency operates as if defined with the following

parameters:

144

VkSubpassDependency implicitDependency = {

 .srcSubpass = lastSubpass; // Last subpass attachment is used in

 .dstSubpass = VK_SUBPASS_EXTERNAL;

 .srcStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;

 .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;

 .srcAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT |

 VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |

 VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |

 VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |

 VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;

 .dstAccessMask = 0;

 .dependencyFlags = 0;

};

As subpasses may overlap or execute out of order with regards to other subpasses unless a subpass

dependency chain describes otherwise, the layout transitions required between subpasses cannot

be known to an application. Instead, an application provides the layout that each attachment must

be in at the start and end of a renderpass, and the layout it must be in during each subpass it is

used in. The implementation then must execute layout transitions between subpasses in order to

guarantee that the images are in the layouts required by each subpass, and in the final layout at the

end of the render pass.

Automatic layout transitions apply to the entire image subresource attached to the framebuffer.

Automatic layout transitions away from the layout used in a subpass happen-after the availability

operations for all dependencies with that subpass as the srcSubpass.

Automatic layout transitions into the layout used in a subpass happen-before the visibility

operations for all dependencies with that subpass as the dstSubpass.

Automatic layout transitions away from initialLayout happens-after the availability operations for

all dependencies with a srcSubpass equal to VK_SUBPASS_EXTERNAL, where dstSubpass uses the

attachment that will be transitioned. For attachments created with

VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT, automatic layout transitions away from initialLayout

happen-after the availability operations for all dependencies with a srcSubpass equal to

VK_SUBPASS_EXTERNAL, where dstSubpass uses any aliased attachment.

Automatic layout transitions into finalLayout happens-before the visibility operations for all

dependencies with a dstSubpass equal to VK_SUBPASS_EXTERNAL, where srcSubpass uses the attachment

that will be transitioned. For attachments created with VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT,

automatic layout transitions into finalLayout happen-before the visibility operations for all

dependencies with a dstSubpass equal to VK_SUBPASS_EXTERNAL, where srcSubpass uses any aliased

attachment.

If two subpasses use the same attachment in different layouts, and both layouts are read-only, no

subpass dependency needs to be specified between those subpasses. If an implementation treats

those layouts separately, it must insert an implicit subpass dependency between those subpasses to

separate the uses in each layout. The subpass dependency operates as if defined with the following

parameters:

145

// Used for input attachments

VkPipelineStageFlags inputAttachmentStages = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;

VkAccessFlags inputAttachmentAccess = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;

// Used for depth/stencil attachments

VkPipelineStageFlags depthStencilAttachmentStages =

VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT |

VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;

VkAccessFlags depthStencilAttachmentAccess =

VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT;

VkSubpassDependency implicitDependency = {

 .srcSubpass = firstSubpass;

 .dstSubpass = secondSubpass;

 .srcStageMask = inputAttachmentStages | depthStencilAttachmentStages;

 .dstStageMask = inputAttachmentStages | depthStencilAttachmentStages;

 .srcAccessMask = inputAttachmentAccess | depthStencilAttachmentAccess;

 .dstAccessMask = inputAttachmentAccess | depthStencilAttachmentAccess;

 .dependencyFlags = 0;

};

If a subpass uses the same attachment as both an input attachment and either a color attachment

or a depth/stencil attachment, writes via the color or depth/stencil attachment are not automatically

made visible to reads via the input attachment, causing a feedback loop, except in any of the

following conditions:

• If the color components or depth/stencil components read by the input attachment are mutually

exclusive with the components written by the color or depth/stencil attachments, then there is

no feedback loop. This requires the graphics pipelines used by the subpass to disable writes to

color components that are read as inputs via the colorWriteMask, and to disable writes to

depth/stencil components that are read as inputs via depthWriteEnable or stencilTestEnable.

• If the attachment is used as an input attachment and depth/stencil attachment only, and the

depth/stencil attachment is not written to.

• If a memory dependency is inserted between when the attachment is written and when it is

subsequently read by later fragments. Pipeline barriers expressing a subpass self-dependency

are the only way to achieve this, and one must be inserted every time a fragment will read

values at a particular sample (x, y, layer, sample) coordinate, if those values have been written

since the most recent pipeline barrier; or the since start of the subpass if there have been no

pipeline barriers since the start of the subpass.

An attachment used as both an input attachment and a color attachment must be in the

VK_IMAGE_LAYOUT_GENERAL layout. An attachment used as an input attachment and depth/stencil

attachment must be in the VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, or

VK_IMAGE_LAYOUT_GENERAL layout. An attachment must not be used as both a depth/stencil attachment

and a color attachment.

To destroy a render pass, call:

146

void vkDestroyRenderPass(

 VkDevice device,

 VkRenderPass renderPass,

 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the render pass.

• renderPass is the handle of the render pass to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• All submitted commands that refer to renderPass must have completed execution

• If VkAllocationCallbacks were provided when renderPass was created, a compatible set of

callbacks must be provided here

• If no VkAllocationCallbacks were provided when renderPass was created, pAllocator must

be NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If renderPass is not VK_NULL_HANDLE, renderPass must be a valid VkRenderPass handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• If renderPass is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to renderPass must be externally synchronized

7.2. Render Pass Compatibility

Framebuffers and graphics pipelines are created based on a specific render pass object. They must

only be used with that render pass object, or one compatible with it.

Two attachment references are compatible if they have matching format and sample count, or are

both VK_ATTACHMENT_UNUSED or the pointer that would contain the reference is NULL.

Two arrays of attachment references are compatible if all corresponding pairs of attachments are

compatible. If the arrays are of different lengths, attachment references not present in the smaller

array are treated as VK_ATTACHMENT_UNUSED.

147

Two render passes are compatible if their corresponding color, input, resolve, and depth/stencil

attachment references are compatible and if they are otherwise identical except for:

• Initial and final image layout in attachment descriptions

• Load and store operations in attachment descriptions

• Image layout in attachment references

A framebuffer is compatible with a render pass if it was created using the same render pass or a

compatible render pass.

7.3. Framebuffers

Render passes operate in conjunction with framebuffers. Framebuffers represent a collection of

specific memory attachments that a render pass instance uses.

Framebuffers are represented by VkFramebuffer handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkFramebuffer)

To create a framebuffer, call:

VkResult vkCreateFramebuffer(

 VkDevice device,

 const VkFramebufferCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkFramebuffer* pFramebuffer);

• device is the logical device that creates the framebuffer.

• pCreateInfo points to a VkFramebufferCreateInfo structure which describes additional

information about framebuffer creation.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pFramebuffer points to a VkFramebuffer handle in which the resulting framebuffer object is

returned.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkFramebufferCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• pFramebuffer must be a pointer to a VkFramebuffer handle

148

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkFramebufferCreateInfo structure is defined as:

typedef struct VkFramebufferCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkFramebufferCreateFlags flags;

 VkRenderPass renderPass;

 uint32_t attachmentCount;

 const VkImageView* pAttachments;

 uint32_t width;

 uint32_t height;

 uint32_t layers;

} VkFramebufferCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• renderPass is a render pass that defines what render passes the framebuffer will be compatible

with. See Render Pass Compatibility for details.

• attachmentCount is the number of attachments.

• pAttachments is an array of VkImageView handles, each of which will be used as the corresponding

attachment in a render pass instance.

• width, height and layers define the dimensions of the framebuffer.

Image subresources used as attachments must not be accessed in any other way for the duration of

a render pass instance.



Note

This restriction means that the render pass has full knowledge of all uses of all of

the attachments, so that the implementation is able to make correct decisions

about when and how to perform layout transitions, when to overlap execution of

subpasses, etc.

It is legal for a subpass to use no color or depth/stencil attachments, and rather use shader side

effects such as image stores and atomics to produce an output. In this case, the subpass continues to

149

use the width, height, and layers of the framebuffer to define the dimensions of the rendering area,

and the rasterizationSamples from each pipeline’s VkPipelineMultisampleStateCreateInfo to define

the number of samples used in rasterization; however, if VkPhysicalDeviceFeatures

::variableMultisampleRate is VK_FALSE, then all pipelines to be bound with a given zero-attachment

subpass must have the same value for VkPipelineMultisampleStateCreateInfo

::rasterizationSamples.

Valid Usage

• attachmentCount must be equal to the attachment count specified in renderPass

• Any given element of pAttachments that is used as a color attachment or resolve

attachment by renderPass must have been created with a usage value including
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

• Any given element of pAttachments that is used as a depth/stencil attachment by renderPass

must have been created with a usage value including
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• Any given element of pAttachments that is used as an input attachment by renderPass must

have been created with a usage value including VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• Any given element of pAttachments must have been created with an VkFormat value that

matches the VkFormat specified by the corresponding VkAttachmentDescription in
renderPass

• Any given element of pAttachments must have been created with a samples value that

matches the samples value specified by the corresponding VkAttachmentDescription in
renderPass

• Any given element of pAttachments must have dimensions at least as large as the

corresponding framebuffer dimension

• Any given element of pAttachments must only specify a single mip level

• Any given element of pAttachments must have been created with the identity swizzle

• width must be greater than 0.

• width must be less than or equal to VkPhysicalDeviceLimits::maxFramebufferWidth

• height must be greater than 0.

• height must be less than or equal to VkPhysicalDeviceLimits::maxFramebufferHeight

• layers must be greater than 0.

• layers must be less than or equal to VkPhysicalDeviceLimits::maxFramebufferLayers

150

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO

• pNext must be NULL

• flags must be 0

• renderPass must be a valid VkRenderPass handle

• If attachmentCount is not 0, pAttachments must be a pointer to an array of attachmentCount

valid VkImageView handles

• Both of renderPass, and the elements of pAttachments that are valid handles must have

been created, allocated, or retrieved from the same VkDevice

To destroy a framebuffer, call:

void vkDestroyFramebuffer(

 VkDevice device,

 VkFramebuffer framebuffer,

 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the framebuffer.

• framebuffer is the handle of the framebuffer to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• All submitted commands that refer to framebuffer must have completed execution

• If VkAllocationCallbacks were provided when framebuffer was created, a compatible set of

callbacks must be provided here

• If no VkAllocationCallbacks were provided when framebuffer was created, pAllocator

must be NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If framebuffer is not VK_NULL_HANDLE, framebuffer must be a valid VkFramebuffer handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• If framebuffer is a valid handle, it must have been created, allocated, or retrieved from
device

151

Host Synchronization

• Host access to framebuffer must be externally synchronized

7.4. Render Pass Commands

An application records the commands for a render pass instance one subpass at a time, by

beginning a render pass instance, iterating over the subpasses to record commands for that

subpass, and then ending the render pass instance.

To begin a render pass instance, call:

void vkCmdBeginRenderPass(

 VkCommandBuffer commandBuffer,

 const VkRenderPassBeginInfo* pRenderPassBegin,

 VkSubpassContents contents);

• commandBuffer is the command buffer in which to record the command.

• pRenderPassBegin is a pointer to a VkRenderPassBeginInfo structure (defined below) which

indicates the render pass to begin an instance of, and the framebuffer the instance uses.

• contents is a VkSubpassContents value specifying how the commands in the first subpass will be

provided.

After beginning a render pass instance, the command buffer is ready to record the commands for

the first subpass of that render pass.

152

Valid Usage

• If any of the initialLayout or finalLayout member of the VkAttachmentDescription

structures or the layout member of the VkAttachmentReference structures specified when

creating the render pass specified in the renderPass member of pRenderPassBegin is

VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL then the corresponding attachment image

subresource of the framebuffer specified in the framebuffer member of pRenderPassBegin

must have been created with VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT set

• If any of the initialLayout or finalLayout member of the VkAttachmentDescription

structures or the layout member of the VkAttachmentReference structures specified when

creating the render pass specified in the renderPass member of pRenderPassBegin is

VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL or

VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL then the corresponding attachment

image subresource of the framebuffer specified in the framebuffer member of

pRenderPassBegin must have been created with

VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT set

• If any of the initialLayout or finalLayout member of the VkAttachmentDescription

structures or the layout member of the VkAttachmentReference structures specified when

creating the render pass specified in the renderPass member of pRenderPassBegin is

VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL then the corresponding attachment image

subresource of the framebuffer specified in the framebuffer member of pRenderPassBegin

must have been created with VK_IMAGE_USAGE_SAMPLED_BIT or

VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT set

• If any of the initialLayout or finalLayout member of the VkAttachmentDescription

structures or the layout member of the VkAttachmentReference structures specified when

creating the render pass specified in the renderPass member of pRenderPassBegin is

VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL then the corresponding attachment image

subresource of the framebuffer specified in the framebuffer member of pRenderPassBegin

must have been created with VK_IMAGE_USAGE_TRANSFER_SRC_BIT set

• If any of the initialLayout or finalLayout member of the VkAttachmentDescription

structures or the layout member of the VkAttachmentReference structures specified when

creating the render pass specified in the renderPass member of pRenderPassBegin is

VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL then the corresponding attachment image

subresource of the framebuffer specified in the framebuffer member of pRenderPassBegin

must have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT set

• If any of the initialLayout members of the VkAttachmentDescription structures specified

when creating the render pass specified in the renderPass member of pRenderPassBegin is

not VK_IMAGE_LAYOUT_UNDEFINED, then each such initialLayout must be equal to the current

layout of the corresponding attachment image subresource of the framebuffer specified

in the framebuffer member of pRenderPassBegin

• The srcStageMask and dstStageMask members of any element of the pDependencies member

of VkRenderPassCreateInfo used to create renderpass must be supported by the

capabilities of the queue family identified by the queueFamilyIndex member of the

VkCommandPoolCreateInfo used to create the command pool which commandBuffer was

allocated from.

153

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• pRenderPassBegin must be a pointer to a valid VkRenderPassBeginInfo structure

• contents must be a valid VkSubpassContents value

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics

operations

• This command must only be called outside of a render pass instance

• commandBuffer must be a primary VkCommandBuffer

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary Outside Graphics Graphics

The VkRenderPassBeginInfo structure is defined as:

typedef struct VkRenderPassBeginInfo {

 VkStructureType sType;

 const void* pNext;

 VkRenderPass renderPass;

 VkFramebuffer framebuffer;

 VkRect2D renderArea;

 uint32_t clearValueCount;

 const VkClearValue* pClearValues;

} VkRenderPassBeginInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• renderPass is the render pass to begin an instance of.

• framebuffer is the framebuffer containing the attachments that are used with the render pass.

154

• renderArea is the render area that is affected by the render pass instance, and is described in

more detail below.

• clearValueCount is the number of elements in pClearValues.

• pClearValues is an array of VkClearValue structures that contains clear values for each

attachment, if the attachment uses a loadOp value of VK_ATTACHMENT_LOAD_OP_CLEAR or if the

attachment has a depth/stencil format and uses a stencilLoadOp value of

VK_ATTACHMENT_LOAD_OP_CLEAR. The array is indexed by attachment number. Only elements

corresponding to cleared attachments are used. Other elements of pClearValues are ignored.

renderArea is the render area that is affected by the render pass instance. The effects of attachment

load, store and multisample resolve operations are restricted to the pixels whose x and y

coordinates fall within the render area on all attachments. The render area extends to all layers of

framebuffer. The application must ensure (using scissor if necessary) that all rendering is contained

within the render area, otherwise the pixels outside of the render area become undefined and

shader side effects may occur for fragments outside the render area. The render area must be

contained within the framebuffer dimensions.


Note

There may be a performance cost for using a render area smaller than the

framebuffer, unless it matches the render area granularity for the render pass.

Valid Usage

• clearValueCount must be greater than the largest attachment index in renderPass that

specifies a loadOp (or stencilLoadOp, if the attachment has a depth/stencil format) of
VK_ATTACHMENT_LOAD_OP_CLEAR

• If clearValueCount is not 0, pClearValues must be a pointer to an array of clearValueCount

valid VkClearValue unions

• renderPass must be compatible with the renderPass member of the

VkFramebufferCreateInfo structure specified when creating framebuffer.

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO

• pNext must be NULL

• renderPass must be a valid VkRenderPass handle

• framebuffer must be a valid VkFramebuffer handle

• Both of framebuffer, and renderPass must have been created, allocated, or retrieved from

the same VkDevice

Possible values of vkCmdBeginRenderPass::contents, specifying how the commands in the first

subpass will be provided, are:

155

typedef enum VkSubpassContents {

 VK_SUBPASS_CONTENTS_INLINE = 0,

 VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS = 1,

} VkSubpassContents;

• VK_SUBPASS_CONTENTS_INLINE specifies that the contents of the subpass will be recorded inline in

the primary command buffer, and secondary command buffers must not be executed within

the subpass.

• VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS specifies that the contents are recorded in

secondary command buffers that will be called from the primary command buffer, and

vkCmdExecuteCommands is the only valid command on the command buffer until

vkCmdNextSubpass or vkCmdEndRenderPass.

To query the render area granularity, call:

void vkGetRenderAreaGranularity(

 VkDevice device,

 VkRenderPass renderPass,

 VkExtent2D* pGranularity);

• device is the logical device that owns the render pass.

• renderPass is a handle to a render pass.

• pGranularity points to a VkExtent2D structure in which the granularity is returned.

The conditions leading to an optimal renderArea are:

• the offset.x member in renderArea is a multiple of the width member of the returned

VkExtent2D (the horizontal granularity).

• the offset.y member in renderArea is a multiple of the height of the returned VkExtent2D (the

vertical granularity).

• either the offset.width member in renderArea is a multiple of the horizontal granularity or

offset.x+offset.width is equal to the width of the framebuffer in the VkRenderPassBeginInfo.

• either the offset.height member in renderArea is a multiple of the vertical granularity or

offset.y+offset.height is equal to the height of the framebuffer in the VkRenderPassBeginInfo.

Subpass dependencies are not affected by the render area, and apply to the entire image

subresources attached to the framebuffer as specified in the description of automatic layout

transitions. Similarly, pipeline barriers are valid even if their effect extends outside the render

area.

156

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• renderPass must be a valid VkRenderPass handle

• pGranularity must be a pointer to a VkExtent2D structure

• renderPass must have been created, allocated, or retrieved from device

To transition to the next subpass in the render pass instance after recording the commands for a

subpass, call:

void vkCmdNextSubpass(

 VkCommandBuffer commandBuffer,

 VkSubpassContents contents);

• commandBuffer is the command buffer in which to record the command.

• contents specifies how the commands in the next subpass will be provided, in the same fashion

as the corresponding parameter of vkCmdBeginRenderPass.

The subpass index for a render pass begins at zero when vkCmdBeginRenderPass is recorded, and

increments each time vkCmdNextSubpass is recorded.

Moving to the next subpass automatically performs any multisample resolve operations in the

subpass being ended. End-of-subpass multisample resolves are treated as color attachment writes

for the purposes of synchronization. That is, they are considered to execute in the

VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage and their writes are synchronized

with VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between rendering within a subpass

and any resolve operations at the end of the subpass occurs automatically, without need for explicit

dependencies or pipeline barriers. However, if the resolve attachment is also used in a different

subpass, an explicit dependency is needed.

After transitioning to the next subpass, the application can record the commands for that subpass.

Valid Usage

• The current subpass index must be less than the number of subpasses in the render pass

minus one

157

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• contents must be a valid VkSubpassContents value

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics

operations

• This command must only be called inside of a render pass instance

• commandBuffer must be a primary VkCommandBuffer

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary Inside Graphics Graphics

To record a command to end a render pass instance after recording the commands for the last

subpass, call:

void vkCmdEndRenderPass(

 VkCommandBuffer commandBuffer);

• commandBuffer is the command buffer in which to end the current render pass instance.

Ending a render pass instance performs any multisample resolve operations on the final subpass.

Valid Usage

• The current subpass index must be equal to the number of subpasses in the render pass

minus one

158

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics

operations

• This command must only be called inside of a render pass instance

• commandBuffer must be a primary VkCommandBuffer

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary Inside Graphics Graphics

159

Chapter 8. Shaders

A shader specifies programmable operations that execute for each vertex, control point, tessellated

vertex, primitive, fragment, or workgroup in the corresponding stage(s) of the graphics and

compute pipelines.

Graphics pipelines include vertex shader execution as a result of primitive assembly, followed, if

enabled, by tessellation control and evaluation shaders operating on patches, geometry shaders, if

enabled, operating on primitives, and fragment shaders, if present, operating on fragments

generated by Rasterization. In this specification, vertex, tessellation control, tessellation evaluation

and geometry shaders are collectively referred to as vertex processing stages and occur in the

logical pipeline before rasterization. The fragment shader occurs logically after rasterization.

Only the compute shader stage is included in a compute pipeline. Compute shaders operate on

compute invocations in a workgroup.

Shaders can read from input variables, and read from and write to output variables. Input and

output variables can be used to transfer data between shader stages, or to allow the shader to

interact with values that exist in the execution environment. Similarly, the execution environment

provides constants that describe capabilities.

Shader variables are associated with execution environment-provided inputs and outputs using

built-in decorations in the shader. The available decorations for each stage are documented in the

following subsections.

8.1. Shader Modules

Shader modules contain shader code and one or more entry points. Shaders are selected from a

shader module by specifying an entry point as part of pipeline creation. The stages of a pipeline can

use shaders that come from different modules. The shader code defining a shader module must be

in the SPIR-V format, as described by the Vulkan Environment for SPIR-V appendix.

Shader modules are represented by VkShaderModule handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkShaderModule)

To create a shader module, call:

VkResult vkCreateShaderModule(

 VkDevice device,

 const VkShaderModuleCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkShaderModule* pShaderModule);

• device is the logical device that creates the shader module.

• pCreateInfo parameter is a pointer to an instance of the VkShaderModuleCreateInfo structure.

160

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pShaderModule points to a VkShaderModule handle in which the resulting shader module object is

returned.

Once a shader module has been created, any entry points it contains can be used in pipeline shader

stages as described in Compute Pipelines and Graphics Pipelines.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkShaderModuleCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• pShaderModule must be a pointer to a VkShaderModule handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkShaderModuleCreateInfo structure is defined as:

typedef struct VkShaderModuleCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkShaderModuleCreateFlags flags;

 size_t codeSize;

 const uint32_t* pCode;

} VkShaderModuleCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• codeSize is the size, in bytes, of the code pointed to by pCode.

• pCode points to code that is used to create the shader module. The type and format of the code is

determined from the content of the memory addressed by pCode.

161

Valid Usage

• codeSize must be greater than 0

• codeSize must be a multiple of 4

• pCode must point to valid SPIR-V code, formatted and packed as described by the Khronos

SPIR-V Specification

• pCode must adhere to the validation rules described by the Validation Rules within a

Module section of the SPIR-V Environment appendix

• pCode must declare the Shader capability for SPIR-V code

• pCode must not declare any capability that is not supported by the API, as described by the

Capabilities section of the SPIR-V Environment appendix

• If pCode declares any of the capabilities that are listed as not required by the

implementation, the relevant feature must be enabled, as listed in the SPIR-V

Environment appendix

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO

• pNext must be NULL

• flags must be 0

• pCode must be a pointer to an array of uint32_t values

To destroy a shader module, call:

void vkDestroyShaderModule(

 VkDevice device,

 VkShaderModule shaderModule,

 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the shader module.

• shaderModule is the handle of the shader module to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

A shader module can be destroyed while pipelines created using its shaders are still in use.

162

Valid Usage

• If VkAllocationCallbacks were provided when shaderModule was created, a compatible set

of callbacks must be provided here

• If no VkAllocationCallbacks were provided when shaderModule was created, pAllocator

must be NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If shaderModule is not VK_NULL_HANDLE, shaderModule must be a valid VkShaderModule

handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• If shaderModule is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to shaderModule must be externally synchronized

8.2. Shader Execution

At each stage of the pipeline, multiple invocations of a shader may execute simultaneously. Further,

invocations of a single shader produced as the result of different commands may execute

simultaneously. The relative execution order of invocations of the same shader type is undefined.

Shader invocations may complete in a different order than that in which the primitives they

originated from were drawn or dispatched by the application. However, fragment shader outputs

are written to attachments in rasterization order.

The relative order of invocations of different shader types is largely undefined. However, when

invoking a shader whose inputs are generated from a previous pipeline stage, the shader

invocations from the previous stage are guaranteed to have executed far enough to generate input

values for all required inputs.

8.3. Shader Memory Access Ordering

The order in which image or buffer memory is read or written by shaders is largely undefined. For

some shader types (vertex, tessellation evaluation, and in some cases, fragment), even the number

of shader invocations that may perform loads and stores is undefined.

In particular, the following rules apply:

163

• Vertex and tessellation evaluation shaders will be invoked at least once for each unique vertex,

as defined in those sections.

• Fragment shaders will be invoked zero or more times, as defined in that section.

• The relative order of invocations of the same shader type are undefined. A store issued by a

shader when working on primitive B might complete prior to a store for primitive A, even if

primitive A is specified prior to primitive B. This applies even to fragment shaders; while

fragment shader outputs are always written to the framebuffer in rasterization order, stores

executed by fragment shader invocations are not.

• The relative order of invocations of different shader types is largely undefined.



Note

The above limitations on shader invocation order make some forms of

synchronization between shader invocations within a single set of primitives

unimplementable. For example, having one invocation poll memory written by

another invocation assumes that the other invocation has been launched and will

complete its writes in finite time.

Stores issued to different memory locations within a single shader invocation may not be visible to

other invocations, or may not become visible in the order they were performed.

The OpMemoryBarrier instruction can be used to provide stronger ordering of reads and writes

performed by a single invocation. OpMemoryBarrier guarantees that any memory transactions issued

by the shader invocation prior to the instruction complete prior to the memory transactions issued

after the instruction. Memory barriers are needed for algorithms that require multiple invocations

to access the same memory and require the operations to be performed in a partially-defined

relative order. For example, if one shader invocation does a series of writes, followed by an

OpMemoryBarrier instruction, followed by another write, then the results of the series of writes

before the barrier become visible to other shader invocations at a time earlier or equal to when the

results of the final write become visible to those invocations. In practice it means that another

invocation that sees the results of the final write would also see the previous writes. Without the

memory barrier, the final write may be visible before the previous writes.

Writes that are the result of shader stores through a variable decorated with Coherent automatically

have available writes to the same buffer, buffer view, or image view made visible to them, and are

themselves automatically made available to access by the same buffer, buffer view, or image view.

Reads that are the result of shader loads through a variable decorated with Coherent automatically

have available writes to the same buffer, buffer view, or image view made visible to them. The

order that coherent writes to different locations become available is undefined, unless enforced by

a memory barrier instruction or other memory dependency.


Note

Explicit memory dependencies must still be used to guarantee availability and

visibility for access via other buffers, buffer views, or image views.

The built-in atomic memory transaction instructions can be used to read and write a given memory

address atomically. While built-in atomic functions issued by multiple shader invocations are

164

executed in undefined order relative to each other, these functions perform both a read and a write

of a memory address and guarantee that no other memory transaction will write to the underlying

memory between the read and write. Atomic operations ensure automatic availability and visibility

for writes and reads in the same way as those to Coherent variables.

Example 1. Note

Memory accesses performed on different resource descriptors with the same memory backing

may not be well-defined even with the Coherent decoration or via atomics, due to things such

as image layouts or ownership of the resource - as described in the Synchronization and Cache

Control chapter.


Note

Atomics allow shaders to use shared global addresses for mutual exclusion or as

counters, among other uses.

8.4. Shader Inputs and Outputs

Data is passed into and out of shaders using variables with input or output storage class,

respectively. User-defined inputs and outputs are connected between stages by matching their

Location decorations. Additionally, data can be provided by or communicated to special functions

provided by the execution environment using BuiltIn decorations.

In many cases, the same BuiltIn decoration can be used in multiple shader stages with similar

meaning. The specific behavior of variables decorated as BuiltIn is documented in the following

sections.

8.5. Vertex Shaders

Each vertex shader invocation operates on one vertex and its associated vertex attribute data, and

outputs one vertex and associated data. Graphics pipelines must include a vertex shader, and the

vertex shader stage is always the first shader stage in the graphics pipeline.

8.5.1. Vertex Shader Execution

A vertex shader must be executed at least once for each vertex specified by a draw command.

During execution, the shader is presented with the index of the vertex and instance for which it has

been invoked. Input variables declared in the vertex shader are filled by the implementation with

the values of vertex attributes associated with the invocation being executed.

If the same vertex is specified multiple times in a draw command (e.g. by including the same index

value multiple times in an index buffer) the implementation may reuse the results of vertex

shading if it can statically determine that the vertex shader invocations will produce identical

results.

165



Note

It is implementation-dependent when and if results of vertex shading are reused,

and thus how many times the vertex shader will be executed. This is true also if

the vertex shader contains stores or atomic operations (see

vertexPipelineStoresAndAtomics).

8.6. Tessellation Control Shaders

The tessellation control shader is used to read an input patch provided by the application and to

produce an output patch. Each tessellation control shader invocation operates on an input patch

(after all control points in the patch are processed by a vertex shader) and its associated data, and

outputs a single control point of the output patch and its associated data, and can also output

additional per-patch data. The input patch is sized according to the patchControlPoints member of

VkPipelineTessellationStateCreateInfo, as part of input assembly. The size of the output patch is

controlled by the OpExecutionMode OutputVertices specified in the tessellation control or tessellation

evaluation shaders, which must be specified in at least one of the shaders. The size of the input and

output patches must each be greater than zero and less than or equal to VkPhysicalDeviceLimits

::maxTessellationPatchSize.

8.6.1. Tessellation Control Shader Execution

A tessellation control shader is invoked at least once for each output vertex in a patch.

Inputs to the tessellation control shader are generated by the vertex shader. Each invocation of the

tessellation control shader can read the attributes of any incoming vertices and their associated

data. The invocations corresponding to a given patch execute logically in parallel, with undefined

relative execution order. However, the OpControlBarrier instruction can be used to provide limited

control of the execution order by synchronizing invocations within a patch, effectively dividing

tessellation control shader execution into a set of phases. Tessellation control shaders will read

undefined values if one invocation reads a per-vertex or per-patch attribute written by another

invocation at any point during the same phase, or if two invocations attempt to write different

values to the same per-patch output in a single phase.

8.7. Tessellation Evaluation Shaders

The Tessellation Evaluation Shader operates on an input patch of control points and their

associated data, and a single input barycentric coordinate indicating the invocation’s relative

position within the subdivided patch, and outputs a single vertex and its associated data.

8.7.1. Tessellation Evaluation Shader Execution

A tessellation evaluation shader is invoked at least once for each unique vertex generated by the

tessellator.

166

8.8. Geometry Shaders

The geometry shader operates on a group of vertices and their associated data assembled from a

single input primitive, and emits zero or more output primitives and the group of vertices and their

associated data required for each output primitive.

8.8.1. Geometry Shader Execution

A geometry shader is invoked at least once for each primitive produced by the tessellation stages,

or at least once for each primitive generated by primitive assembly when tessellation is not in use.

The number of geometry shader invocations per input primitive is determined from the invocation

count of the geometry shader specified by the OpExecutionMode Invocations in the geometry shader.

If the invocation count is not specified, then a default of one invocation is executed.

8.9. Fragment Shaders

Fragment shaders are invoked as the result of rasterization in a graphics pipeline. Each fragment

shader invocation operates on a single fragment and its associated data. With few exceptions,

fragment shaders do not have access to any data associated with other fragments and are

considered to execute in isolation of fragment shader invocations associated with other fragments.

8.9.1. Fragment Shader Execution

For each fragment generated by rasterization, a fragment shader may be invoked. A fragment

shader must not be invoked if the Early Per-Fragment Tests cause it to have no coverage.

Furthermore, if it is determined that a fragment generated as the result of rasterizing a first

primitive will have its outputs entirely overwritten by a fragment generated as the result of

rasterizing a second primitive in the same subpass, and the fragment shader used for the fragment

has no other side effects, then the fragment shader may not be executed for the fragment from the

first primitive.

Relative ordering of execution of different fragment shader invocations is not defined.

The number of fragment shader invocations produced per-pixel is determined as follows:

• If per-sample shading is enabled, the fragment shader is invoked once per covered sample.

• Otherwise, the fragment shader is invoked at least once per fragment but no more than once

per covered sample.

In addition to the conditions outlined above for the invocation of a fragment shader, a fragment

shader invocation may be produced as a helper invocation. A helper invocation is a fragment

shader invocation that is created solely for the purposes of evaluating derivatives for use in non-

helper fragment shader invocations. Stores and atomics performed by helper invocations must not

have any effect on memory, and values returned by atomic instructions in helper invocations are

undefined.

167

8.9.2. Early Fragment Tests

An explicit control is provided to allow fragment shaders to enable early fragment tests. If the

fragment shader specifies the EarlyFragmentTests OpExecutionMode, the per-fragment tests described

in Early Fragment Test Mode are performed prior to fragment shader execution. Otherwise, they

are performed after fragment shader execution.

8.10. Compute Shaders

Compute shaders are invoked via vkCmdDispatch and vkCmdDispatchIndirect commands. In

general, they have access to similar resources as shader stages executing as part of a graphics

pipeline.

Compute workloads are formed from groups of work items called workgroups and processed by the

compute shader in the current compute pipeline. A workgroup is a collection of shader invocations

that execute the same shader, potentially in parallel. Compute shaders execute in global

workgroups which are divided into a number of local workgroups with a size that can be set by

assigning a value to the LocalSize execution mode or via an object decorated by the WorkgroupSize

decoration. An invocation within a local workgroup can share data with other members of the local

workgroup through shared variables and issue memory and control flow barriers to synchronize

with other members of the local workgroup.

8.11. Interpolation Decorations

Interpolation decorations control the behavior of attribute interpolation in the fragment shader

stage. Interpolation decorations can be applied to Input storage class variables in the fragment

shader stage’s interface, and control the interpolation behavior of those variables.

Inputs that could be interpolated can be decorated by at most one of the following decorations:

• Flat: no interpolation

• NoPerspective: linear interpolation (for lines and polygons).

Fragment input variables decorated with neither Flat nor NoPerspective use perspective-correct

interpolation (for lines and polygons).

The presence of and type of interpolation is controlled by the above interpolation decorations as

well as the auxiliary decorations Centroid and Sample.

A variable decorated with Flat will not be interpolated. Instead, it will have the same value for

every fragment within a triangle. This value will come from a single provoking vertex. A variable

decorated with Flat can also be decorated with Centroid or Sample, which will mean the same thing

as decorating it only as Flat.

For fragment shader input variables decorated with neither Centroid nor Sample, the assigned

variable may be interpolated anywhere within the pixel and a single value may be assigned to each

sample within the pixel.

Centroid and Sample can be used to control the location and frequency of the sampling of the

168

decorated fragment shader input. If a fragment shader input is decorated with Centroid, a single

value may be assigned to that variable for all samples in the pixel, but that value must be

interpolated to a location that lies in both the pixel and in the primitive being rendered, including

any of the pixel’s samples covered by the primitive. Because the location at which the variable is

interpolated may be different in neighboring pixels, and derivatives may be computed by

computing differences between neighboring pixels, derivatives of centroid-sampled inputs may be

less accurate than those for non-centroid interpolated variables. If a fragment shader input is

decorated with Sample, a separate value must be assigned to that variable for each covered sample

in the pixel, and that value must be sampled at the location of the individual sample. When

rasterizationSamples is VK_SAMPLE_COUNT_1_BIT, the pixel center must be used for Centroid, Sample,

and undecorated attribute interpolation.

Fragment shader inputs that are signed or unsigned integers, integer vectors, or any double-

precision floating-point type must be decorated with Flat.

8.12. Static Use

A SPIR-V module declares a global object in memory using the OpVariable instruction, which results

in a pointer x to that object. A specific entry point in a SPIR-V module is said to statically use that

object if that entry point’s call tree contains a function that contains a memory instruction or image

instruction with x as an id operand. See the “Memory Instructions” and “Image Instructions”

subsections of section 3 “Binary Form” of the SPIR-V specification for the complete list of SPIR-V

memory instructions.

Static use is not used to control the behavior of variables with Input and Output storage. The effects

of those variables are applied based only on whether they are present in a shader entry point’s

interface.

8.13. Invocation and Derivative Groups

An invocation group (see the subsection “Control Flow” of section 2 of the SPIR-V specification) for a

compute shader is the set of invocations in a single local workgroup. For graphics shaders, an

invocation group is an implementation-dependent subset of the set of shader invocations of a given

shader stage which are produced by a single drawing command. For indirect drawing commands

with drawCount greater than one, invocations from separate draws are in distinct invocation groups.



Note

Because the partitioning of invocations into invocation groups is implementation-

dependent and not observable, applications generally need to assume the worst

case of all invocations in a draw belonging to a single invocation group.

A derivative group (see the subsection “Control Flow” of section 2 of the SPIR-V 1.00 Revision 4

specification) for a fragment shader is the set of invocations generated by a single primitive (point,

line, or triangle), including any helper invocations generated by that primitive. Derivatives are

undefined for a sampled image instruction if the instruction is in flow control that is not uniform

across the derivative group.

169

Chapter 9. Pipelines

The following figure shows a block diagram of the Vulkan pipelines. Some Vulkan commands

specify geometric objects to be drawn or computational work to be performed, while others specify

state controlling how objects are handled by the various pipeline stages, or control data transfer

between memory organized as images and buffers. Commands are effectively sent through a

processing pipeline, either a graphics pipeline or a compute pipeline.

The first stage of the graphics pipeline (Input Assembler) assembles vertices to form geometric

primitives such as points, lines, and triangles, based on a requested primitive topology. In the next

stage (Vertex Shader) vertices can be transformed, computing positions and attributes for each

vertex. If tessellation and/or geometry shaders are supported, they can then generate multiple

primitives from a single input primitive, possibly changing the primitive topology or generating

additional attribute data in the process.

The final resulting primitives are clipped to a clip volume in preparation for the next stage,

Rasterization. The rasterizer produces a series of framebuffer addresses and values using a two-

dimensional description of a point, line segment, or triangle. Each fragment so produced is fed to

the next stage (Fragment Shader) that performs operations on individual fragments before they

finally alter the framebuffer. These operations include conditional updates into the framebuffer

based on incoming and previously stored depth values (to effect depth buffering), blending of

incoming fragment colors with stored colors, as well as masking, stenciling, and other logical

operations on fragment values.

Framebuffer operations read and write the color and depth/stencil attachments of the framebuffer

for a given subpass of a render pass instance. The attachments can be used as input attachments in

the fragment shader in a later subpass of the same render pass.

The compute pipeline is a separate pipeline from the graphics pipeline, which operates on one-,

two-, or three-dimensional workgroups which can read from and write to buffer and image

memory.

This ordering is meant only as a tool for describing Vulkan, not as a strict rule of how Vulkan is

implemented, and we present it only as a means to organize the various operations of the pipelines.

Actual ordering guarantees between pipeline stages are explained in detail in the synchronization

chapter.

170

Legend

Color Attachment

Draw

Vertex Shader

Tessellation Control Shader

Tessellation Primitive Generator

Geometry Shader

Rasterization

Fragment Shader

Indirect Buffer Binding

Color/ Blending Operations

Storage Image

Storage Texel Buffer

Storage Buffer

Sampled Image

Uniform Texel Buffer

Index Buffer Binding

Vertex Buffer Binding

Image

Buffer

Programmable Stage

Fixed Function Stage

Tessellation Evaluation Shader

Dispatch

Compute Shader

Uniform Buffer

Input Attachment

Input Assembler

Tessellation Assembler

Geometry Assembler

Primitive Assembler

Pre-Fragment Operations

Fragment Assembler

Post-Fragment Operations

Compute Assembler

Depth/ Stencil Attachment

Constants

Push Constants

Descriptor Sets

Framebuffer

Figure 1. Block diagram of the Vulkan pipeline

Each pipeline is controlled by a monolithic object created from a description of all of the shader

stages and any relevant fixed-function stages. Linking the whole pipeline together allows the

optimization of shaders based on their input/outputs and eliminates expensive draw time state

validation.

A pipeline object is bound to the device state in command buffers. Any pipeline object state that is

marked as dynamic is not applied to the device state when the pipeline is bound. Dynamic state not

set by binding the pipeline object can be modified at any time and persists for the lifetime of the

command buffer, or until modified by another dynamic state command or another pipeline bind.

No state, including dynamic state, is inherited from one command buffer to another. Only dynamic

state that is required for the operations performed in the command buffer needs to be set. For

example, if blending is disabled by the pipeline state then the dynamic color blend constants do not

need to be specified in the command buffer, even if this state is marked as dynamic in the pipeline

state object. If a new pipeline object is bound with state not marked as dynamic after a previous

171

pipeline object with that same state as dynamic, the new pipeline object state will override the

dynamic state. Modifying dynamic state that is not set as dynamic by the pipeline state object will

lead to undefined results.

Compute and graphics pipelines are each represented by VkPipeline handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkPipeline)

9.1. Compute Pipelines

Compute pipelines consist of a single static compute shader stage and the pipeline layout.

The compute pipeline represents a compute shader and is created by calling

vkCreateComputePipelines with module and pName selecting an entry point from a shader module,

where that entry point defines a valid compute shader, in the VkPipelineShaderStageCreateInfo

structure contained within the VkComputePipelineCreateInfo structure.

To create compute pipelines, call:

VkResult vkCreateComputePipelines(

 VkDevice device,

 VkPipelineCache pipelineCache,

 uint32_t createInfoCount,

 const VkComputePipelineCreateInfo* pCreateInfos,

 const VkAllocationCallbacks* pAllocator,

 VkPipeline* pPipelines);

• device is the logical device that creates the compute pipelines.

• pipelineCache is either VK_NULL_HANDLE, indicating that pipeline caching is disabled; or the

handle of a valid pipeline cache object, in which case use of that cache is enabled for the

duration of the command.

• createInfoCount is the length of the pCreateInfos and pPipelines arrays.

• pCreateInfos is an array of VkComputePipelineCreateInfo structures.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pPipelines is a pointer to an array in which the resulting compute pipeline objects are returned.

172

Valid Usage

• If the flags member of any given element of pCreateInfos contains the

VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and the basePipelineIndex member of that same

element is not -1, basePipelineIndex must be less than the index into pCreateInfos that

corresponds to that element

• If the flags member of any given element of pCreateInfos contains the

VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, the base pipeline must have been created with

the VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT flag set

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If pipelineCache is not VK_NULL_HANDLE, pipelineCache must be a valid VkPipelineCache

handle

• pCreateInfos must be a pointer to an array of createInfoCount valid

VkComputePipelineCreateInfo structures

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• pPipelines must be a pointer to an array of createInfoCount VkPipeline handles

• createInfoCount must be greater than 0

• If pipelineCache is a valid handle, it must have been created, allocated, or retrieved from
device

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkComputePipelineCreateInfo structure is defined as:

173

typedef struct VkComputePipelineCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineCreateFlags flags;

 VkPipelineShaderStageCreateInfo stage;

 VkPipelineLayout layout;

 VkPipeline basePipelineHandle;

 int32_t basePipelineIndex;

} VkComputePipelineCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is a bitmask of VkPipelineCreateFlagBits specifying how the pipeline will be generated.

• stage is a VkPipelineShaderStageCreateInfo describing the compute shader.

• layout is the description of binding locations used by both the pipeline and descriptor sets used

with the pipeline.

• basePipelineHandle is a pipeline to derive from

• basePipelineIndex is an index into the pCreateInfos parameter to use as a pipeline to derive

from

The parameters basePipelineHandle and basePipelineIndex are described in more detail in Pipeline

Derivatives.

stage points to a structure of type VkPipelineShaderStageCreateInfo.

Valid Usage

• If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineIndex is -1,

basePipelineHandle must be a valid handle to a compute VkPipeline

• If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineHandle is

VK_NULL_HANDLE, basePipelineIndex must be a valid index into the calling command’s

pCreateInfos parameter

• If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineIndex is not

-1, basePipelineHandle must be VK_NULL_HANDLE

• If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineHandle is not

VK_NULL_HANDLE, basePipelineIndex must be -1

• The stage member of stage must be VK_SHADER_STAGE_COMPUTE_BIT

• The shader code for the entry point identified by stage and the rest of the state identified

by this structure must adhere to the pipeline linking rules described in the Shader

Interfaces chapter

• layout must be consistent with the layout of the compute shader specified in stage

174

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO

• pNext must be NULL

• flags must be a valid combination of VkPipelineCreateFlagBits values

• stage must be a valid VkPipelineShaderStageCreateInfo structure

• layout must be a valid VkPipelineLayout handle

• Both of basePipelineHandle, and layout that are valid handles must have been created,

allocated, or retrieved from the same VkDevice

The VkPipelineShaderStageCreateInfo structure is defined as:

typedef struct VkPipelineShaderStageCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineShaderStageCreateFlags flags;

 VkShaderStageFlagBits stage;

 VkShaderModule module;

 const char* pName;

 const VkSpecializationInfo* pSpecializationInfo;

} VkPipelineShaderStageCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• stage is a VkShaderStageFlagBits value specifying a single pipeline stage.

• module is a VkShaderModule object that contains the shader for this stage.

• pName is a pointer to a null-terminated UTF-8 string specifying the entry point name of the

shader for this stage.

• pSpecializationInfo is a pointer to VkSpecializationInfo, as described in Specialization

Constants, and can be NULL.

175

Valid Usage

• If the geometry shaders feature is not enabled, stage must not be
VK_SHADER_STAGE_GEOMETRY_BIT

• If the tessellation shaders feature is not enabled, stage must not be

VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT or
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT

• stage must not be VK_SHADER_STAGE_ALL_GRAPHICS, or VK_SHADER_STAGE_ALL

• pName must be the name of an OpEntryPoint in module with an execution model that

matches stage

• If the identified entry point includes any variable in its interface that is declared with the

ClipDistance BuiltIn decoration, that variable must not have an array size greater than

VkPhysicalDeviceLimits::maxClipDistances

• If the identified entry point includes any variable in its interface that is declared with the

CullDistance BuiltIn decoration, that variable must not have an array size greater than

VkPhysicalDeviceLimits::maxCullDistances

• If the identified entry point includes any variables in its interface that are declared with

the ClipDistance or CullDistance BuiltIn decoration, those variables must not have array

sizes which sum to more than VkPhysicalDeviceLimits::maxCombinedClipAndCullDistances

• If the identified entry point includes any variable in its interface that is declared with the

SampleMask BuiltIn decoration, that variable must not have an array size greater than

VkPhysicalDeviceLimits::maxSampleMaskWords

• If stage is VK_SHADER_STAGE_VERTEX_BIT, the identified entry point must not include any

input variable in its interface that is decorated with CullDistance

• If stage is VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT or

VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, and the identified entry point has an

OpExecutionMode instruction that specifies a patch size with OutputVertices, the patch size

must be greater than 0 and less than or equal to VkPhysicalDeviceLimits

::maxTessellationPatchSize

• If stage is VK_SHADER_STAGE_GEOMETRY_BIT, the identified entry point must have an

OpExecutionMode instruction that specifies a maximum output vertex count that is greater

than 0 and less than or equal to VkPhysicalDeviceLimits::maxGeometryOutputVertices

• If stage is VK_SHADER_STAGE_GEOMETRY_BIT, the identified entry point must have an

OpExecutionMode instruction that specifies an invocation count that is greater than 0 and

less than or equal to VkPhysicalDeviceLimits::maxGeometryShaderInvocations

• If stage is VK_SHADER_STAGE_GEOMETRY_BIT, and the identified entry point writes to Layer for

any primitive, it must write the same value to Layer for all vertices of a given primitive

• If stage is VK_SHADER_STAGE_GEOMETRY_BIT, and the identified entry point writes to

ViewportIndex for any primitive, it must write the same value to ViewportIndex for all

vertices of a given primitive

• If stage is VK_SHADER_STAGE_FRAGMENT_BIT, the identified entry point must not include any

output variables in its interface decorated with CullDistance

176

• If stage is VK_SHADER_STAGE_FRAGMENT_BIT, and the identified entry point writes to FragDepth

in any execution path, it must write to FragDepth in all execution paths

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO

• pNext must be NULL

• flags must be 0

• stage must be a valid VkShaderStageFlagBits value

• module must be a valid VkShaderModule handle

• pName must be a null-terminated UTF-8 string

• If pSpecializationInfo is not NULL, pSpecializationInfo must be a pointer to a valid

VkSpecializationInfo structure

Commands and structures which need to specify one or more shader stages do so using a bitmask

whose bits correspond to stages. Bits which can be set to specify shader stages are:

typedef enum VkShaderStageFlagBits {

 VK_SHADER_STAGE_VERTEX_BIT = 0x00000001,

 VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT = 0x00000002,

 VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT = 0x00000004,

 VK_SHADER_STAGE_GEOMETRY_BIT = 0x00000008,

 VK_SHADER_STAGE_FRAGMENT_BIT = 0x00000010,

 VK_SHADER_STAGE_COMPUTE_BIT = 0x00000020,

 VK_SHADER_STAGE_ALL_GRAPHICS = 0x0000001F,

 VK_SHADER_STAGE_ALL = 0x7FFFFFFF,

} VkShaderStageFlagBits;

• VK_SHADER_STAGE_VERTEX_BIT specifies the vertex stage.

• VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT specifies the tessellation control stage.

• VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT specifies the tessellation evaluation stage.

• VK_SHADER_STAGE_GEOMETRY_BIT specifies the geometry stage.

• VK_SHADER_STAGE_FRAGMENT_BIT specifies the fragment stage.

• VK_SHADER_STAGE_COMPUTE_BIT specifies the compute stage.

• VK_SHADER_STAGE_ALL_GRAPHICS is a combination of bits used as shorthand to specify all graphics

stages defined above (excluding the compute stage).

• VK_SHADER_STAGE_ALL is a combination of bits used as shorthand to specify all shader stages

supported by the device, including all additional stages which are introduced by extensions.

177

9.2. Graphics Pipelines

Graphics pipelines consist of multiple shader stages, multiple fixed-function pipeline stages, and a

pipeline layout.

To create graphics pipelines, call:

VkResult vkCreateGraphicsPipelines(

 VkDevice device,

 VkPipelineCache pipelineCache,

 uint32_t createInfoCount,

 const VkGraphicsPipelineCreateInfo* pCreateInfos,

 const VkAllocationCallbacks* pAllocator,

 VkPipeline* pPipelines);

• device is the logical device that creates the graphics pipelines.

• pipelineCache is either VK_NULL_HANDLE, indicating that pipeline caching is disabled; or the

handle of a valid pipeline cache object, in which case use of that cache is enabled for the

duration of the command.

• createInfoCount is the length of the pCreateInfos and pPipelines arrays.

• pCreateInfos is an array of VkGraphicsPipelineCreateInfo structures.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pPipelines is a pointer to an array in which the resulting graphics pipeline objects are returned.

The VkGraphicsPipelineCreateInfo structure includes an array of shader create info structures

containing all the desired active shader stages, as well as creation info to define all relevant fixed-

function stages, and a pipeline layout.

Valid Usage

• If the flags member of any given element of pCreateInfos contains the

VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and the basePipelineIndex member of that same

element is not -1, basePipelineIndex must be less than the index into pCreateInfos that

corresponds to that element

• If the flags member of any given element of pCreateInfos contains the

VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, the base pipeline must have been created with

the VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT flag set

178

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If pipelineCache is not VK_NULL_HANDLE, pipelineCache must be a valid VkPipelineCache

handle

• pCreateInfos must be a pointer to an array of createInfoCount valid

VkGraphicsPipelineCreateInfo structures

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• pPipelines must be a pointer to an array of createInfoCount VkPipeline handles

• createInfoCount must be greater than 0

• If pipelineCache is a valid handle, it must have been created, allocated, or retrieved from
device

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkGraphicsPipelineCreateInfo structure is defined as:

179

typedef struct VkGraphicsPipelineCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineCreateFlags flags;

 uint32_t stageCount;

 const VkPipelineShaderStageCreateInfo* pStages;

 const VkPipelineVertexInputStateCreateInfo* pVertexInputState;

 const VkPipelineInputAssemblyStateCreateInfo* pInputAssemblyState;

 const VkPipelineTessellationStateCreateInfo* pTessellationState;

 const VkPipelineViewportStateCreateInfo* pViewportState;

 const VkPipelineRasterizationStateCreateInfo* pRasterizationState;

 const VkPipelineMultisampleStateCreateInfo* pMultisampleState;

 const VkPipelineDepthStencilStateCreateInfo* pDepthStencilState;

 const VkPipelineColorBlendStateCreateInfo* pColorBlendState;

 const VkPipelineDynamicStateCreateInfo* pDynamicState;

 VkPipelineLayout layout;

 VkRenderPass renderPass;

 uint32_t subpass;

 VkPipeline basePipelineHandle;

 int32_t basePipelineIndex;

} VkGraphicsPipelineCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is a bitmask of VkPipelineCreateFlagBits specifying how the pipeline will be generated.

• stageCount is the number of entries in the pStages array.

• pStages is an array of size stageCount structures of type VkPipelineShaderStageCreateInfo

describing the set of the shader stages to be included in the graphics pipeline.

• pVertexInputState is a pointer to an instance of the VkPipelineVertexInputStateCreateInfo

structure.

• pInputAssemblyState is a pointer to an instance of the VkPipelineInputAssemblyStateCreateInfo

structure which determines input assembly behavior, as described in Drawing Commands.

• pTessellationState is a pointer to an instance of the VkPipelineTessellationStateCreateInfo

structure, and is ignored if the pipeline does not include a tessellation control shader stage and

tessellation evaluation shader stage.

• pViewportState is a pointer to an instance of the VkPipelineViewportStateCreateInfo structure,

and is ignored if the pipeline has rasterization disabled.

• pRasterizationState is a pointer to an instance of the VkPipelineRasterizationStateCreateInfo

structure.

• pMultisampleState is a pointer to an instance of the VkPipelineMultisampleStateCreateInfo, and

is ignored if the pipeline has rasterization disabled.

• pDepthStencilState is a pointer to an instance of the VkPipelineDepthStencilStateCreateInfo

structure, and is ignored if the pipeline has rasterization disabled or if the subpass of the render

pass the pipeline is created against does not use a depth/stencil attachment.

180

• pColorBlendState is a pointer to an instance of the VkPipelineColorBlendStateCreateInfo

structure, and is ignored if the pipeline has rasterization disabled or if the subpass of the render

pass the pipeline is created against does not use any color attachments.

• pDynamicState is a pointer to VkPipelineDynamicStateCreateInfo and is used to indicate which

properties of the pipeline state object are dynamic and can be changed independently of the

pipeline state. This can be NULL, which means no state in the pipeline is considered dynamic.

• layout is the description of binding locations used by both the pipeline and descriptor sets used

with the pipeline.

• renderPass is a handle to a render pass object describing the environment in which the pipeline

will be used; the pipeline must only be used with an instance of any render pass compatible

with the one provided. See Render Pass Compatibility for more information.

• subpass is the index of the subpass in the render pass where this pipeline will be used.

• basePipelineHandle is a pipeline to derive from.

• basePipelineIndex is an index into the pCreateInfos parameter to use as a pipeline to derive

from.

The parameters basePipelineHandle and basePipelineIndex are described in more detail in Pipeline

Derivatives.

pStages points to an array of VkPipelineShaderStageCreateInfo structures, which were previously

described in Compute Pipelines.

pDynamicState points to a structure of type VkPipelineDynamicStateCreateInfo.

181

Valid Usage

• If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineIndex is -1,

basePipelineHandle must be a valid handle to a graphics VkPipeline

• If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineHandle is

VK_NULL_HANDLE, basePipelineIndex must be a valid index into the calling command’s

pCreateInfos parameter

• If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineIndex is not

-1, basePipelineHandle must be VK_NULL_HANDLE

• If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineHandle is not

VK_NULL_HANDLE, basePipelineIndex must be -1

• The stage member of each element of pStages must be unique

• The stage member of one element of pStages must be VK_SHADER_STAGE_VERTEX_BIT

• The stage member of any given element of pStages must not be
VK_SHADER_STAGE_COMPUTE_BIT

• If pStages includes a tessellation control shader stage, it must include a tessellation

evaluation shader stage

• If pStages includes a tessellation evaluation shader stage, it must include a tessellation

control shader stage

• If pStages includes a tessellation control shader stage and a tessellation evaluation shader

stage, pTessellationState must be a pointer to a valid

VkPipelineTessellationStateCreateInfo structure

• If pStages includes tessellation shader stages, the shader code of at least one stage must

contain an OpExecutionMode instruction that specifies the type of subdivision in the

pipeline

• If pStages includes tessellation shader stages, and the shader code of both stages contain

an OpExecutionMode instruction that specifies the type of subdivision in the pipeline, they

must both specify the same subdivision mode

• If pStages includes tessellation shader stages, the shader code of at least one stage must

contain an OpExecutionMode instruction that specifies the output patch size in the pipeline

• If pStages includes tessellation shader stages, and the shader code of both contain an

OpExecutionMode instruction that specifies the out patch size in the pipeline, they must

both specify the same patch size

• If pStages includes tessellation shader stages, the topology member of pInputAssembly

must be VK_PRIMITIVE_TOPOLOGY_PATCH_LIST

• If the topology member of pInputAssembly is VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, pStages

must include tessellation shader stages

• If pStages includes a geometry shader stage, and does not include any tessellation shader

stages, its shader code must contain an OpExecutionMode instruction that specifies an input

primitive type that is compatible with the primitive topology specified in pInputAssembly

• If pStages includes a geometry shader stage, and also includes tessellation shader stages,

182

its shader code must contain an OpExecutionMode instruction that specifies an input

primitive type that is compatible with the primitive topology that is output by the

tessellation stages

• If pStages includes a fragment shader stage and a geometry shader stage, and the

fragment shader code reads from an input variable that is decorated with PrimitiveID,

then the geometry shader code must write to a matching output variable, decorated with

PrimitiveID, in all execution paths

• If pStages includes a fragment shader stage, its shader code must not read from any input

attachment that is defined as VK_ATTACHMENT_UNUSED in subpass

• The shader code for the entry points identified by pStages, and the rest of the state

identified by this structure must adhere to the pipeline linking rules described in the

Shader Interfaces chapter

• If rasterization is not disabled and subpass uses a depth/stencil attachment in renderpass

that has a layout of VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL in the

VkAttachmentReference defined by subpass, the depthWriteEnable member of

pDepthStencilState must be VK_FALSE

• If rasterization is not disabled and subpass uses a depth/stencil attachment in renderpass

that has a layout of VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL in the

VkAttachmentReference defined by subpass, the failOp, passOp and depthFailOp members of

each of the front and back members of pDepthStencilState must be VK_STENCIL_OP_KEEP

• If rasterization is not disabled and the subpass uses color attachments, then for each color

attachment in the subpass the blendEnable member of the corresponding element of the

pAttachment member of pColorBlendState must be VK_FALSE if the format of the attachment

does not support color blend operations, as specified by the

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT flag in VkFormatProperties

::linearTilingFeatures or VkFormatProperties::optimalTilingFeatures returned by
vkGetPhysicalDeviceFormatProperties

• If rasterization is not disabled and the subpass uses color attachments, the

attachmentCount member of pColorBlendState must be equal to the colorAttachmentCount

used to create subpass

• If no element of the pDynamicStates member of pDynamicState is VK_DYNAMIC_STATE_VIEWPORT,

the pViewports member of pViewportState must be a pointer to an array of pViewportState

::viewportCount VkViewport structures

• If no element of the pDynamicStates member of pDynamicState is VK_DYNAMIC_STATE_SCISSOR,

the pScissors member of pViewportState must be a pointer to an array of pViewportState

::scissorCount VkRect2D structures

• If the wide lines feature is not enabled, and no element of the pDynamicStates member of

pDynamicState is VK_DYNAMIC_STATE_LINE_WIDTH, the lineWidth member of

pRasterizationState must be 1.0

• If the rasterizerDiscardEnable member of pRasterizationState is VK_FALSE, pViewportState

must be a pointer to a valid VkPipelineViewportStateCreateInfo structure

• If the rasterizerDiscardEnable member of pRasterizationState is VK_FALSE,

pMultisampleState must be a pointer to a valid VkPipelineMultisampleStateCreateInfo

183

structure

• If the rasterizerDiscardEnable member of pRasterizationState is VK_FALSE, and subpass

uses a depth/stencil attachment, pDepthStencilState must be a pointer to a valid

VkPipelineDepthStencilStateCreateInfo structure

• If the rasterizerDiscardEnable member of pRasterizationState is VK_FALSE, and subpass

uses color attachments, pColorBlendState must be a pointer to a valid

VkPipelineColorBlendStateCreateInfo structure

• If the depth bias clamping feature is not enabled, no element of the pDynamicStates

member of pDynamicState is VK_DYNAMIC_STATE_DEPTH_BIAS, and the depthBiasEnable

member of pDepthStencil is VK_TRUE, the depthBiasClamp member of pDepthStencil must be
0.0

• If no element of the pDynamicStates member of pDynamicState is

VK_DYNAMIC_STATE_DEPTH_BOUNDS, and the depthBoundsTestEnable member of pDepthStencil is

VK_TRUE, the minDepthBounds and maxDepthBounds members of pDepthStencil must be

between 0.0 and 1.0, inclusive

• layout must be consistent with all shaders specified in pStages

• If subpass uses color and/or depth/stencil attachments, then the rasterizationSamples

member of pMultisampleState must be the same as the sample count for those subpass

attachments

• If subpass does not use any color and/or depth/stencil attachments, then the

rasterizationSamples member of pMultisampleState must follow the rules for a zero-

attachment subpass

• subpass must be a valid subpass within renderpass

184

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO

• pNext must be NULL

• flags must be a valid combination of VkPipelineCreateFlagBits values

• pStages must be a pointer to an array of stageCount valid VkPipelineShaderStageCreateInfo

structures

• pVertexInputState must be a pointer to a valid VkPipelineVertexInputStateCreateInfo

structure

• pInputAssemblyState must be a pointer to a valid VkPipelineInputAssemblyStateCreateInfo

structure

• pRasterizationState must be a pointer to a valid VkPipelineRasterizationStateCreateInfo

structure

• If pDynamicState is not NULL, pDynamicState must be a pointer to a valid

VkPipelineDynamicStateCreateInfo structure

• layout must be a valid VkPipelineLayout handle

• renderPass must be a valid VkRenderPass handle

• stageCount must be greater than 0

• Each of basePipelineHandle, layout, and renderPass that are valid handles must have been

created, allocated, or retrieved from the same VkDevice

Possible values of the flags member of VkGraphicsPipelineCreateInfo and

VkComputePipelineCreateInfo, specifying how a pipeline is created, are:

typedef enum VkPipelineCreateFlagBits {

 VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT = 0x00000001,

 VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT = 0x00000002,

 VK_PIPELINE_CREATE_DERIVATIVE_BIT = 0x00000004,

} VkPipelineCreateFlagBits;

• VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT specifies that the created pipeline will not be

optimized. Using this flag may reduce the time taken to create the pipeline.

• VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT specifies that the pipeline to be created is allowed to

be the parent of a pipeline that will be created in a subsequent call to

vkCreateGraphicsPipelines or vkCreateComputePipelines.

• VK_PIPELINE_CREATE_DERIVATIVE_BIT specifies that the pipeline to be created will be a child of a

previously created parent pipeline.

It is valid to set both VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT and

VK_PIPELINE_CREATE_DERIVATIVE_BIT. This allows a pipeline to be both a parent and possibly a child

in a pipeline hierarchy. See Pipeline Derivatives for more information.

185

The VkPipelineDynamicStateCreateInfo structure is defined as:

typedef struct VkPipelineDynamicStateCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineDynamicStateCreateFlags flags;

 uint32_t dynamicStateCount;

 const VkDynamicState* pDynamicStates;

} VkPipelineDynamicStateCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• dynamicStateCount is the number of elements in the pDynamicStates array.

• pDynamicStates is an array of VkDynamicState values specifying which pieces of pipeline state

will use the values from dynamic state commands rather than from pipeline state creation info.

Valid Usage

• Each element of pDynamicStates must be unique

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO

• pNext must be NULL

• flags must be 0

• pDynamicStates must be a pointer to an array of dynamicStateCount valid VkDynamicState

values

• dynamicStateCount must be greater than 0

The source of different pieces of dynamic state is specified by the

VkPipelineDynamicStateCreateInfo::pDynamicStates property of the currently active pipeline, each

of whose elements must be one of the values:

186

typedef enum VkDynamicState {

 VK_DYNAMIC_STATE_VIEWPORT = 0,

 VK_DYNAMIC_STATE_SCISSOR = 1,

 VK_DYNAMIC_STATE_LINE_WIDTH = 2,

 VK_DYNAMIC_STATE_DEPTH_BIAS = 3,

 VK_DYNAMIC_STATE_BLEND_CONSTANTS = 4,

 VK_DYNAMIC_STATE_DEPTH_BOUNDS = 5,

 VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK = 6,

 VK_DYNAMIC_STATE_STENCIL_WRITE_MASK = 7,

 VK_DYNAMIC_STATE_STENCIL_REFERENCE = 8,

} VkDynamicState;

• VK_DYNAMIC_STATE_VIEWPORT specifies that the pViewports state in

VkPipelineViewportStateCreateInfo will be ignored and must be set dynamically with

vkCmdSetViewport before any draw commands. The number of viewports used by a pipeline is

still specified by the viewportCount member of VkPipelineViewportStateCreateInfo.

• VK_DYNAMIC_STATE_SCISSOR specifies that the pScissors state in VkPipelineViewportStateCreateInfo

will be ignored and must be set dynamically with vkCmdSetScissor before any draw

commands. The number of scissor rectangles used by a pipeline is still specified by the

scissorCount member of VkPipelineViewportStateCreateInfo.

• VK_DYNAMIC_STATE_LINE_WIDTH specifies that the lineWidth state in

VkPipelineRasterizationStateCreateInfo will be ignored and must be set dynamically with

vkCmdSetLineWidth before any draw commands that generate line primitives for the

rasterizer.

• VK_DYNAMIC_STATE_DEPTH_BIAS specifies that the depthBiasConstantFactor, depthBiasClamp and

depthBiasSlopeFactor states in VkPipelineRasterizationStateCreateInfo will be ignored and must

be set dynamically with vkCmdSetDepthBias before any draws are performed with

depthBiasEnable in VkPipelineRasterizationStateCreateInfo set to VK_TRUE.

• VK_DYNAMIC_STATE_BLEND_CONSTANTS specifies that the blendConstants state in

VkPipelineColorBlendStateCreateInfo will be ignored and must be set dynamically with

vkCmdSetBlendConstants before any draws are performed with a pipeline state with

VkPipelineColorBlendAttachmentState member blendEnable set to VK_TRUE and any of the blend

functions using a constant blend color.

• VK_DYNAMIC_STATE_DEPTH_BOUNDS specifies that the minDepthBounds and maxDepthBounds states of

VkPipelineDepthStencilStateCreateInfo will be ignored and must be set dynamically with

vkCmdSetDepthBounds before any draws are performed with a pipeline state with

VkPipelineDepthStencilStateCreateInfo member depthBoundsTestEnable set to VK_TRUE.

• VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK specifies that the compareMask state in

VkPipelineDepthStencilStateCreateInfo for both front and back will be ignored and must be set

dynamically with vkCmdSetStencilCompareMask before any draws are performed with a

pipeline state with VkPipelineDepthStencilStateCreateInfo member stencilTestEnable set to
VK_TRUE

• VK_DYNAMIC_STATE_STENCIL_WRITE_MASK specifies that the writeMask state in

VkPipelineDepthStencilStateCreateInfo for both front and back will be ignored and must be set

dynamically with vkCmdSetStencilWriteMask before any draws are performed with a pipeline

187

state with VkPipelineDepthStencilStateCreateInfo member stencilTestEnable set to VK_TRUE

• VK_DYNAMIC_STATE_STENCIL_REFERENCE specifies that the reference state in

VkPipelineDepthStencilStateCreateInfo for both front and back will be ignored and must be set

dynamically with vkCmdSetStencilReference before any draws are performed with a pipeline

state with VkPipelineDepthStencilStateCreateInfo member stencilTestEnable set to VK_TRUE

9.2.1. Valid Combinations of Stages for Graphics Pipelines

If tessellation shader stages are omitted, the tessellation shading and fixed-function stages of the

pipeline are skipped.

If a geometry shader is omitted, the geometry shading stage is skipped.

If a fragment shader is omitted, the results of fragment processing are undefined. Specifically, any

fragment color outputs are considered to have undefined values, and the fragment depth is

considered to be unmodified. This can be useful for depth-only rendering.

Presence of a shader stage in a pipeline is indicated by including a valid

VkPipelineShaderStageCreateInfo with module and pName selecting an entry point from a shader

module, where that entry point is valid for the stage specified by stage.

Presence of some of the fixed-function stages in the pipeline is implicitly derived from enabled

shaders and provided state. For example, the fixed-function tessellator is always present when the

pipeline has valid Tessellation Control and Tessellation Evaluation shaders.

For example:

• Depth/stencil-only rendering in a subpass with no color attachments

◦ Active Pipeline Shader Stages

▪ Vertex Shader

◦ Required: Fixed-Function Pipeline Stages

▪ VkPipelineVertexInputStateCreateInfo

▪ VkPipelineInputAssemblyStateCreateInfo

▪ VkPipelineViewportStateCreateInfo

▪ VkPipelineRasterizationStateCreateInfo

▪ VkPipelineMultisampleStateCreateInfo

▪ VkPipelineDepthStencilStateCreateInfo

• Color-only rendering in a subpass with no depth/stencil attachment

◦ Active Pipeline Shader Stages

▪ Vertex Shader

▪ Fragment Shader

◦ Required: Fixed-Function Pipeline Stages

▪ VkPipelineVertexInputStateCreateInfo

188

▪ VkPipelineInputAssemblyStateCreateInfo

▪ VkPipelineViewportStateCreateInfo

▪ VkPipelineRasterizationStateCreateInfo

▪ VkPipelineMultisampleStateCreateInfo

▪ VkPipelineColorBlendStateCreateInfo

• Rendering pipeline with tessellation and geometry shaders

◦ Active Pipeline Shader Stages

▪ Vertex Shader

▪ Tessellation Control Shader

▪ Tessellation Evaluation Shader

▪ Geometry Shader

▪ Fragment Shader

◦ Required: Fixed-Function Pipeline Stages

▪ VkPipelineVertexInputStateCreateInfo

▪ VkPipelineInputAssemblyStateCreateInfo

▪ VkPipelineTessellationStateCreateInfo

▪ VkPipelineViewportStateCreateInfo

▪ VkPipelineRasterizationStateCreateInfo

▪ VkPipelineMultisampleStateCreateInfo

▪ VkPipelineDepthStencilStateCreateInfo

▪ VkPipelineColorBlendStateCreateInfo

9.3. Pipeline destruction

To destroy a graphics or compute pipeline, call:

void vkDestroyPipeline(

 VkDevice device,

 VkPipeline pipeline,

 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the pipeline.

• pipeline is the handle of the pipeline to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

189

Valid Usage

• All submitted commands that refer to pipeline must have completed execution

• If VkAllocationCallbacks were provided when pipeline was created, a compatible set of

callbacks must be provided here

• If no VkAllocationCallbacks were provided when pipeline was created, pAllocator must

be NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If pipeline is not VK_NULL_HANDLE, pipeline must be a valid VkPipeline handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• If pipeline is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to pipeline must be externally synchronized

9.4. Multiple Pipeline Creation

Multiple pipelines can be created simultaneously by passing an array of

VkGraphicsPipelineCreateInfo or VkComputePipelineCreateInfo structures into the

vkCreateGraphicsPipelines and vkCreateComputePipelines commands, respectively. Applications

can group together similar pipelines to be created in a single call, and implementations are

encouraged to look for reuse opportunities within a group-create.

When an application attempts to create many pipelines in a single command, it is possible that

some subset may fail creation. In that case, the corresponding entries in the pPipelines output

array will be filled with VK_NULL_HANDLE values. If any pipeline fails creation (for example, due

to out of memory errors), the vkCreate*Pipelines commands will return an error code. The

implementation will attempt to create all pipelines, and only return VK_NULL_HANDLE values for

those that actually failed.

9.5. Pipeline Derivatives

A pipeline derivative is a child pipeline created from a parent pipeline, where the child and parent

are expected to have much commonality. The goal of derivative pipelines is that they be cheaper to

create using the parent as a starting point, and that it be more efficient (on either host or device) to

switch/bind between children of the same parent.

190

A derivative pipeline is created by setting the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag in the

Vk*PipelineCreateInfo structure. If this is set, then exactly one of basePipelineHandle or

basePipelineIndex members of the structure must have a valid handle/index, and indicates the

parent pipeline. If basePipelineHandle is used, the parent pipeline must have already been created.

If basePipelineIndex is used, then the parent is being created in the same command.

VK_NULL_HANDLE acts as the invalid handle for basePipelineHandle, and -1 is the invalid index for

basePipelineIndex. If basePipelineIndex is used, the base pipeline must appear earlier in the array.

The base pipeline must have been created with the VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT flag

set.

9.6. Pipeline Cache

Pipeline cache objects allow the result of pipeline construction to be reused between pipelines and

between runs of an application. Reuse between pipelines is achieved by passing the same pipeline

cache object when creating multiple related pipelines. Reuse across runs of an application is

achieved by retrieving pipeline cache contents in one run of an application, saving the contents,

and using them to preinitialize a pipeline cache on a subsequent run. The contents of the pipeline

cache objects are managed by the implementation. Applications can manage the host memory

consumed by a pipeline cache object and control the amount of data retrieved from a pipeline

cache object.

Pipeline cache objects are represented by VkPipelineCache handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkPipelineCache)

To create pipeline cache objects, call:

VkResult vkCreatePipelineCache(

 VkDevice device,

 const VkPipelineCacheCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkPipelineCache* pPipelineCache);

• device is the logical device that creates the pipeline cache object.

• pCreateInfo is a pointer to a VkPipelineCacheCreateInfo structure that contains the initial

parameters for the pipeline cache object.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pPipelineCache is a pointer to a VkPipelineCache handle in which the resulting pipeline cache

object is returned.

191



Note

Applications can track and manage the total host memory size of a pipeline cache

object using the pAllocator. Applications can limit the amount of data retrieved

from a pipeline cache object in vkGetPipelineCacheData. Implementations should

not internally limit the total number of entries added to a pipeline cache object or

the total host memory consumed.

Once created, a pipeline cache can be passed to the vkCreateGraphicsPipelines and

vkCreateComputePipelines commands. If the pipeline cache passed into these commands is not

VK_NULL_HANDLE, the implementation will query it for possible reuse opportunities and update it

with new content. The use of the pipeline cache object in these commands is internally

synchronized, and the same pipeline cache object can be used in multiple threads simultaneously.



Note

Implementations should make every effort to limit any critical sections to the

actual accesses to the cache, which is expected to be significantly shorter than the

duration of the vkCreateGraphicsPipelines and vkCreateComputePipelines

commands.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkPipelineCacheCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• pPipelineCache must be a pointer to a VkPipelineCache handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkPipelineCacheCreateInfo structure is defined as:

192

typedef struct VkPipelineCacheCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineCacheCreateFlags flags;

 size_t initialDataSize;

 const void* pInitialData;

} VkPipelineCacheCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• initialDataSize is the number of bytes in pInitialData. If initialDataSize is zero, the pipeline

cache will initially be empty.

• pInitialData is a pointer to previously retrieved pipeline cache data. If the pipeline cache data is

incompatible (as defined below) with the device, the pipeline cache will be initially empty. If

initialDataSize is zero, pInitialData is ignored.

Valid Usage

• If initialDataSize is not 0, it must be equal to the size of pInitialData, as returned by

vkGetPipelineCacheData when pInitialData was originally retrieved

• If initialDataSize is not 0, pInitialData must have been retrieved from a previous call to
vkGetPipelineCacheData

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO

• pNext must be NULL

• flags must be 0

• If initialDataSize is not 0, pInitialData must be a pointer to an array of initialDataSize

bytes

Pipeline cache objects can be merged using the command:

VkResult vkMergePipelineCaches(

 VkDevice device,

 VkPipelineCache dstCache,

 uint32_t srcCacheCount,

 const VkPipelineCache* pSrcCaches);

• device is the logical device that owns the pipeline cache objects.

193

• dstCache is the handle of the pipeline cache to merge results into.

• srcCacheCount is the length of the pSrcCaches array.

• pSrcCaches is an array of pipeline cache handles, which will be merged into dstCache. The

previous contents of dstCache are included after the merge.



Note

The details of the merge operation are implementation dependent, but

implementations should merge the contents of the specified pipelines and prune

duplicate entries.

Valid Usage

• dstCache must not appear in the list of source caches

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• dstCache must be a valid VkPipelineCache handle

• pSrcCaches must be a pointer to an array of srcCacheCount valid VkPipelineCache handles

• srcCacheCount must be greater than 0

• dstCache must have been created, allocated, or retrieved from device

• Each element of pSrcCaches must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to dstCache must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

Data can be retrieved from a pipeline cache object using the command:

194

VkResult vkGetPipelineCacheData(

 VkDevice device,

 VkPipelineCache pipelineCache,

 size_t* pDataSize,

 void* pData);

• device is the logical device that owns the pipeline cache.

• pipelineCache is the pipeline cache to retrieve data from.

• pDataSize is a pointer to a value related to the amount of data in the pipeline cache, as described

below.

• pData is either NULL or a pointer to a buffer.

If pData is NULL, then the maximum size of the data that can be retrieved from the pipeline cache, in

bytes, is returned in pDataSize. Otherwise, pDataSize must point to a variable set by the user to the

size of the buffer, in bytes, pointed to by pData, and on return the variable is overwritten with the

amount of data actually written to pData.

If pDataSize is less than the maximum size that can be retrieved by the pipeline cache, at most

pDataSize bytes will be written to pData, and vkGetPipelineCacheData will return VK_INCOMPLETE. Any

data written to pData is valid and can be provided as the pInitialData member of the

VkPipelineCacheCreateInfo structure passed to vkCreatePipelineCache.

Two calls to vkGetPipelineCacheData with the same parameters must retrieve the same data unless a

command that modifies the contents of the cache is called between them.

Applications can store the data retrieved from the pipeline cache, and use these data, possibly in a

future run of the application, to populate new pipeline cache objects. The results of pipeline

compiles, however, may depend on the vendor ID, device ID, driver version, and other details of

the device. To enable applications to detect when previously retrieved data is incompatible with the

device, the initial bytes written to pData must be a header consisting of the following members:

Table 7. Layout for pipeline cache header version VK_PIPELINE_CACHE_HEADER_VERSION_ONE

Offse

t

Size Meaning

0 4 length in bytes of the entire pipeline cache header written

as a stream of bytes, with the least significant byte first

4 4 a VkPipelineCacheHeaderVersion value written as a

stream of bytes, with the least significant byte first

8 4 a vendor ID equal to VkPhysicalDeviceProperties::vendorID

written as a stream of bytes, with the least significant byte

first

12 4 a device ID equal to VkPhysicalDeviceProperties::deviceID

written as a stream of bytes, with the least significant byte

first

16 VK_UUID_SIZE a pipeline cache ID equal to VkPhysicalDeviceProperties

::pipelineCacheUUID

195

The first four bytes encode the length of the entire pipeline header, in bytes. This value includes all

fields in the header including the pipeline cache version field and the size of the length field.

The next four bytes encode the pipeline cache version, as described for

VkPipelineCacheHeaderVersion. A consumer of the pipeline cache should use the cache version to

interpret the remainder of the cache header.

If pDataSize is less than what is necessary to store this header, nothing will be written to pData and

zero will be written to pDataSize.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pipelineCache must be a valid VkPipelineCache handle

• pDataSize must be a pointer to a size_t value

• If the value referenced by pDataSize is not 0, and pData is not NULL, pData must be a pointer

to an array of pDataSize bytes

• pipelineCache must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

Possible values of the second group of four bytes in the header returned by

vkGetPipelineCacheData, encoding the pipeline cache version, are:

typedef enum VkPipelineCacheHeaderVersion {

 VK_PIPELINE_CACHE_HEADER_VERSION_ONE = 1,

} VkPipelineCacheHeaderVersion;

• VK_PIPELINE_CACHE_HEADER_VERSION_ONE specifies version one of the pipeline cache.

To destroy a pipeline cache, call:

196

void vkDestroyPipelineCache(

 VkDevice device,

 VkPipelineCache pipelineCache,

 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the pipeline cache object.

• pipelineCache is the handle of the pipeline cache to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• If VkAllocationCallbacks were provided when pipelineCache was created, a compatible set

of callbacks must be provided here

• If no VkAllocationCallbacks were provided when pipelineCache was created, pAllocator

must be NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If pipelineCache is not VK_NULL_HANDLE, pipelineCache must be a valid VkPipelineCache

handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• If pipelineCache is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to pipelineCache must be externally synchronized

9.7. Specialization Constants

Specialization constants are a mechanism whereby constants in a SPIR-V module can have their

constant value specified at the time the VkPipeline is created. This allows a SPIR-V module to have

constants that can be modified while executing an application that uses the Vulkan API.


Note

Specialization constants are useful to allow a compute shader to have its local

workgroup size changed at runtime by the user, for example.

Each instance of the VkPipelineShaderStageCreateInfo structure contains a parameter

197

pSpecializationInfo, which can be NULL to indicate no specialization constants, or point to a

VkSpecializationInfo structure.

The VkSpecializationInfo structure is defined as:

typedef struct VkSpecializationInfo {

 uint32_t mapEntryCount;

 const VkSpecializationMapEntry* pMapEntries;

 size_t dataSize;

 const void* pData;

} VkSpecializationInfo;

• mapEntryCount is the number of entries in the pMapEntries array.

• pMapEntries is a pointer to an array of VkSpecializationMapEntry which maps constant IDs to

offsets in pData.

• dataSize is the byte size of the pData buffer.

• pData contains the actual constant values to specialize with.

pMapEntries points to a structure of type VkSpecializationMapEntry.

Valid Usage

• The offset member of any given element of pMapEntries must be less than dataSize

• For any given element of pMapEntries, size must be less than or equal to dataSize minus
offset

• If mapEntryCount is not 0, pMapEntries must be a pointer to an array of mapEntryCount valid

VkSpecializationMapEntry structures

Valid Usage (Implicit)

• If dataSize is not 0, pData must be a pointer to an array of dataSize bytes

The VkSpecializationMapEntry structure is defined as:

typedef struct VkSpecializationMapEntry {

 uint32_t constantID;

 uint32_t offset;

 size_t size;

} VkSpecializationMapEntry;

• constantID is the ID of the specialization constant in SPIR-V.

• offset is the byte offset of the specialization constant value within the supplied data buffer.

• size is the byte size of the specialization constant value within the supplied data buffer.

198

If a constantID value is not a specialization constant ID used in the shader, that map entry does not

affect the behavior of the pipeline.

Valid Usage

• For a constantID specialization constant declared in a shader, size must match the byte

size of the constantID. If the specialization constant is of type boolean, size must be the

byte size of VkBool32

In human readable SPIR-V:

OpDecorate %x SpecId 13 ; decorate .x component of WorkgroupSize with ID 13

OpDecorate %y SpecId 42 ; decorate .y component of WorkgroupSize with ID 42

OpDecorate %z SpecId 3 ; decorate .z component of WorkgroupSize with ID 3

OpDecorate %wgsize BuiltIn WorkgroupSize ; decorate WorkgroupSize onto constant

%i32 = OpTypeInt 32 0 ; declare an unsigned 32-bit type

%uvec3 = OpTypeVector %i32 3 ; declare a 3 element vector type of unsigned 32-bit

%x = OpSpecConstant %i32 1 ; declare the .x component of WorkgroupSize

%y = OpSpecConstant %i32 1 ; declare the .y component of WorkgroupSize

%z = OpSpecConstant %i32 1 ; declare the .z component of WorkgroupSize

%wgsize = OpSpecConstantComposite %uvec3 %x %y %z ; declare WorkgroupSize

From the above we have three specialization constants, one for each of the x, y & z elements of the

WorkgroupSize vector.

Now to specialize the above via the specialization constants mechanism:

199

const VkSpecializationMapEntry entries[] =

{

 {

 13, // constantID

 0 * sizeof(uint32_t), // offset

 sizeof(uint32_t) // size

 },

 {

 42, // constantID

 1 * sizeof(uint32_t), // offset

 sizeof(uint32_t) // size

 },

 {

 3, // constantID

 2 * sizeof(uint32_t), // offset

 sizeof(uint32_t) // size

 }

};

const uint32_t data[] = { 16, 8, 4 }; // our workgroup size is 16x8x4

const VkSpecializationInfo info =

{

 3, // mapEntryCount

 entries, // pMapEntries

 3 * sizeof(uint32_t), // dataSize

 data, // pData

};

Then when calling vkCreateComputePipelines, and passing the VkSpecializationInfo we defined as

the pSpecializationInfo parameter of VkPipelineShaderStageCreateInfo, we will create a compute

pipeline with the runtime specified local workgroup size.

Another example would be that an application has a SPIR-V module that has some platform-

dependent constants they wish to use.

In human readable SPIR-V:

OpDecorate %1 SpecId 0 ; decorate our signed 32-bit integer constant

OpDecorate %2 SpecId 12 ; decorate our 32-bit floating-point constant

%i32 = OpTypeInt 32 1 ; declare a signed 32-bit type

%float = OpTypeFloat 32 ; declare a 32-bit floating-point type

%1 = OpSpecConstant %i32 -1 ; some signed 32-bit integer constant

%2 = OpSpecConstant %float 0.5 ; some 32-bit floating-point constant

From the above we have two specialization constants, one is a signed 32-bit integer and the second

is a 32-bit floating-point.

200

Now to specialize the above via the specialization constants mechanism:

struct SpecializationData {

 int32_t data0;

 float data1;

};

const VkSpecializationMapEntry entries[] =

{

 {

 0, // constantID

 offsetof(SpecializationData, data0), // offset

 sizeof(SpecializationData::data0) // size

 },

 {

 12, // constantID

 offsetof(SpecializationData, data1), // offset

 sizeof(SpecializationData::data1) // size

 }

};

SpecializationData data;

data.data0 = -42; // set the data for the 32-bit integer

data.data1 = 42.0f; // set the data for the 32-bit floating-point

const VkSpecializationInfo info =

{

 2, // mapEntryCount

 entries, // pMapEntries

 sizeof(data), // dataSize

 &data, // pData

};

It is legal for a SPIR-V module with specializations to be compiled into a pipeline where no

specialization info was provided. SPIR-V specialization constants contain default values such that if

a specialization is not provided, the default value will be used. In the examples above, it would be

valid for an application to only specialize some of the specialization constants within the SPIR-V

module, and let the other constants use their default values encoded within the OpSpecConstant

declarations.

9.8. Pipeline Binding

Once a pipeline has been created, it can be bound to the command buffer using the command:

201

void vkCmdBindPipeline(

 VkCommandBuffer commandBuffer,

 VkPipelineBindPoint pipelineBindPoint,

 VkPipeline pipeline);

• commandBuffer is the command buffer that the pipeline will be bound to.

• pipelineBindPoint is a VkPipelineBindPoint value specifying whether to bind to the compute or

graphics bind point. Binding one does not disturb the other.

• pipeline is the pipeline to be bound.

Once bound, a pipeline binding affects subsequent graphics or compute commands in the

command buffer until a different pipeline is bound to the bind point. The pipeline bound to

VK_PIPELINE_BIND_POINT_COMPUTE controls the behavior of vkCmdDispatch and

vkCmdDispatchIndirect. The pipeline bound to VK_PIPELINE_BIND_POINT_GRAPHICS controls the

behavior of vkCmdDraw, vkCmdDrawIndexed, vkCmdDrawIndirect, and

vkCmdDrawIndexedIndirect. No other commands are affected by the pipeline state.

Valid Usage

• If pipelineBindPoint is VK_PIPELINE_BIND_POINT_COMPUTE, the VkCommandPool that

commandBuffer was allocated from must support compute operations

• If pipelineBindPoint is VK_PIPELINE_BIND_POINT_GRAPHICS, the VkCommandPool that

commandBuffer was allocated from must support graphics operations

• If pipelineBindPoint is VK_PIPELINE_BIND_POINT_COMPUTE, pipeline must be a compute

pipeline

• If pipelineBindPoint is VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline must be a graphics

pipeline

• If the variable multisample rate feature is not supported, pipeline is a graphics pipeline,

the current subpass has no attachments, and this is not the first call to this function with a

graphics pipeline after transitioning to the current subpass, then the sample count

specified by this pipeline must match that set in the previous pipeline

202

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• pipelineBindPoint must be a valid VkPipelineBindPoint value

• pipeline must be a valid VkPipeline handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics, or

compute operations

• Both of commandBuffer, and pipeline must have been created, allocated, or retrieved from

the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Both Graphics

compute

Possible values of vkCmdBindPipeline::pipelineBindPoint, specifying the bind point of a pipeline

object, are:

typedef enum VkPipelineBindPoint {

 VK_PIPELINE_BIND_POINT_GRAPHICS = 0,

 VK_PIPELINE_BIND_POINT_COMPUTE = 1,

} VkPipelineBindPoint;

• VK_PIPELINE_BIND_POINT_COMPUTE specifies binding as a compute pipeline.

• VK_PIPELINE_BIND_POINT_GRAPHICS specifies binding as a graphics pipeline.

203

Chapter 10. Memory Allocation

Vulkan memory is broken up into two categories, host memory and device memory.

10.1. Host Memory

Host memory is memory needed by the Vulkan implementation for non-device-visible storage. This

storage may be used for e.g. internal software structures.

Vulkan provides applications the opportunity to perform host memory allocations on behalf of the

Vulkan implementation. If this feature is not used, the implementation will perform its own

memory allocations. Since most memory allocations are off the critical path, this is not meant as a

performance feature. Rather, this can be useful for certain embedded systems, for debugging

purposes (e.g. putting a guard page after all host allocations), or for memory allocation logging.

Allocators are provided by the application as a pointer to a VkAllocationCallbacks structure:

typedef struct VkAllocationCallbacks {

 void* pUserData;

 PFN_vkAllocationFunction pfnAllocation;

 PFN_vkReallocationFunction pfnReallocation;

 PFN_vkFreeFunction pfnFree;

 PFN_vkInternalAllocationNotification pfnInternalAllocation;

 PFN_vkInternalFreeNotification pfnInternalFree;

} VkAllocationCallbacks;

• pUserData is a value to be interpreted by the implementation of the callbacks. When any of the

callbacks in VkAllocationCallbacks are called, the Vulkan implementation will pass this value as

the first parameter to the callback. This value can vary each time an allocator is passed into a

command, even when the same object takes an allocator in multiple commands.

• pfnAllocation is a pointer to an application-defined memory allocation function of type

PFN_vkAllocationFunction.

• pfnReallocation is a pointer to an application-defined memory reallocation function of type

PFN_vkReallocationFunction.

• pfnFree is a pointer to an application-defined memory free function of type

PFN_vkFreeFunction.

• pfnInternalAllocation is a pointer to an application-defined function that is called by the

implementation when the implementation makes internal allocations, and it is of type

PFN_vkInternalAllocationNotification.

• pfnInternalFree is a pointer to an application-defined function that is called by the

implementation when the implementation frees internal allocations, and it is of type

PFN_vkInternalFreeNotification.

204

Valid Usage

• pfnAllocation must be a pointer to a valid user-defined PFN_vkAllocationFunction

• pfnReallocation must be a pointer to a valid user-defined PFN_vkReallocationFunction

• pfnFree must be a pointer to a valid user-defined PFN_vkFreeFunction

• If either of pfnInternalAllocation or pfnInternalFree is not NULL, both must be valid

callbacks

The type of pfnAllocation is:

typedef void* (VKAPI_PTR *PFN_vkAllocationFunction)(

 void* pUserData,

 size_t size,

 size_t alignment,

 VkSystemAllocationScope allocationScope);

• pUserData is the value specified for VkAllocationCallbacks::pUserData in the allocator specified by

the application.

• size is the size in bytes of the requested allocation.

• alignment is the requested alignment of the allocation in bytes and must be a power of two.

• allocationScope is a VkSystemAllocationScope value specifying the allocation scope of the

lifetime of the allocation, as described here.

If pfnAllocation is unable to allocate the requested memory, it must return NULL. If the allocation

was successful, it must return a valid pointer to memory allocation containing at least size bytes,

and with the pointer value being a multiple of alignment.



Note

Correct Vulkan operation cannot be assumed if the application does not follow

these rules.

For example, pfnAllocation (or pfnReallocation) could cause termination of

running Vulkan instance(s) on a failed allocation for debugging purposes, either

directly or indirectly. In these circumstances, it cannot be assumed that any part

of any affected VkInstance objects are going to operate correctly (even

vkDestroyInstance), and the application must ensure it cleans up properly via

other means (e.g. process termination).

If pfnAllocation returns NULL, and if the implementation is unable to continue correct processing of

the current command without the requested allocation, it must treat this as a run-time error, and

generate VK_ERROR_OUT_OF_HOST_MEMORY at the appropriate time for the command in which the

condition was detected, as described in Return Codes.

If the implementation is able to continue correct processing of the current command without the

205

requested allocation, then it may do so, and must not generate VK_ERROR_OUT_OF_HOST_MEMORY as a

result of this failed allocation.

The type of pfnReallocation is:

typedef void* (VKAPI_PTR *PFN_vkReallocationFunction)(

 void* pUserData,

 void* pOriginal,

 size_t size,

 size_t alignment,

 VkSystemAllocationScope allocationScope);

• pUserData is the value specified for VkAllocationCallbacks::pUserData in the allocator specified by

the application.

• pOriginal must be either NULL or a pointer previously returned by pfnReallocation or

pfnAllocation of the same allocator.

• size is the size in bytes of the requested allocation.

• alignment is the requested alignment of the allocation in bytes and must be a power of two.

• allocationScope is a VkSystemAllocationScope value specifying the allocation scope of the

lifetime of the allocation, as described here.

pfnReallocation must return an allocation with enough space for size bytes, and the contents of the

original allocation from bytes zero to min(original size, new size) - 1 must be preserved in the

returned allocation. If size is larger than the old size, the contents of the additional space are

undefined. If satisfying these requirements involves creating a new allocation, then the old

allocation should be freed.

If pOriginal is NULL, then pfnReallocation must behave equivalently to a call to

PFN_vkAllocationFunction with the same parameter values (without pOriginal).

If size is zero, then pfnReallocation must behave equivalently to a call to PFN_vkFreeFunction with

the same pUserData parameter value, and pMemory equal to pOriginal.

If pOriginal is non-NULL, the implementation must ensure that alignment is equal to the alignment

used to originally allocate pOriginal.

If this function fails and pOriginal is non-NULL the application must not free the old allocation.

pfnReallocation must follow the same rules for return values as PFN_vkAllocationFunction.

The type of pfnFree is:

typedef void (VKAPI_PTR *PFN_vkFreeFunction)(

 void* pUserData,

 void* pMemory);

• pUserData is the value specified for VkAllocationCallbacks::pUserData in the allocator specified by

206

the application.

• pMemory is the allocation to be freed.

pMemory may be NULL, which the callback must handle safely. If pMemory is non-NULL, it must be a

pointer previously allocated by pfnAllocation or pfnReallocation. The application should free this

memory.

The type of pfnInternalAllocation is:

typedef void (VKAPI_PTR *PFN_vkInternalAllocationNotification)(

 void* pUserData,

 size_t size,

 VkInternalAllocationType allocationType,

 VkSystemAllocationScope allocationScope);

• pUserData is the value specified for VkAllocationCallbacks::pUserData in the allocator specified by

the application.

• size is the requested size of an allocation.

• allocationType is a VkInternalAllocationType value specifying the requested type of an

allocation.

• allocationScope is a VkSystemAllocationScope value specifying the allocation scope of the

lifetime of the allocation, as described here.

This is a purely informational callback.

The type of pfnInternalFree is:

typedef void (VKAPI_PTR *PFN_vkInternalFreeNotification)(

 void* pUserData,

 size_t size,

 VkInternalAllocationType allocationType,

 VkSystemAllocationScope allocationScope);

• pUserData is the value specified for VkAllocationCallbacks::pUserData in the allocator specified by

the application.

• size is the requested size of an allocation.

• allocationType is a VkInternalAllocationType value specifying the requested type of an

allocation.

• allocationScope is a VkSystemAllocationScope value specifying the allocation scope of the

lifetime of the allocation, as described here.

Each allocation has an allocation scope which defines its lifetime and which object it is associated

with. Possible values passed to the allocationScope parameter of the callback functions specified by

VkAllocationCallbacks, indicating the allocation scope, are:

207

typedef enum VkSystemAllocationScope {

 VK_SYSTEM_ALLOCATION_SCOPE_COMMAND = 0,

 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT = 1,

 VK_SYSTEM_ALLOCATION_SCOPE_CACHE = 2,

 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE = 3,

 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE = 4,

} VkSystemAllocationScope;

• VK_SYSTEM_ALLOCATION_SCOPE_COMMAND specifies that the allocation is scoped to the duration of the

Vulkan command.

• VK_SYSTEM_ALLOCATION_SCOPE_OBJECT specifies that the allocation is scoped to the lifetime of the

Vulkan object that is being created or used.

• VK_SYSTEM_ALLOCATION_SCOPE_CACHE specifies that the allocation is scoped to the lifetime of a

VkPipelineCache object.

• VK_SYSTEM_ALLOCATION_SCOPE_DEVICE specifies that the allocation is scoped to the lifetime of the

Vulkan device.

• VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE specifies that the allocation is scoped to the lifetime of the

Vulkan instance.

Most Vulkan commands operate on a single object, or there is a sole object that is being created or

manipulated. When an allocation uses an allocation scope of VK_SYSTEM_ALLOCATION_SCOPE_OBJECT or

VK_SYSTEM_ALLOCATION_SCOPE_CACHE, the allocation is scoped to the object being created or

manipulated.

When an implementation requires host memory, it will make callbacks to the application using the

most specific allocator and allocation scope available:

• If an allocation is scoped to the duration of a command, the allocator will use the

VK_SYSTEM_ALLOCATION_SCOPE_COMMAND allocation scope. The most specific allocator available is

used: if the object being created or manipulated has an allocator, that object’s allocator will be

used, else if the parent VkDevice has an allocator it will be used, else if the parent VkInstance has

an allocator it will be used. Else,

• If an allocation is associated with an object of type VkPipelineCache, the allocator will use the

VK_SYSTEM_ALLOCATION_SCOPE_CACHE allocation scope. The most specific allocator available is used

(pipeline cache, else device, else instance). Else,

• If an allocation is scoped to the lifetime of an object, that object is being created or manipulated

by the command, and that object’s type is not VkDevice or VkInstance, the allocator will use an

allocation scope of VK_SYSTEM_ALLOCATION_SCOPE_OBJECT. The most specific allocator available is

used (object, else device, else instance). Else,

• If an allocation is scoped to the lifetime of a device, the allocator will use an allocation scope of

VK_SYSTEM_ALLOCATION_SCOPE_DEVICE. The most specific allocator available is used (device, else

instance). Else,

• If the allocation is scoped to the lifetime of an instance and the instance has an allocator, its

allocator will be used with an allocation scope of VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE.

208

• Otherwise an implementation will allocate memory through an alternative mechanism that is

unspecified.

Objects that are allocated from pools do not specify their own allocator. When an implementation

requires host memory for such an object, that memory is sourced from the object’s parent pool’s

allocator.

The application is not expected to handle allocating memory that is intended for execution by the

host due to the complexities of differing security implementations across multiple platforms. The

implementation will allocate such memory internally and invoke an application provided

informational callback when these internal allocations are allocated and freed. Upon allocation of

executable memory, pfnInternalAllocation will be called. Upon freeing executable memory,

pfnInternalFree will be called. An implementation will only call an informational callback for

executable memory allocations and frees.

The allocationType parameter to the pfnInternalAllocation and pfnInternalFree functions may be

one of the following values:

typedef enum VkInternalAllocationType {

 VK_INTERNAL_ALLOCATION_TYPE_EXECUTABLE = 0,

} VkInternalAllocationType;

• VK_INTERNAL_ALLOCATION_TYPE_EXECUTABLE specifies that the allocation is intended for execution

by the host.

An implementation must only make calls into an application-provided allocator during the

execution of an API command. An implementation must only make calls into an application-

provided allocator from the same thread that called the provoking API command. The

implementation should not synchronize calls to any of the callbacks. If synchronization is needed,

the callbacks must provide it themselves. The informational callbacks are subject to the same

restrictions as the allocation callbacks.

If an implementation intends to make calls through an VkAllocationCallbacks structure between the

time a vkCreate* command returns and the time a corresponding vkDestroy* command begins, that

implementation must save a copy of the allocator before the vkCreate* command returns. The

callback functions and any data structures they rely upon must remain valid for the lifetime of the

object they are associated with.

If an allocator is provided to a vkCreate* command, a compatible allocator must be provided to the

corresponding vkDestroy* command. Two VkAllocationCallbacks structures are compatible if

memory allocated with pfnAllocation or pfnReallocation in each can be freed with pfnReallocation

or pfnFree in the other. An allocator must not be provided to a vkDestroy* command if an allocator

was not provided to the corresponding vkCreate* command.

If a non-NULL allocator is used, the pfnAllocation, pfnReallocation and pfnFree members must be

non-NULL and point to valid implementations of the callbacks. An application can choose to not

provide informational callbacks by setting both pfnInternalAllocation and pfnInternalFree to NULL.

pfnInternalAllocation and pfnInternalFree must either both be NULL or both be non-NULL.

209

If pfnAllocation or pfnReallocation fail, the implementation may fail object creation and/or

generate an VK_ERROR_OUT_OF_HOST_MEMORY error, as appropriate.

Allocation callbacks must not call any Vulkan commands.

The following sets of rules define when an implementation is permitted to call the allocator

callbacks.

pfnAllocation or pfnReallocation may be called in the following situations:

• Allocations scoped to a VkDevice or VkInstance may be allocated from any API command.

• Allocations scoped to a command may be allocated from any API command.

• Allocations scoped to a VkPipelineCache may only be allocated from:

◦ vkCreatePipelineCache

◦ vkMergePipelineCaches for dstCache

◦ vkCreateGraphicsPipelines for pPipelineCache

◦ vkCreateComputePipelines for pPipelineCache

• Allocations scoped to a VkDescriptorPool may only be allocated from:

◦ any command that takes the pool as a direct argument

◦ vkAllocateDescriptorSets for the descriptorPool member of its pAllocateInfo parameter

◦ vkCreateDescriptorPool

• Allocations scoped to a VkCommandPool may only be allocated from:

◦ any command that takes the pool as a direct argument

◦ vkCreateCommandPool

◦ vkAllocateCommandBuffers for the commandPool member of its pAllocateInfo parameter

◦ any vkCmd* command whose commandBuffer was allocated from that VkCommandPool

• Allocations scoped to any other object may only be allocated in that object’s vkCreate*

command.

pfnFree may be called in the following situations:

• Allocations scoped to a VkDevice or VkInstance may be freed from any API command.

• Allocations scoped to a command must be freed by any API command which allocates such

memory.

• Allocations scoped to a VkPipelineCache may be freed from vkDestroyPipelineCache.

• Allocations scoped to a VkDescriptorPool may be freed from

◦ any command that takes the pool as a direct argument

• Allocations scoped to a VkCommandPool may be freed from:

◦ any command that takes the pool as a direct argument

◦ vkResetCommandBuffer whose commandBuffer was allocated from that VkCommandPool

• Allocations scoped to any other object may be freed in that object’s vkDestroy* command.

210

• Any command that allocates host memory may also free host memory of the same scope.

10.2. Device Memory

Device memory is memory that is visible to the device, for example the contents of opaque images

that can be natively used by the device, or uniform buffer objects that reside in on-device memory.

Memory properties of a physical device describe the memory heaps and memory types available.

To query memory properties, call:

void vkGetPhysicalDeviceMemoryProperties(

 VkPhysicalDevice physicalDevice,

 VkPhysicalDeviceMemoryProperties* pMemoryProperties);

• physicalDevice is the handle to the device to query.

• pMemoryProperties points to an instance of VkPhysicalDeviceMemoryProperties structure in which

the properties are returned.

Valid Usage (Implicit)

• physicalDevice must be a valid VkPhysicalDevice handle

• pMemoryProperties must be a pointer to a VkPhysicalDeviceMemoryProperties structure

The VkPhysicalDeviceMemoryProperties structure is defined as:

typedef struct VkPhysicalDeviceMemoryProperties {

 uint32_t memoryTypeCount;

 VkMemoryType memoryTypes[VK_MAX_MEMORY_TYPES];

 uint32_t memoryHeapCount;

 VkMemoryHeap memoryHeaps[VK_MAX_MEMORY_HEAPS];

} VkPhysicalDeviceMemoryProperties;

• memoryTypeCount is the number of valid elements in the memoryTypes array.

• memoryTypes is an array of VkMemoryType structures describing the memory types that can be

used to access memory allocated from the heaps specified by memoryHeaps.

• memoryHeapCount is the number of valid elements in the memoryHeaps array.

• memoryHeaps is an array of VkMemoryHeap structures describing the memory heaps from which

memory can be allocated.

The VkPhysicalDeviceMemoryProperties structure describes a number of memory heaps as well as a

number of memory types that can be used to access memory allocated in those heaps. Each heap

describes a memory resource of a particular size, and each memory type describes a set of memory

properties (e.g. host cached vs uncached) that can be used with a given memory heap. Allocations

211

using a particular memory type will consume resources from the heap indicated by that memory

type’s heap index. More than one memory type may share each heap, and the heaps and memory

types provide a mechanism to advertise an accurate size of the physical memory resources while

allowing the memory to be used with a variety of different properties.

The number of memory heaps is given by memoryHeapCount and is less than or equal to

VK_MAX_MEMORY_HEAPS. Each heap is described by an element of the memoryHeaps array, as a

VkMemoryHeap structure. The number of memory types available across all memory heaps is given by

memoryTypeCount and is less than or equal to VK_MAX_MEMORY_TYPES. Each memory type is described by

an element of the memoryTypes array, as a VkMemoryType structure.

At least one heap must include VK_MEMORY_HEAP_DEVICE_LOCAL_BIT in VkMemoryHeap::flags. If there

are multiple heaps that all have similar performance characteristics, they may all include

VK_MEMORY_HEAP_DEVICE_LOCAL_BIT. In a unified memory architecture (UMA) system, there is often

only a single memory heap which is considered to be equally “local” to the host and to the device,

and such an implementation must advertise the heap as device-local.

Each memory type returned by vkGetPhysicalDeviceMemoryProperties must have its propertyFlags

set to one of the following values:

• 0

• VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

• VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT

• VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |

VK_MEMORY_PROPERTY_HOST_CACHED_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT

There must be at least one memory type with both the VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT and

VK_MEMORY_PROPERTY_HOST_COHERENT_BIT bits set in its propertyFlags. There must be at least one

memory type with the VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT bit set in its propertyFlags.

The memory types are sorted according to a preorder which serves to aid in easily selecting an

appropriate memory type. Given two memory types X and Y, the preorder defines X ≤ Y if:

• the memory property bits set for X are a strict subset of the memory property bits set for Y. Or,

• the memory property bits set for X are the same as the memory property bits set for Y, and X

uses a memory heap with greater or equal performance (as determined in an implementation-

specific manner).

Memory types are ordered in the list such that X is assigned a lesser memoryTypeIndex than Y if (X ≤

212

Y) ∧ ¬ (Y ≤ X) according to the preorder. Note that the list of all allowed memory property flag

combinations above satisfies this preorder, but other orders would as well. The goal of this

ordering is to enable applications to use a simple search loop in selecting the proper memory type,

along the lines of:

// Find a memory type in "memoryTypeBits" that includes all of "properties"

int32_t FindProperties(uint32_t memoryTypeBits, VkMemoryPropertyFlags properties)

{

 for (int32_t i = 0; i < memoryTypeCount; ++i)

 {

 if ((memoryTypeBits & (1 << i)) &&

 ((memoryTypes[i].propertyFlags & properties) == properties))

 return i;

 }

 return -1;

}

// Try to find an optimal memory type, or if it does not exist

// find any compatible memory type

VkMemoryRequirements memoryRequirements;

vkGetImageMemoryRequirements(device, image, &memoryRequirements);

int32_t memoryType = FindProperties(memoryRequirements.memoryTypeBits,

optimalProperties);

if (memoryType == -1)

 memoryType = FindProperties(memoryRequirements.memoryTypeBits,

requiredProperties);

The loop will find the first supported memory type that has all bits requested in properties set. If

there is no exact match, it will find a closest match (i.e. a memory type with the fewest additional

bits set), which has some additional bits set but which are not detrimental to the behaviors

requested by properties. The application can first search for the optimal properties, e.g. a memory

type that is device-local or supports coherent cached accesses, as appropriate for the intended

usage, and if such a memory type is not present can fallback to searching for a less optimal but

guaranteed set of properties such as "0" or "host-visible and coherent".

The VkMemoryHeap structure is defined as:

typedef struct VkMemoryHeap {

 VkDeviceSize size;

 VkMemoryHeapFlags flags;

} VkMemoryHeap;

• size is the total memory size in bytes in the heap.

• flags is a bitmask of VkMemoryHeapFlagBits specifying attribute flags for the heap.

Bits which may be set in VkMemoryHeap::flags, indicating attribute flags for the heap, are:

213

typedef enum VkMemoryHeapFlagBits {

 VK_MEMORY_HEAP_DEVICE_LOCAL_BIT = 0x00000001,

} VkMemoryHeapFlagBits;

• VK_MEMORY_HEAP_DEVICE_LOCAL_BIT indicates that the heap corresponds to device local memory.

Device local memory may have different performance characteristics than host local memory,

and may support different memory property flags.

The VkMemoryType structure is defined as:

typedef struct VkMemoryType {

 VkMemoryPropertyFlags propertyFlags;

 uint32_t heapIndex;

} VkMemoryType;

• heapIndex describes which memory heap this memory type corresponds to, and must be less

than memoryHeapCount from the VkPhysicalDeviceMemoryProperties structure.

• propertyFlags is a bitmask of VkMemoryPropertyFlagBits of properties for this memory type.

Bits which may be set in VkMemoryType::propertyFlags, indicating properties of a memory heap,

are:

typedef enum VkMemoryPropertyFlagBits {

 VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT = 0x00000001,

 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT = 0x00000002,

 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT = 0x00000004,

 VK_MEMORY_PROPERTY_HOST_CACHED_BIT = 0x00000008,

 VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT = 0x00000010,

} VkMemoryPropertyFlagBits;

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT bit indicates that memory allocated with this type is the

most efficient for device access. This property will only be set for memory types belonging to

heaps with the VK_MEMORY_HEAP_DEVICE_LOCAL_BIT set.

• VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT bit indicates that memory allocated with this type can be

mapped for host access using vkMapMemory.

• VK_MEMORY_PROPERTY_HOST_COHERENT_BIT bit indicates that the host cache management commands

vkFlushMappedMemoryRanges and vkInvalidateMappedMemoryRanges are not needed to

flush host writes to the device or make device writes visible to the host, respectively.

• VK_MEMORY_PROPERTY_HOST_CACHED_BIT bit indicates that memory allocated with this type is cached

on the host. Host memory accesses to uncached memory are slower than to cached memory,

however uncached memory is always host coherent.

• VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT bit indicates that the memory type only allows device

access to the memory. Memory types must not have both

VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT and VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT set.

214

Additionally, the object’s backing memory may be provided by the implementation lazily as

specified in Lazily Allocated Memory.

A Vulkan device operates on data in device memory via memory objects that are represented in the

API by a VkDeviceMemory handle.

Memory objects are represented by VkDeviceMemory handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkDeviceMemory)

To allocate memory objects, call:

VkResult vkAllocateMemory(

 VkDevice device,

 const VkMemoryAllocateInfo* pAllocateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkDeviceMemory* pMemory);

• device is the logical device that owns the memory.

• pAllocateInfo is a pointer to an instance of the VkMemoryAllocateInfo structure describing

parameters of the allocation. A successful returned allocation must use the requested

parameters — no substitution is permitted by the implementation.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pMemory is a pointer to a VkDeviceMemory handle in which information about the allocated

memory is returned.

Allocations returned by vkAllocateMemory are guaranteed to meet any alignment requirement by the

implementation. For example, if an implementation requires 128 byte alignment for images and 64

byte alignment for buffers, the device memory returned through this mechanism would be 128-

byte aligned. This ensures that applications can correctly suballocate objects of different types

(with potentially different alignment requirements) in the same memory object.

When memory is allocated, its contents are undefined.

There is an implementation-dependent maximum number of memory allocations which can be

simultaneously created on a device. This is specified by the maxMemoryAllocationCount member of

the VkPhysicalDeviceLimits structure. If maxMemoryAllocationCount is exceeded, vkAllocateMemory will

return VK_ERROR_TOO_MANY_OBJECTS.



Note

Some platforms may have a limit on the maximum size of a single allocation. For

example, certain systems may fail to create allocations with a size greater than or

equal to 4GB. Such a limit is implementation-dependent, and if such a failure

occurs then the error VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned.

215

Valid Usage

• The number of currently valid memory objects, allocated from device, must be less than

VkPhysicalDeviceLimits::maxMemoryAllocationCount

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pAllocateInfo must be a pointer to a valid VkMemoryAllocateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• pMemory must be a pointer to a VkDeviceMemory handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_TOO_MANY_OBJECTS

The VkMemoryAllocateInfo structure is defined as:

typedef struct VkMemoryAllocateInfo {

 VkStructureType sType;

 const void* pNext;

 VkDeviceSize allocationSize;

 uint32_t memoryTypeIndex;

} VkMemoryAllocateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• allocationSize is the size of the allocation in bytes

• memoryTypeIndex is the memory type index, which selects the properties of the memory to be

allocated, as well as the heap the memory will come from.

216

Valid Usage

• allocationSize must be less than or equal to the amount of memory available to the

VkMemoryHeap specified by memoryTypeIndex and the calling command’s VkDevice

• allocationSize must be greater than 0

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO

• pNext must be NULL

To free a memory object, call:

void vkFreeMemory(

 VkDevice device,

 VkDeviceMemory memory,

 const VkAllocationCallbacks* pAllocator);

• device is the logical device that owns the memory.

• memory is the VkDeviceMemory object to be freed.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Before freeing a memory object, an application must ensure the memory object is no longer in use

by the device—for example by command buffers queued for execution. The memory can remain

bound to images or buffers at the time the memory object is freed, but any further use of them (on

host or device) for anything other than destroying those objects will result in undefined behavior. If

there are still any bound images or buffers, the memory may not be immediately released by the

implementation, but must be released by the time all bound images and buffers have been

destroyed. Once memory is released, it is returned to the heap from which it was allocated.

How memory objects are bound to Images and Buffers is described in detail in the Resource

Memory Association section.

If a memory object is mapped at the time it is freed, it is implicitly unmapped.



Note

As described below, host writes are not implicitly flushed when the memory object

is unmapped, but the implementation must guarantee that writes that have not

been flushed do not affect any other memory.

217

Valid Usage

• All submitted commands that refer to memory (via images or buffers) must have completed

execution

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If memory is not VK_NULL_HANDLE, memory must be a valid VkDeviceMemory handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• If memory is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to memory must be externally synchronized

10.2.1. Host Access to Device Memory Objects

Memory objects created with vkAllocateMemory are not directly host accessible.

Memory objects created with the memory property VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT are

considered mappable. Memory objects must be mappable in order to be successfully mapped on

the host.

To retrieve a host virtual address pointer to a region of a mappable memory object, call:

VkResult vkMapMemory(

 VkDevice device,

 VkDeviceMemory memory,

 VkDeviceSize offset,

 VkDeviceSize size,

 VkMemoryMapFlags flags,

 void** ppData);

• device is the logical device that owns the memory.

• memory is the VkDeviceMemory object to be mapped.

• offset is a zero-based byte offset from the beginning of the memory object.

• size is the size of the memory range to map, or VK_WHOLE_SIZE to map from offset to the end of

the allocation.

• flags is reserved for future use.

218

• ppData points to a pointer in which is returned a host-accessible pointer to the beginning of the

mapped range. This pointer minus offset must be aligned to at least VkPhysicalDeviceLimits

::minMemoryMapAlignment.

It is an application error to call vkMapMemory on a memory object that is already mapped.



Note

vkMapMemory will fail if the implementation is unable to allocate an appropriately

sized contiguous virtual address range, e.g. due to virtual address space

fragmentation or platform limits. In such cases, vkMapMemory must return

VK_ERROR_MEMORY_MAP_FAILED. The application can improve the likelihood of success

by reducing the size of the mapped range and/or removing unneeded mappings

using VkUnmapMemory.

vkMapMemory does not check whether the device memory is currently in use before returning the

host-accessible pointer. The application must guarantee that any previously submitted command

that writes to this range has completed before the host reads from or writes to that range, and that

any previously submitted command that reads from that range has completed before the host

writes to that region (see here for details on fulfilling such a guarantee). If the device memory was

allocated without the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT set, these guarantees must be made for

an extended range: the application must round down the start of the range to the nearest multiple

of VkPhysicalDeviceLimits::nonCoherentAtomSize, and round the end of the range up to the nearest

multiple of VkPhysicalDeviceLimits::nonCoherentAtomSize.

While a range of device memory is mapped for host access, the application is responsible for

synchronizing both device and host access to that memory range.



Note

It is important for the application developer to become meticulously familiar with

all of the mechanisms described in the chapter on Synchronization and Cache

Control as they are crucial to maintaining memory access ordering.

Valid Usage

• memory must not currently be mapped

• offset must be less than the size of memory

• If size is not equal to VK_WHOLE_SIZE, size must be greater than 0

• If size is not equal to VK_WHOLE_SIZE, size must be less than or equal to the size of the

memory minus offset

• memory must have been created with a memory type that reports
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT

219

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• memory must be a valid VkDeviceMemory handle

• flags must be 0

• ppData must be a pointer to a pointer

• memory must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to memory must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_MEMORY_MAP_FAILED

Two commands are provided to enable applications to work with non-coherent memory

allocations: vkFlushMappedMemoryRanges and vkInvalidateMappedMemoryRanges.



Note

If the memory object was created with the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

set, vkFlushMappedMemoryRanges and vkInvalidateMappedMemoryRanges are

unnecessary and may have a performance cost. However, availability and

visibility operations still need to be managed on the device. See the description of

host access types for more information.

To flush ranges of non-coherent memory from the host caches, call:

VkResult vkFlushMappedMemoryRanges(

 VkDevice device,

 uint32_t memoryRangeCount,

 const VkMappedMemoryRange* pMemoryRanges);

• device is the logical device that owns the memory ranges.

• memoryRangeCount is the length of the pMemoryRanges array.

220

• pMemoryRanges is a pointer to an array of VkMappedMemoryRange structures describing the

memory ranges to flush.

vkFlushMappedMemoryRanges guarantees that host writes to the memory ranges described by

pMemoryRanges can be made available to device access, via availability operations from the

VK_ACCESS_HOST_WRITE_BIT access type.

Unmapping non-coherent memory does not implicitly flush the mapped memory, and host writes

that have not been flushed may not ever be visible to the device. However, implementations must

ensure that writes that have not been flushed do not become visible to any other memory.



Note

The above guarantee avoids a potential memory corruption in scenarios where

host writes to a mapped memory object have not been flushed before the memory

is unmapped (or freed), and the virtual address range is subsequently reused for a

different mapping (or memory allocation).

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pMemoryRanges must be a pointer to an array of memoryRangeCount valid VkMappedMemoryRange

structures

• memoryRangeCount must be greater than 0

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To invalidate ranges of non-coherent memory from the host caches, call:

VkResult vkInvalidateMappedMemoryRanges(

 VkDevice device,

 uint32_t memoryRangeCount,

 const VkMappedMemoryRange* pMemoryRanges);

• device is the logical device that owns the memory ranges.

• memoryRangeCount is the length of the pMemoryRanges array.

• pMemoryRanges is a pointer to an array of VkMappedMemoryRange structures describing the

memory ranges to invalidate.

221

vkInvalidateMappedMemoryRanges guarantees that device writes to the memory ranges described by

pMemoryRanges, which have been made visible to the VK_ACCESS_HOST_WRITE_BIT and

VK_ACCESS_HOST_READ_BIT access types, are made visible to the host. If a range of non-coherent

memory is written by the host and then invalidated without first being flushed, its contents are

undefined.



Note

Mapping non-coherent memory does not implicitly invalidate the mapped

memory, and device writes that have not been invalidated must be made visible

before the host reads or overwrites them.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pMemoryRanges must be a pointer to an array of memoryRangeCount valid VkMappedMemoryRange

structures

• memoryRangeCount must be greater than 0

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkMappedMemoryRange structure is defined as:

typedef struct VkMappedMemoryRange {

 VkStructureType sType;

 const void* pNext;

 VkDeviceMemory memory;

 VkDeviceSize offset;

 VkDeviceSize size;

} VkMappedMemoryRange;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• memory is the memory object to which this range belongs.

• offset is the zero-based byte offset from the beginning of the memory object.

• size is either the size of range, or VK_WHOLE_SIZE to affect the range from offset to the end of the

current mapping of the allocation.

222

Valid Usage

• memory must currently be mapped

• If size is not equal to VK_WHOLE_SIZE, offset and size must specify a range contained

within the currently mapped range of memory

• If size is equal to VK_WHOLE_SIZE, offset must be within the currently mapped range of
memory

• If size is equal to VK_WHOLE_SIZE, the end of the current mapping of memory must be a

multiple of VkPhysicalDeviceLimits::nonCoherentAtomSize bytes from the beginning of the

memory object.

• offset must be a multiple of VkPhysicalDeviceLimits::nonCoherentAtomSize

• If size is not equal to VK_WHOLE_SIZE, size must either be a multiple of

VkPhysicalDeviceLimits::nonCoherentAtomSize, or offset plus size must equal the size of

memory.

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE

• pNext must be NULL

• memory must be a valid VkDeviceMemory handle

To unmap a memory object once host access to it is no longer needed by the application, call:

void vkUnmapMemory(

 VkDevice device,

 VkDeviceMemory memory);

• device is the logical device that owns the memory.

• memory is the memory object to be unmapped.

Valid Usage

• memory must currently be mapped

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• memory must be a valid VkDeviceMemory handle

• memory must have been created, allocated, or retrieved from device

223

Host Synchronization

• Host access to memory must be externally synchronized

10.2.2. Lazily Allocated Memory

If the memory object is allocated from a heap with the VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT bit

set, that object’s backing memory may be provided by the implementation lazily. The actual

committed size of the memory may initially be as small as zero (or as large as the requested size),

and monotonically increases as additional memory is needed.

A memory type with this flag set is only allowed to be bound to a VkImage whose usage flags include

VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT.



Note

Using lazily allocated memory objects for framebuffer attachments that are not

needed once a render pass instance has completed may allow some

implementations to never allocate memory for such attachments.

To determine the amount of lazily-allocated memory that is currently committed for a memory

object, call:

void vkGetDeviceMemoryCommitment(

 VkDevice device,

 VkDeviceMemory memory,

 VkDeviceSize* pCommittedMemoryInBytes);

• device is the logical device that owns the memory.

• memory is the memory object being queried.

• pCommittedMemoryInBytes is a pointer to a VkDeviceSize value in which the number of bytes

currently committed is returned, on success.

The implementation may update the commitment at any time, and the value returned by this query

may be out of date.

The implementation guarantees to allocate any committed memory from the heapIndex indicated

by the memory type that the memory object was created with.

Valid Usage

• memory must have been created with a memory type that reports
VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT

224

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• memory must be a valid VkDeviceMemory handle

• pCommittedMemoryInBytes must be a pointer to a VkDeviceSize value

• memory must have been created, allocated, or retrieved from device

225

Chapter 11. Resource Creation

Vulkan supports two primary resource types: buffers and images. Resources are views of memory

with associated formatting and dimensionality. Buffers are essentially unformatted arrays of bytes

whereas images contain format information, can be multidimensional and may have associated

metadata.

11.1. Buffers

Buffers represent linear arrays of data which are used for various purposes by binding them to a

graphics or compute pipeline via descriptor sets or via certain commands, or by directly specifying

them as parameters to certain commands.

Buffers are represented by VkBuffer handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkBuffer)

To create buffers, call:

VkResult vkCreateBuffer(

 VkDevice device,

 const VkBufferCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkBuffer* pBuffer);

• device is the logical device that creates the buffer object.

• pCreateInfo is a pointer to an instance of the VkBufferCreateInfo structure containing

parameters affecting creation of the buffer.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pBuffer points to a VkBuffer handle in which the resulting buffer object is returned.

Valid Usage

• If the flags member of pCreateInfo includes VK_BUFFER_CREATE_SPARSE_BINDING_BIT,

creating this VkBuffer must not cause the total required sparse memory for all currently

valid sparse resources on the device to exceed VkPhysicalDeviceLimits

::sparseAddressSpaceSize

226

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkBufferCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• pBuffer must be a pointer to a VkBuffer handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkBufferCreateInfo structure is defined as:

typedef struct VkBufferCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkBufferCreateFlags flags;

 VkDeviceSize size;

 VkBufferUsageFlags usage;

 VkSharingMode sharingMode;

 uint32_t queueFamilyIndexCount;

 const uint32_t* pQueueFamilyIndices;

} VkBufferCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is a bitmask of VkBufferCreateFlagBits specifying additional parameters of the buffer.

• size is the size in bytes of the buffer to be created.

• usage is a bitmask of VkBufferUsageFlagBits specifying allowed usages of the buffer.

• sharingMode is a VkSharingMode value specifying the sharing mode of the buffer when it will be

accessed by multiple queue families.

• queueFamilyIndexCount is the number of entries in the pQueueFamilyIndices array.

• pQueueFamilyIndices is a list of queue families that will access this buffer (ignored if sharingMode

is not VK_SHARING_MODE_CONCURRENT).

227

Valid Usage

• size must be greater than 0

• If sharingMode is VK_SHARING_MODE_CONCURRENT, pQueueFamilyIndices must be a pointer to an

array of queueFamilyIndexCount uint32_t values

• If sharingMode is VK_SHARING_MODE_CONCURRENT, queueFamilyIndexCount must be greater than
1

• If sharingMode is VK_SHARING_MODE_CONCURRENT, each element of pQueueFamilyIndices must be

unique and must be less than pQueueFamilyPropertyCount returned by

vkGetPhysicalDeviceQueueFamilyProperties for the physicalDevice that was used to

create device

• If the sparse bindings feature is not enabled, flags must not contain
VK_BUFFER_CREATE_SPARSE_BINDING_BIT

• If the sparse buffer residency feature is not enabled, flags must not contain
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT

• If the sparse aliased residency feature is not enabled, flags must not contain
VK_BUFFER_CREATE_SPARSE_ALIASED_BIT

• If flags contains VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT or

VK_BUFFER_CREATE_SPARSE_ALIASED_BIT, it must also contain
VK_BUFFER_CREATE_SPARSE_BINDING_BIT

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO

• pNext must be NULL

• flags must be a valid combination of VkBufferCreateFlagBits values

• usage must be a valid combination of VkBufferUsageFlagBits values

• usage must not be 0

• sharingMode must be a valid VkSharingMode value

Bits which can be set in VkBufferCreateInfo::usage, specifying usage behavior of a buffer, are:

228

typedef enum VkBufferUsageFlagBits {

 VK_BUFFER_USAGE_TRANSFER_SRC_BIT = 0x00000001,

 VK_BUFFER_USAGE_TRANSFER_DST_BIT = 0x00000002,

 VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT = 0x00000004,

 VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT = 0x00000008,

 VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT = 0x00000010,

 VK_BUFFER_USAGE_STORAGE_BUFFER_BIT = 0x00000020,

 VK_BUFFER_USAGE_INDEX_BUFFER_BIT = 0x00000040,

 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT = 0x00000080,

 VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT = 0x00000100,

} VkBufferUsageFlagBits;

• VK_BUFFER_USAGE_TRANSFER_SRC_BIT specifies that the buffer can be used as the source of a

transfer command (see the definition of VK_PIPELINE_STAGE_TRANSFER_BIT).

• VK_BUFFER_USAGE_TRANSFER_DST_BIT specifies that the buffer can be used as the destination of a

transfer command.

• VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT specifies that the buffer can be used to create a

VkBufferView suitable for occupying a VkDescriptorSet slot of type

VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER.

• VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT specifies that the buffer can be used to create a

VkBufferView suitable for occupying a VkDescriptorSet slot of type

VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER.

• VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT specifies that the buffer can be used in a

VkDescriptorBufferInfo suitable for occupying a VkDescriptorSet slot either of type

VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC.

• VK_BUFFER_USAGE_STORAGE_BUFFER_BIT specifies that the buffer can be used in a

VkDescriptorBufferInfo suitable for occupying a VkDescriptorSet slot either of type

VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC.

• VK_BUFFER_USAGE_INDEX_BUFFER_BIT specifies that the buffer is suitable for passing as the buffer

parameter to vkCmdBindIndexBuffer.

• VK_BUFFER_USAGE_VERTEX_BUFFER_BIT specifies that the buffer is suitable for passing as an element

of the pBuffers array to vkCmdBindVertexBuffers.

• VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT specifies that the buffer is suitable for passing as the

buffer parameter to vkCmdDrawIndirect, vkCmdDrawIndexedIndirect, or vkCmdDispatchIndirect.

Bits which can be set in VkBufferCreateInfo::flags, specifying additional parameters of a buffer,

are:

typedef enum VkBufferCreateFlagBits {

 VK_BUFFER_CREATE_SPARSE_BINDING_BIT = 0x00000001,

 VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT = 0x00000002,

 VK_BUFFER_CREATE_SPARSE_ALIASED_BIT = 0x00000004,

} VkBufferCreateFlagBits;

229

• VK_BUFFER_CREATE_SPARSE_BINDING_BIT specifies that the buffer will be backed using sparse

memory binding.

• VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT specifies that the buffer can be partially backed using

sparse memory binding. Buffers created with this flag must also be created with the

VK_BUFFER_CREATE_SPARSE_BINDING_BIT flag.

• VK_BUFFER_CREATE_SPARSE_ALIASED_BIT specifies that the buffer will be backed using sparse

memory binding with memory ranges that might also simultaneously be backing another buffer

(or another portion of the same buffer). Buffers created with this flag must also be created with

the VK_BUFFER_CREATE_SPARSE_BINDING_BIT flag.

See Sparse Resource Features and Physical Device Features for details of the sparse memory

features supported on a device.

To destroy a buffer, call:

void vkDestroyBuffer(

 VkDevice device,

 VkBuffer buffer,

 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the buffer.

• buffer is the buffer to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• All submitted commands that refer to buffer, either directly or via a VkBufferView, must

have completed execution

• If VkAllocationCallbacks were provided when buffer was created, a compatible set of

callbacks must be provided here

• If no VkAllocationCallbacks were provided when buffer was created, pAllocator must be
NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If buffer is not VK_NULL_HANDLE, buffer must be a valid VkBuffer handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• If buffer is a valid handle, it must have been created, allocated, or retrieved from device

230

Host Synchronization

• Host access to buffer must be externally synchronized

11.2. Buffer Views

A buffer view represents a contiguous range of a buffer and a specific format to be used to interpret

the data. Buffer views are used to enable shaders to access buffer contents interpreted as formatted

data. In order to create a valid buffer view, the buffer must have been created with at least one of

the following usage flags:

• VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT

• VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT

Buffer views are represented by VkBufferView handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkBufferView)

To create a buffer view, call:

VkResult vkCreateBufferView(

 VkDevice device,

 const VkBufferViewCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkBufferView* pView);

• device is the logical device that creates the buffer view.

• pCreateInfo is a pointer to an instance of the VkBufferViewCreateInfo structure containing

parameters to be used to create the buffer.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pView points to a VkBufferView handle in which the resulting buffer view object is returned.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkBufferViewCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• pView must be a pointer to a VkBufferView handle

231

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkBufferViewCreateInfo structure is defined as:

typedef struct VkBufferViewCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkBufferViewCreateFlags flags;

 VkBuffer buffer;

 VkFormat format;

 VkDeviceSize offset;

 VkDeviceSize range;

} VkBufferViewCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• buffer is a VkBuffer on which the view will be created.

• format is a VkFormat describing the format of the data elements in the buffer.

• offset is an offset in bytes from the base address of the buffer. Accesses to the buffer view from

shaders use addressing that is relative to this starting offset.

• range is a size in bytes of the buffer view. If range is equal to VK_WHOLE_SIZE, the range from

offset to the end of the buffer is used. If VK_WHOLE_SIZE is used and the remaining size of the

buffer is not a multiple of the element size of format, then the nearest smaller multiple is used.

232

Valid Usage

• offset must be less than the size of buffer

• offset must be a multiple of VkPhysicalDeviceLimits::minTexelBufferOffsetAlignment

• If range is not equal to VK_WHOLE_SIZE, range must be greater than 0

• If range is not equal to VK_WHOLE_SIZE, range must be a multiple of the element size of
format

• If range is not equal to VK_WHOLE_SIZE, range divided by the element size of format must be

less than or equal to VkPhysicalDeviceLimits::maxTexelBufferElements

• If range is not equal to VK_WHOLE_SIZE, the sum of offset and range must be less than or

equal to the size of buffer

• buffer must have been created with a usage value containing at least one of

VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT or VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT

• If buffer was created with usage containing VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT,

format must be supported for uniform texel buffers, as specified by the

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT flag in VkFormatProperties::bufferFeatures

returned by vkGetPhysicalDeviceFormatProperties

• If buffer was created with usage containing VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT,

format must be supported for storage texel buffers, as specified by the

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT flag in VkFormatProperties::bufferFeatures

returned by vkGetPhysicalDeviceFormatProperties

• If buffer is non-sparse then it must be bound completely and contiguously to a single

VkDeviceMemory object

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO

• pNext must be NULL

• flags must be 0

• buffer must be a valid VkBuffer handle

• format must be a valid VkFormat value

To destroy a buffer view, call:

void vkDestroyBufferView(

 VkDevice device,

 VkBufferView bufferView,

 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the buffer view.

233

• bufferView is the buffer view to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• All submitted commands that refer to bufferView must have completed execution

• If VkAllocationCallbacks were provided when bufferView was created, a compatible set of

callbacks must be provided here

• If no VkAllocationCallbacks were provided when bufferView was created, pAllocator must

be NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If bufferView is not VK_NULL_HANDLE, bufferView must be a valid VkBufferView handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• If bufferView is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to bufferView must be externally synchronized

11.3. Images

Images represent multidimensional - up to 3 - arrays of data which can be used for various

purposes (e.g. attachments, textures), by binding them to a graphics or compute pipeline via

descriptor sets, or by directly specifying them as parameters to certain commands.

Images are represented by VkImage handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkImage)

To create images, call:

VkResult vkCreateImage(

 VkDevice device,

 const VkImageCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkImage* pImage);

234

• device is the logical device that creates the image.

• pCreateInfo is a pointer to an instance of the VkImageCreateInfo structure containing parameters

to be used to create the image.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pImage points to a VkImage handle in which the resulting image object is returned.

Valid Usage

• If the flags member of pCreateInfo includes VK_IMAGE_CREATE_SPARSE_BINDING_BIT, creating

this VkImage must not cause the total required sparse memory for all currently valid

sparse resources on the device to exceed VkPhysicalDeviceLimits::sparseAddressSpaceSize

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkImageCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• pImage must be a pointer to a VkImage handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkImageCreateInfo structure is defined as:

235

typedef struct VkImageCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkImageCreateFlags flags;

 VkImageType imageType;

 VkFormat format;

 VkExtent3D extent;

 uint32_t mipLevels;

 uint32_t arrayLayers;

 VkSampleCountFlagBits samples;

 VkImageTiling tiling;

 VkImageUsageFlags usage;

 VkSharingMode sharingMode;

 uint32_t queueFamilyIndexCount;

 const uint32_t* pQueueFamilyIndices;

 VkImageLayout initialLayout;

} VkImageCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is a bitmask of VkImageCreateFlagBits describing additional parameters of the image.

• imageType is a VkImageType value specifying the basic dimensionality of the image. Layers in

array textures do not count as a dimension for the purposes of the image type.

• format is a VkFormat describing the format and type of the data elements that will be contained

in the image.

• extent is a VkExtent3D describing the number of data elements in each dimension of the base

level.

• mipLevels describes the number of levels of detail available for minified sampling of the image.

• arrayLayers is the number of layers in the image.

• samples is the number of sub-data element samples in the image as defined in

VkSampleCountFlagBits. See Multisampling.

• tiling is a VkImageTiling value specifying the tiling arrangement of the data elements in

memory.

• usage is a bitmask of VkImageUsageFlagBits describing the intended usage of the image.

• sharingMode is a VkSharingMode value specifying the sharing mode of the image when it will be

accessed by multiple queue families.

• queueFamilyIndexCount is the number of entries in the pQueueFamilyIndices array.

• pQueueFamilyIndices is a list of queue families that will access this image (ignored if sharingMode

is not VK_SHARING_MODE_CONCURRENT).

• initialLayout is a VkImageLayout value specifying the initial VkImageLayout of all image

subresources of the image. See Image Layouts.

236

Images created with tiling equal to VK_IMAGE_TILING_LINEAR have further restrictions on their limits

and capabilities compared to images created with tiling equal to VK_IMAGE_TILING_OPTIMAL. Creation

of images with tiling VK_IMAGE_TILING_LINEAR may not be supported unless other parameters meet

all of the constraints:

• imageType is VK_IMAGE_TYPE_2D

• format is not a depth/stencil format

• mipLevels is 1

• arrayLayers is 1

• samples is VK_SAMPLE_COUNT_1_BIT

• usage only includes VK_IMAGE_USAGE_TRANSFER_SRC_BIT and/or VK_IMAGE_USAGE_TRANSFER_DST_BIT

Implementations may support additional limits and capabilities beyond those listed above.

To query an implementation’s specific capabilities for a given combination of format, imageType,

tiling, usage, and flags, call vkGetPhysicalDeviceImageFormatProperties. The return value

indicates whether that combination of image settings is supported. On success, the

VkImageFormatProperties output parameter indicates the set of valid samples bits and the limits for

extent, mipLevels, and arrayLayers.

To determine the set of valid usage bits for a given format, call

vkGetPhysicalDeviceFormatProperties.

237

Valid Usage

• The combination of format, imageType, tiling, usage, and flags must be supported, as

indicated by a VK_SUCCESS return value from vkGetPhysicalDeviceImageFormatProperties

invoked with the same values passed to the corresponding parameters.

• If sharingMode is VK_SHARING_MODE_CONCURRENT, pQueueFamilyIndices must be a pointer to an

array of queueFamilyIndexCount uint32_t values

• If sharingMode is VK_SHARING_MODE_CONCURRENT, queueFamilyIndexCount must be greater than
1

• If sharingMode is VK_SHARING_MODE_CONCURRENT, each element of pQueueFamilyIndices must be

unique and must be less than pQueueFamilyPropertyCount returned by

vkGetPhysicalDeviceQueueFamilyProperties for the physicalDevice that was used to

create device

• format must not be VK_FORMAT_UNDEFINED

• extent::width must be greater than 0.

• extent::height must be greater than 0.

• extent::depth must be greater than 0.

• mipLevels must be greater than 0

• arrayLayers must be greater than 0

• If flags contains VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT, imageType must be
VK_IMAGE_TYPE_2D

• If imageType is VK_IMAGE_TYPE_1D, extent.width must be less than or equal to

VkPhysicalDeviceLimits::maxImageDimension1D, or VkImageFormatProperties::maxExtent.width

(as returned by vkGetPhysicalDeviceImageFormatProperties with format, imageType, tiling,

usage, and flags equal to those in this structure) - whichever is higher

• If imageType is VK_IMAGE_TYPE_2D and flags does not contain

VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT, extent.width and extent.height must be less than or

equal to VkPhysicalDeviceLimits::maxImageDimension2D, or VkImageFormatProperties

::maxExtent.width/height (as returned by vkGetPhysicalDeviceImageFormatProperties with

format, imageType, tiling, usage, and flags equal to those in this structure) - whichever is

higher

• If imageType is VK_IMAGE_TYPE_2D and flags contains VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT,

extent.width and extent.height must be less than or equal to VkPhysicalDeviceLimits

::maxImageDimensionCube, or VkImageFormatProperties::maxExtent.width/height (as returned

by vkGetPhysicalDeviceImageFormatProperties with format, imageType, tiling, usage, and

flags equal to those in this structure) - whichever is higher

• If imageType is VK_IMAGE_TYPE_2D and flags contains VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT,

extent.width and extent.height must be equal and arrayLayers must be greater than or

equal to 6

• If imageType is VK_IMAGE_TYPE_3D, extent.width, extent.height and extent.depth must be less

than or equal to VkPhysicalDeviceLimits::maxImageDimension3D, or VkImageFormatProperties

::maxExtent.width/height/depth (as returned by vkGetPhysicalDeviceImageFormatProperties

238

with format, imageType, tiling, usage, and flags equal to those in this structure) -

whichever is higher

• If imageType is VK_IMAGE_TYPE_1D, both extent.height and extent.depth must be 1

• If imageType is VK_IMAGE_TYPE_2D, extent.depth must be 1

• mipLevels must be less than or equal to ⌊log2(max(extent.width, extent.height,

extent.depth))⌋ + 1.

• If any of extent.width, extent.height, or extent.depth are greater than the equivalently

named members of VkPhysicalDeviceLimits::maxImageDimension3D, mipLevels must be less

than or equal to VkImageFormatProperties::maxMipLevels (as returned by

vkGetPhysicalDeviceImageFormatProperties with format, imageType, tiling, usage, and flags

equal to those in this structure)

• arrayLayers must be less than or equal to VkImageFormatProperties::maxArrayLayers (as

returned by vkGetPhysicalDeviceImageFormatProperties with format, imageType, tiling,

usage, and flags equal to those in this structure)

• If imageType is VK_IMAGE_TYPE_3D, arrayLayers must be 1.

• If samples is not VK_SAMPLE_COUNT_1_BIT, imageType must be VK_IMAGE_TYPE_2D, flags must

not contain VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT, tiling must be VK_IMAGE_TILING_OPTIMAL,

and mipLevels must be equal to 1

• If usage includes VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT, then bits other than

VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, and

VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT must not be set

• If usage includes VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,

VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT,

or VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT, extent.width must be less than or equal to

VkPhysicalDeviceLimits::maxFramebufferWidth

• If usage includes VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,

VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT,

or VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT, extent.height must be less than or equal to

VkPhysicalDeviceLimits::maxFramebufferHeight

• If usage includes VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT, usage must also contain at

least one of VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,

VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, or VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT.

• samples must be a bit value that is set in VkImageFormatProperties::sampleCounts returned

by vkGetPhysicalDeviceImageFormatProperties with format, imageType, tiling, usage, and

flags equal to those in this structure

• If the multisampled storage images feature is not enabled, and usage contains

VK_IMAGE_USAGE_STORAGE_BIT, samples must be VK_SAMPLE_COUNT_1_BIT

• If the sparse bindings feature is not enabled, flags must not contain
VK_IMAGE_CREATE_SPARSE_BINDING_BIT

• If imageType is VK_IMAGE_TYPE_1D, flags must not contain
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

• If the sparse residency for 2D images feature is not enabled, and imageType is

239

VK_IMAGE_TYPE_2D, flags must not contain VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

• If the sparse residency for 3D images feature is not enabled, and imageType is

VK_IMAGE_TYPE_3D, flags must not contain VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

• If the sparse residency for images with 2 samples feature is not enabled, imageType is

VK_IMAGE_TYPE_2D, and samples is VK_SAMPLE_COUNT_2_BIT, flags must not contain
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

• If the sparse residency for images with 4 samples feature is not enabled, imageType is

VK_IMAGE_TYPE_2D, and samples is VK_SAMPLE_COUNT_4_BIT, flags must not contain
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

• If the sparse residency for images with 8 samples feature is not enabled, imageType is

VK_IMAGE_TYPE_2D, and samples is VK_SAMPLE_COUNT_8_BIT, flags must not contain
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

• If the sparse residency for images with 16 samples feature is not enabled, imageType is

VK_IMAGE_TYPE_2D, and samples is VK_SAMPLE_COUNT_16_BIT, flags must not contain
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

• If tiling is VK_IMAGE_TILING_LINEAR, format must be a format that has at least one

supported feature bit present in the value of VkFormatProperties::linearTilingFeatures

returned by vkGetPhysicalDeviceFormatProperties with the same value of format

• If tiling is VK_IMAGE_TILING_LINEAR, and VkFormatProperties::linearTilingFeatures (as

returned by vkGetPhysicalDeviceFormatProperties with the same value of format) does not

include VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT, usage must not contain
VK_IMAGE_USAGE_SAMPLED_BIT

• If tiling is VK_IMAGE_TILING_LINEAR, and VkFormatProperties::linearTilingFeatures (as

returned by vkGetPhysicalDeviceFormatProperties with the same value of format) does not

include VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT, usage must not contain
VK_IMAGE_USAGE_STORAGE_BIT

• If tiling is VK_IMAGE_TILING_LINEAR, and VkFormatProperties::linearTilingFeatures (as

returned by vkGetPhysicalDeviceFormatProperties with the same value of format) does not

include VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT, usage must not contain
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

• If tiling is VK_IMAGE_TILING_LINEAR, and VkFormatProperties::linearTilingFeatures (as

returned by vkGetPhysicalDeviceFormatProperties with the same value of format) does not

include VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT, usage must not contain
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• If tiling is VK_IMAGE_TILING_OPTIMAL, format must be a format that has at least one

supported feature bit present in the value of VkFormatProperties::optimalTilingFeatures

returned by vkGetPhysicalDeviceFormatProperties with the same value of format

• If tiling is VK_IMAGE_TILING_OPTIMAL, and VkFormatProperties::optimalTilingFeatures (as

returned by vkGetPhysicalDeviceFormatProperties with the same value of format) does not

include VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT, usage must not contain
VK_IMAGE_USAGE_SAMPLED_BIT

• If tiling is VK_IMAGE_TILING_OPTIMAL, and VkFormatProperties::optimalTilingFeatures (as

returned by vkGetPhysicalDeviceFormatProperties with the same value of format) does not

include VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT, usage must not contain
VK_IMAGE_USAGE_STORAGE_BIT

240

• If tiling is VK_IMAGE_TILING_OPTIMAL, and VkFormatProperties::optimalTilingFeatures (as

returned by vkGetPhysicalDeviceFormatProperties with the same value of format) does not

include VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT, usage must not contain
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

• If tiling is VK_IMAGE_TILING_OPTIMAL, and VkFormatProperties::optimalTilingFeatures (as

returned by vkGetPhysicalDeviceFormatProperties with the same value of format) does not

include VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT, usage must not contain
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• If flags contains VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT or

VK_IMAGE_CREATE_SPARSE_ALIASED_BIT, it must also contain
VK_IMAGE_CREATE_SPARSE_BINDING_BIT

• initialLayout must be VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED.

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO

• pNext must be NULL

• flags must be a valid combination of VkImageCreateFlagBits values

• imageType must be a valid VkImageType value

• format must be a valid VkFormat value

• samples must be a valid VkSampleCountFlagBits value

• tiling must be a valid VkImageTiling value

• usage must be a valid combination of VkImageUsageFlagBits values

• usage must not be 0

• sharingMode must be a valid VkSharingMode value

• initialLayout must be a valid VkImageLayout value

Bits which can be set in VkImageCreateInfo::usage, specifying intended usage of an image, are:

typedef enum VkImageUsageFlagBits {

 VK_IMAGE_USAGE_TRANSFER_SRC_BIT = 0x00000001,

 VK_IMAGE_USAGE_TRANSFER_DST_BIT = 0x00000002,

 VK_IMAGE_USAGE_SAMPLED_BIT = 0x00000004,

 VK_IMAGE_USAGE_STORAGE_BIT = 0x00000008,

 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT = 0x00000010,

 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT = 0x00000020,

 VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT = 0x00000040,

 VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT = 0x00000080,

} VkImageUsageFlagBits;

• VK_IMAGE_USAGE_TRANSFER_SRC_BIT specifies that the image can be used as the source of a transfer

command.

241

• VK_IMAGE_USAGE_TRANSFER_DST_BIT specifies that the image can be used as the destination of a

transfer command.

• VK_IMAGE_USAGE_SAMPLED_BIT specifies that the image can be used to create a VkImageView suitable

for occupying a VkDescriptorSet slot either of type VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE or

VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and be sampled by a shader.

• VK_IMAGE_USAGE_STORAGE_BIT specifies that the image can be used to create a VkImageView suitable

for occupying a VkDescriptorSet slot of type VK_DESCRIPTOR_TYPE_STORAGE_IMAGE.

• VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT specifies that the image can be used to create a

VkImageView suitable for use as a color or resolve attachment in a VkFramebuffer.

• VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT specifies that the image can be used to create a

VkImageView suitable for use as a depth/stencil attachment in a VkFramebuffer.

• VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT specifies that the memory bound to this image will

have been allocated with the VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT (see Memory Allocation

for more detail). This bit can be set for any image that can be used to create a VkImageView

suitable for use as a color, resolve, depth/stencil, or input attachment.

• VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT specifies that the image can be used to create a

VkImageView suitable for occupying VkDescriptorSet slot of type

VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT; be read from a shader as an input attachment; and be

used as an input attachment in a framebuffer.

Bits which can be set in VkImageCreateInfo::flags, specifying additional parameters of an image,

are:

typedef enum VkImageCreateFlagBits {

 VK_IMAGE_CREATE_SPARSE_BINDING_BIT = 0x00000001,

 VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT = 0x00000002,

 VK_IMAGE_CREATE_SPARSE_ALIASED_BIT = 0x00000004,

 VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT = 0x00000008,

 VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT = 0x00000010,

} VkImageCreateFlagBits;

• VK_IMAGE_CREATE_SPARSE_BINDING_BIT specifies that the image will be backed using sparse

memory binding.

• VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT specifies that the image can be partially backed using

sparse memory binding. Images created with this flag must also be created with the

VK_IMAGE_CREATE_SPARSE_BINDING_BIT flag.

• VK_IMAGE_CREATE_SPARSE_ALIASED_BIT specifies that the image will be backed using sparse

memory binding with memory ranges that might also simultaneously be backing another image

(or another portion of the same image). Images created with this flag must also be created with

the VK_IMAGE_CREATE_SPARSE_BINDING_BIT flag

• VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT specifies that the image can be used to create a VkImageView

with a different format from the image.

• VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT specifies that the image can be used to create a

VkImageView of type VK_IMAGE_VIEW_TYPE_CUBE or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY.

242

If any of the bits VK_IMAGE_CREATE_SPARSE_BINDING_BIT, VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT, or

VK_IMAGE_CREATE_SPARSE_ALIASED_BIT are set, VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT must not also

be set.

See Sparse Resource Features and Sparse Physical Device Features for more details.

Possible values of VkImageCreateInfo::imageType, specifying the basic dimensionality of an image,

are:

typedef enum VkImageType {

 VK_IMAGE_TYPE_1D = 0,

 VK_IMAGE_TYPE_2D = 1,

 VK_IMAGE_TYPE_3D = 2,

} VkImageType;

• VK_IMAGE_TYPE_1D specifies a one-dimensional image.

• VK_IMAGE_TYPE_2D specifies a two-dimensional image.

• VK_IMAGE_TYPE_3D specifies a three-dimensional image.

Possible values of VkImageCreateInfo::tiling, specifying the tiling arrangement of data elements in

an image, are:

typedef enum VkImageTiling {

 VK_IMAGE_TILING_OPTIMAL = 0,

 VK_IMAGE_TILING_LINEAR = 1,

} VkImageTiling;

• VK_IMAGE_TILING_OPTIMAL specifies optimal tiling (texels are laid out in an implementation-

dependent arrangement, for more optimal memory access).

• VK_IMAGE_TILING_LINEAR specifies linear tiling (texels are laid out in memory in row-major order,

possibly with some padding on each row).

To query the host access layout of an image subresource, for an image created with linear tiling,

call:

void vkGetImageSubresourceLayout(

 VkDevice device,

 VkImage image,

 const VkImageSubresource* pSubresource,

 VkSubresourceLayout* pLayout);

• device is the logical device that owns the image.

• image is the image whose layout is being queried.

• pSubresource is a pointer to a VkImageSubresource structure selecting a specific image for the

image subresource.

243

• pLayout points to a VkSubresourceLayout structure in which the layout is returned.

vkGetImageSubresourceLayout is invariant for the lifetime of a single image.

Valid Usage

• image must have been created with tiling equal to VK_IMAGE_TILING_LINEAR

• The aspectMask member of pSubresource must only have a single bit set

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• image must be a valid VkImage handle

• pSubresource must be a pointer to a valid VkImageSubresource structure

• pLayout must be a pointer to a VkSubresourceLayout structure

• image must have been created, allocated, or retrieved from device

The VkImageSubresource structure is defined as:

typedef struct VkImageSubresource {

 VkImageAspectFlags aspectMask;

 uint32_t mipLevel;

 uint32_t arrayLayer;

} VkImageSubresource;

• aspectMask is a VkImageAspectFlags selecting the image aspect.

• mipLevel selects the mipmap level.

• arrayLayer selects the array layer.

Valid Usage

• mipLevel must be less than the mipLevels specified in VkImageCreateInfo when the image

was created

• arrayLayer must be less than the arrayLayers specified in VkImageCreateInfo when the

image was created

Valid Usage (Implicit)

• aspectMask must be a valid combination of VkImageAspectFlagBits values

• aspectMask must not be 0

244

Information about the layout of the image subresource is returned in a VkSubresourceLayout

structure:

typedef struct VkSubresourceLayout {

 VkDeviceSize offset;

 VkDeviceSize size;

 VkDeviceSize rowPitch;

 VkDeviceSize arrayPitch;

 VkDeviceSize depthPitch;

} VkSubresourceLayout;

• offset is the byte offset from the start of the image where the image subresource begins.

• size is the size in bytes of the image subresource. size includes any extra memory that is

required based on rowPitch.

• rowPitch describes the number of bytes between each row of texels in an image.

• arrayPitch describes the number of bytes between each array layer of an image.

• depthPitch describes the number of bytes between each slice of 3D image.

For images created with linear tiling, rowPitch, arrayPitch and depthPitch describe the layout of the

image subresource in linear memory. For uncompressed formats, rowPitch is the number of bytes

between texels with the same x coordinate in adjacent rows (y coordinates differ by one).

arrayPitch is the number of bytes between texels with the same x and y coordinate in adjacent

array layers of the image (array layer values differ by one). depthPitch is the number of bytes

between texels with the same x and y coordinate in adjacent slices of a 3D image (z coordinates

differ by one). Expressed as an addressing formula, the starting byte of a texel in the image

subresource has address:

// (x,y,z,layer) are in texel coordinates

address(x,y,z,layer) = layer*arrayPitch + z*depthPitch + y*rowPitch + x*elementSize +

offset

For compressed formats, the rowPitch is the number of bytes between compressed texel blocks in

adjacent rows. arrayPitch is the number of bytes between compressed texel blocks in adjacent

array layers. depthPitch is the number of bytes between compressed texel blocks in adjacent slices

of a 3D image.

// (x,y,z,layer) are in compressed texel block coordinates

address(x,y,z,layer) = layer*arrayPitch + z*depthPitch + y*rowPitch + x

*compressedTexelBlockByteSize + offset;

arrayPitch is undefined for images that were not created as arrays. depthPitch is defined only for

3D images.

For color formats, the aspectMask member of VkImageSubresource must be

VK_IMAGE_ASPECT_COLOR_BIT. For depth/stencil formats, aspectMask must be either

245

VK_IMAGE_ASPECT_DEPTH_BIT or VK_IMAGE_ASPECT_STENCIL_BIT. On implementations that store depth

and stencil aspects separately, querying each of these image subresource layouts will return a

different offset and size representing the region of memory used for that aspect. On

implementations that store depth and stencil aspects interleaved, the same offset and size are

returned and represent the interleaved memory allocation.

To destroy an image, call:

void vkDestroyImage(

 VkDevice device,

 VkImage image,

 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the image.

• image is the image to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• All submitted commands that refer to image, either directly or via a VkImageView, must

have completed execution

• If VkAllocationCallbacks were provided when image was created, a compatible set of

callbacks must be provided here

• If no VkAllocationCallbacks were provided when image was created, pAllocator must be
NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If image is not VK_NULL_HANDLE, image must be a valid VkImage handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• If image is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to image must be externally synchronized

11.4. Image Layouts

Images are stored in implementation-dependent opaque layouts in memory. Each layout has

246

limitations on what kinds of operations are supported for image subresources using the layout. At

any given time, the data representing an image subresource in memory exists in a particular layout

which is determined by the most recent layout transition that was performed on that image

subresource. Applications have control over which layout each image subresource uses, and can

transition an image subresource from one layout to another. Transitions can happen with an image

memory barrier, included as part of a vkCmdPipelineBarrier or a vkCmdWaitEvents command buffer

command (see Image Memory Barriers), or as part of a subpass dependency within a render pass

(see VkSubpassDependency). The image layout is per-image subresource, and separate image

subresources of the same image can be in different layouts at the same time with one exception -

depth and stencil aspects of a given image subresource must always be in the same layout.



Note

Each layout may offer optimal performance for a specific usage of image memory.

For example, an image with a layout of VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL

may provide optimal performance for use as a color attachment, but be

unsupported for use in transfer commands. Applications can transition an image

subresource from one layout to another in order to achieve optimal performance

when the image subresource is used for multiple kinds of operations. After

initialization, applications need not use any layout other than the general layout,

though this may produce suboptimal performance on some implementations.

Upon creation, all image subresources of an image are initially in the same layout, where that

layout is selected by the VkImageCreateInfo::initialLayout member. The initialLayout must be

either VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED. If it is

VK_IMAGE_LAYOUT_PREINITIALIZED, then the image data can be preinitialized by the host while using

this layout, and the transition away from this layout will preserve that data. If it is

VK_IMAGE_LAYOUT_UNDEFINED, then the contents of the data are considered to be undefined, and the

transition away from this layout is not guaranteed to preserve that data. For either of these initial

layouts, any image subresources must be transitioned to another layout before they are accessed

by the device.

Host access to image memory is only well-defined for images created with VK_IMAGE_TILING_LINEAR

tiling and for image subresources of those images which are currently in either the

VK_IMAGE_LAYOUT_PREINITIALIZED or VK_IMAGE_LAYOUT_GENERAL layout. Calling

vkGetImageSubresourceLayout for a linear image returns a subresource layout mapping that is

valid for either of those image layouts.

The set of image layouts consists of:

247

typedef enum VkImageLayout {

 VK_IMAGE_LAYOUT_UNDEFINED = 0,

 VK_IMAGE_LAYOUT_GENERAL = 1,

 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL = 2,

 VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL = 3,

 VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL = 4,

 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL = 5,

 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL = 6,

 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL = 7,

 VK_IMAGE_LAYOUT_PREINITIALIZED = 8,

} VkImageLayout;

The type(s) of device access supported by each layout are:

• VK_IMAGE_LAYOUT_UNDEFINED does not support device access. This layout must only be used as the

initialLayout member of VkImageCreateInfo or VkAttachmentDescription, or as the oldLayout in

an image transition. When transitioning out of this layout, the contents of the memory are not

guaranteed to be preserved.

• VK_IMAGE_LAYOUT_PREINITIALIZED does not support device access. This layout must only be used

as the initialLayout member of VkImageCreateInfo or VkAttachmentDescription, or as the

oldLayout in an image transition. When transitioning out of this layout, the contents of the

memory are preserved. This layout is intended to be used as the initial layout for an image

whose contents are written by the host, and hence the data can be written to memory

immediately, without first executing a layout transition. Currently,

VK_IMAGE_LAYOUT_PREINITIALIZED is only useful with VK_IMAGE_TILING_LINEAR images because there

is not a standard layout defined for VK_IMAGE_TILING_OPTIMAL images.

• VK_IMAGE_LAYOUT_GENERAL supports all types of device access.

• VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL must only be used as a color or resolve attachment in

a VkFramebuffer. This layout is valid only for image subresources of images created with the

VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT usage bit enabled.

• VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL must only be used as a depth/stencil

attachment in a VkFramebuffer. This layout is valid only for image subresources of images

created with the VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT usage bit enabled.

• VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL must only be used as a read-only

depth/stencil attachment in a VkFramebuffer and/or as a read-only image in a shader (which can

be read as a sampled image, combined image/sampler and/or input attachment). This layout is

valid only for image subresources of images created with the

VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT usage bit enabled. Only image subresources of

images created with VK_IMAGE_USAGE_SAMPLED_BIT can be used as a sampled image or combined

image/sampler in a shader. Similarly, only image subresources of images created with

VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT can be used as input attachments.

• VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL must only be used as a read-only image in a shader

(which can be read as a sampled image, combined image/sampler and/or input attachment).

This layout is valid only for image subresources of images created with the

VK_IMAGE_USAGE_SAMPLED_BIT or VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT usage bit enabled.

248

• VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL must only be used as a source image of a transfer

command (see the definition of VK_PIPELINE_STAGE_TRANSFER_BIT). This layout is valid only for

image subresources of images created with the VK_IMAGE_USAGE_TRANSFER_SRC_BIT usage bit

enabled.

• VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL must only be used as a destination image of a transfer

command. This layout is valid only for image subresources of images created with the

VK_IMAGE_USAGE_TRANSFER_DST_BIT usage bit enabled.

For each mechanism of accessing an image in the API, there is a parameter or structure member

that controls the image layout used to access the image. For transfer commands, this is a parameter

to the command (see Clear Commands and Copy Commands). For use as a framebuffer attachment,

this is a member in the substructures of the VkRenderPassCreateInfo (see Render Pass). For use in a

descriptor set, this is a member in the VkDescriptorImageInfo structure (see Descriptor Set Updates).

At the time that any command buffer command accessing an image executes on any queue, the

layouts of the image subresources that are accessed must all match the layout specified via the API

controlling those accesses.

The image layout of each image subresource must be well-defined at each point in the image

subresource’s lifetime. This means that when performing a layout transition on the image

subresource, the old layout value must either equal the current layout of the image subresource (at

the time the transition executes), or else be VK_IMAGE_LAYOUT_UNDEFINED (implying that the contents of

the image subresource need not be preserved). The new layout used in a transition must not be

VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED.

11.5. Image Views

Image objects are not directly accessed by pipeline shaders for reading or writing image data.

Instead, image views representing contiguous ranges of the image subresources and containing

additional metadata are used for that purpose. Views must be created on images of compatible

types, and must represent a valid subset of image subresources.

Image views are represented by VkImageView handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkImageView)

The types of image views that can be created are:

typedef enum VkImageViewType {

 VK_IMAGE_VIEW_TYPE_1D = 0,

 VK_IMAGE_VIEW_TYPE_2D = 1,

 VK_IMAGE_VIEW_TYPE_3D = 2,

 VK_IMAGE_VIEW_TYPE_CUBE = 3,

 VK_IMAGE_VIEW_TYPE_1D_ARRAY = 4,

 VK_IMAGE_VIEW_TYPE_2D_ARRAY = 5,

 VK_IMAGE_VIEW_TYPE_CUBE_ARRAY = 6,

} VkImageViewType;

249

The exact image view type is partially implicit, based on the image’s type and sample count, as well

as the view creation parameters as described in the image view compatibility table for

vkCreateImageView. This table also shows which SPIR-V OpTypeImage Dim and Arrayed parameters

correspond to each image view type.

To create an image view, call:

VkResult vkCreateImageView(

 VkDevice device,

 const VkImageViewCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkImageView* pView);

• device is the logical device that creates the image view.

• pCreateInfo is a pointer to an instance of the VkImageViewCreateInfo structure containing

parameters to be used to create the image view.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pView points to a VkImageView handle in which the resulting image view object is returned.

Some of the image creation parameters are inherited by the view. The remaining parameters are

contained in the pCreateInfo.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkImageViewCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• pView must be a pointer to a VkImageView handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkImageViewCreateInfo structure is defined as:

250

typedef struct VkImageViewCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkImageViewCreateFlags flags;

 VkImage image;

 VkImageViewType viewType;

 VkFormat format;

 VkComponentMapping components;

 VkImageSubresourceRange subresourceRange;

} VkImageViewCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• image is a VkImage on which the view will be created.

• viewType is an VkImageViewType value specifying the type of the image view.

• format is a VkFormat describing the format and type used to interpret data elements in the

image.

• components is a VkComponentMapping specifies a remapping of color components (or of depth

or stencil components after they have been converted into color components).

• subresourceRange is a VkImageSubresourceRange selecting the set of mipmap levels and array

layers to be accessible to the view.

If image was created with the VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT flag, format can be different from

the image’s format, but if they are not equal they must be compatible. Image format compatibility is

defined in the Format Compatibility Classes section. Views of compatible formats will have the

same mapping between texel coordinates and memory locations irrespective of the format, with

only the interpretation of the bit pattern changing.



Note

Values intended to be used with one view format may not be exactly preserved

when written or read through a different format. For example, an integer value

that happens to have the bit pattern of a floating point denorm or NaN may be

flushed or canonicalized when written or read through a view with a floating

point format. Similarly, a value written through a signed normalized format that

has a bit pattern exactly equal to -2
b
 may be changed to -2

b
 + 1 as described in

Conversion from Normalized Fixed-Point to Floating-Point.

Table 8. Image and image view parameter compatibility requirements

251

Dim,

Arrayed, MS

Image parameters View parameters

imageType = ci.imageType

width = ci.extent.width

height = ci.extent.height

depth = ci.extent.depth

arrayLayers = ci.arrayLayers

samples = ci.samples

flags = ci.flags

where ci is the

VkImageCreateInfo used to create

image.

baseArrayLayer and layerCount are members of

the subresourceRange member.

1D, 0, 0 imageType = VK_IMAGE_TYPE_1D

width ≥ 1

height = 1

depth = 1

arrayLayers ≥ 1

samples = 1

viewType = VK_IMAGE_VIEW_TYPE_1D

baseArrayLayer ≥ 0

layerCount = 1

1D, 1, 0 imageType = VK_IMAGE_TYPE_1D

width ≥ 1

height = 1

depth = 1

arrayLayers ≥ 1

samples = 1

viewType = VK_IMAGE_VIEW_TYPE_1D_ARRAY

baseArrayLayer ≥ 0

layerCount ≥ 1

2D, 0, 0 imageType = VK_IMAGE_TYPE_2D

width ≥ 1

height ≥ 1

depth = 1

arrayLayers ≥ 1

samples = 1

viewType = VK_IMAGE_VIEW_TYPE_2D

baseArrayLayer ≥ 0

layerCount = 1

2D, 1, 0 imageType = VK_IMAGE_TYPE_2D

width ≥ 1

height ≥ 1

depth = 1

arrayLayers ≥ 1

samples = 1

viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY

baseArrayLayer ≥ 0

layerCount ≥ 1

2D, 0, 1 imageType = VK_IMAGE_TYPE_2D

width ≥ 1

height ≥ 1

depth = 1

arrayLayers ≥ 1

samples > 1

viewType = VK_IMAGE_VIEW_TYPE_2D

baseArrayLayer ≥ 0

layerCount = 1

2D, 1, 1 imageType = VK_IMAGE_TYPE_2D

width ≥ 1

height ≥ 1

depth = 1

arrayLayers ≥ 1

samples > 1

viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY

baseArrayLayer ≥ 0

layerCount ≥ 1

252

Dim,

Arrayed, MS

Image parameters View parameters

CUBE, 0, 0 imageType = VK_IMAGE_TYPE_2D

width ≥ 1

height = width

depth = 1

arrayLayers ≥ 6

samples = 1

flags includes
VK_IMAGE_CREATE_CUBE_COMPATIBLE_
BIT

viewType = VK_IMAGE_VIEW_TYPE_CUBE

baseArrayLayer ≥ 0

layerCount = 6

CUBE, 1, 0 imageType = VK_IMAGE_TYPE_2D

width ≥ 1

height = width

depth = 1

N ≥ 1

arrayLayers ≥ 6 × N
samples = 1

flags includes
VK_IMAGE_CREATE_CUBE_COMPATIBLE_
BIT

viewType = VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

baseArrayLayer ≥ 0

layerCount = 6 × N, N ≥ 1

3D, 0, 0 imageType = VK_IMAGE_TYPE_3D

width ≥ 1

height ≥ 1

depth ≥ 1

arrayLayers = 1

samples = 1

viewType = VK_IMAGE_VIEW_TYPE_3D

baseArrayLayer = 0

layerCount = 1

253

Valid Usage

• If image was not created with VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT then viewType must not

be VK_IMAGE_VIEW_TYPE_CUBE or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• If the image cubemap arrays feature is not enabled, viewType must not be
VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• If image was created with VK_IMAGE_TILING_LINEAR, format must be format that has at least

one supported feature bit present in the value of VkFormatProperties::linearTilingFeatures

returned by vkGetPhysicalDeviceFormatProperties with the same value of format

• image must have been created with a usage value containing at least one of

VK_IMAGE_USAGE_SAMPLED_BIT, VK_IMAGE_USAGE_STORAGE_BIT,

VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, or
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• If image was created with VK_IMAGE_TILING_LINEAR and usage contains

VK_IMAGE_USAGE_SAMPLED_BIT, format must be supported for sampled images, as specified by

the VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT flag in VkFormatProperties::linearTilingFeatures

returned by vkGetPhysicalDeviceFormatProperties with the same value of format

• If image was created with VK_IMAGE_TILING_LINEAR and usage contains

VK_IMAGE_USAGE_STORAGE_BIT, format must be supported for storage images, as specified by

the VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT flag in VkFormatProperties::linearTilingFeatures

returned by vkGetPhysicalDeviceFormatProperties with the same value of format

• If image was created with VK_IMAGE_TILING_LINEAR and usage contains

VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, format must be supported for color attachments, as

specified by the VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT flag in VkFormatProperties

::linearTilingFeatures returned by vkGetPhysicalDeviceFormatProperties with the same

value of format

• If image was created with VK_IMAGE_TILING_LINEAR and usage contains

VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, format must be supported for depth/stencil

attachments, as specified by the VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT flag in

VkFormatProperties::linearTilingFeatures returned by

vkGetPhysicalDeviceFormatProperties with the same value of format

• If image was created with VK_IMAGE_TILING_OPTIMAL, format must be format that has at least

one supported feature bit present in the value of VkFormatProperties

::optimalTilingFeatures returned by vkGetPhysicalDeviceFormatProperties with the same

value of format

• If image was created with VK_IMAGE_TILING_OPTIMAL and usage contains

VK_IMAGE_USAGE_SAMPLED_BIT, format must be supported for sampled images, as specified by

the VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT flag in VkFormatProperties::optimalTilingFeatures

returned by vkGetPhysicalDeviceFormatProperties with the same value of format

• If image was created with VK_IMAGE_TILING_OPTIMAL and usage contains

VK_IMAGE_USAGE_STORAGE_BIT, format must be supported for storage images, as specified by

the VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT flag in VkFormatProperties::optimalTilingFeatures

returned by vkGetPhysicalDeviceFormatProperties with the same value of format

254

• If image was created with VK_IMAGE_TILING_OPTIMAL and usage contains

VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, format must be supported for color attachments, as

specified by the VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT flag in VkFormatProperties

::optimalTilingFeatures returned by vkGetPhysicalDeviceFormatProperties with the same

value of format

• If image was created with VK_IMAGE_TILING_OPTIMAL and usage contains

VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, format must be supported for depth/stencil

attachments, as specified by the VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT flag in

VkFormatProperties::optimalTilingFeatures returned by

vkGetPhysicalDeviceFormatProperties with the same value of format

• subresourceRange::baseMipLevel must be less than the mipLevels specified in

VkImageCreateInfo when image was created

• If subresourceRange::levelCount is not VK_REMAINING_MIP_LEVELS, subresourceRange

::levelCount must be non-zero and subresourceRange::baseMipLevel + subresourceRange

::levelCount must be less than or equal to the mipLevels specified in VkImageCreateInfo

when image was created

• subresourceRange::baseArrayLayer must be less than the arrayLayers specified in

VkImageCreateInfo when image was created

• If subresourceRange::layerCount is not VK_REMAINING_ARRAY_LAYERS, subresourceRange

::layerCount must be non-zero and subresourceRange::baseArrayLayer + subresourceRange

::layerCount must be less than or equal to the arrayLayers specified in VkImageCreateInfo

when image was created

• If image was created with the VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT flag, format must be

compatible with the format used to create image, as defined in Format Compatibility

Classes

• If image was not created with the VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT flag, format must be

identical to the format used to create image

• If image is non-sparse then it must be bound completely and contiguously to a single

VkDeviceMemory object

• subresourceRange and viewType must be compatible with the image, as described in the

compatibility table

255

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO

• pNext must be NULL

• flags must be 0

• image must be a valid VkImage handle

• viewType must be a valid VkImageViewType value

• format must be a valid VkFormat value

• components must be a valid VkComponentMapping structure

• subresourceRange must be a valid VkImageSubresourceRange structure

The VkImageSubresourceRange structure is defined as:

typedef struct VkImageSubresourceRange {

 VkImageAspectFlags aspectMask;

 uint32_t baseMipLevel;

 uint32_t levelCount;

 uint32_t baseArrayLayer;

 uint32_t layerCount;

} VkImageSubresourceRange;

• aspectMask is a bitmask of VkImageAspectFlagBits specifying which aspect(s) of the image are

included in the view.

• baseMipLevel is the first mipmap level accessible to the view.

• levelCount is the number of mipmap levels (starting from baseMipLevel) accessible to the view.

• baseArrayLayer is the first array layer accessible to the view.

• layerCount is the number of array layers (starting from baseArrayLayer) accessible to the view.

The number of mipmap levels and array layers must be a subset of the image subresources in the

image. If an application wants to use all mip levels or layers in an image after the baseMipLevel or

baseArrayLayer, it can set levelCount and layerCount to the special values VK_REMAINING_MIP_LEVELS

and VK_REMAINING_ARRAY_LAYERS without knowing the exact number of mip levels or layers.

For cube and cube array image views, the layers of the image view starting at baseArrayLayer

correspond to faces in the order +X, -X, +Y, -Y, +Z, -Z. For cube arrays, each set of six sequential

layers is a single cube, so the number of cube maps in a cube map array view is layerCount / 6, and

image array layer (baseArrayLayer + i) is face index (i mod 6) of cube i / 6. If the number of layers in

the view, whether set explicitly in layerCount or implied by VK_REMAINING_ARRAY_LAYERS, is not a

multiple of 6, behavior when indexing the last cube is undefined.

aspectMask must be only VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_ASPECT_DEPTH_BIT or

VK_IMAGE_ASPECT_STENCIL_BIT if format is a color, depth-only or stencil-only format, respectively. If

using a depth/stencil format with both depth and stencil components, aspectMask must include at

256

least one of VK_IMAGE_ASPECT_DEPTH_BIT and VK_IMAGE_ASPECT_STENCIL_BIT, and can include both.

When using an imageView of a depth/stencil image to populate a descriptor set (e.g. for sampling in

the shader, or for use as an input attachment), the aspectMask must only include one bit and selects

whether the imageView is used for depth reads (i.e. using a floating-point sampler or input

attachment in the shader) or stencil reads (i.e. using an unsigned integer sampler or input

attachment in the shader). When an imageView of a depth/stencil image is used as a depth/stencil

framebuffer attachment, the aspectMask is ignored and both depth and stencil image subresources

are used.

The components member is of type VkComponentMapping, and describes a remapping from

components of the image to components of the vector returned by shader image instructions. This

remapping must be identity for storage image descriptors, input attachment descriptors, and

framebuffer attachments.

Valid Usage (Implicit)

• aspectMask must be a valid combination of VkImageAspectFlagBits values

• aspectMask must not be 0

Bits which can be set in an aspect mask to specify aspects of an image for purposes such as

identifying a subresource, are:

typedef enum VkImageAspectFlagBits {

 VK_IMAGE_ASPECT_COLOR_BIT = 0x00000001,

 VK_IMAGE_ASPECT_DEPTH_BIT = 0x00000002,

 VK_IMAGE_ASPECT_STENCIL_BIT = 0x00000004,

 VK_IMAGE_ASPECT_METADATA_BIT = 0x00000008,

} VkImageAspectFlagBits;

• VK_IMAGE_ASPECT_COLOR_BIT specifies the color aspect.

• VK_IMAGE_ASPECT_DEPTH_BIT specifies the depth aspect.

• VK_IMAGE_ASPECT_STENCIL_BIT specifies the stencil aspect.

• VK_IMAGE_ASPECT_METADATA_BIT specifies the metadata aspect, used for sparse sparse resource

operations.

The VkComponentMapping structure is defined as:

typedef struct VkComponentMapping {

 VkComponentSwizzle r;

 VkComponentSwizzle g;

 VkComponentSwizzle b;

 VkComponentSwizzle a;

} VkComponentMapping;

257

• r is a VkComponentSwizzle specifying the component value placed in the R component of the

output vector.

• g is a VkComponentSwizzle specifying the component value placed in the G component of the

output vector.

• b is a VkComponentSwizzle specifying the component value placed in the B component of the

output vector.

• A is a VkComponentSwizzle specifying the component value placed in the A component of the

output vector.

Valid Usage (Implicit)

• r must be a valid VkComponentSwizzle value

• g must be a valid VkComponentSwizzle value

• b must be a valid VkComponentSwizzle value

• a must be a valid VkComponentSwizzle value

Possible values of the members of VkComponentMapping, specifying the component values placed

in each component of the output vector, are:

typedef enum VkComponentSwizzle {

 VK_COMPONENT_SWIZZLE_IDENTITY = 0,

 VK_COMPONENT_SWIZZLE_ZERO = 1,

 VK_COMPONENT_SWIZZLE_ONE = 2,

 VK_COMPONENT_SWIZZLE_R = 3,

 VK_COMPONENT_SWIZZLE_G = 4,

 VK_COMPONENT_SWIZZLE_B = 5,

 VK_COMPONENT_SWIZZLE_A = 6,

} VkComponentSwizzle;

• VK_COMPONENT_SWIZZLE_IDENTITY specifies that the component is set to the identity swizzle.

• VK_COMPONENT_SWIZZLE_ZERO specifies that the component is set to zero.

• VK_COMPONENT_SWIZZLE_ONE specifies that the component is set to either 1 or 1.0, depending on

whether the type of the image view format is integer or floating-point respectively, as

determined by the Format Definition section for each VkFormat.

• VK_COMPONENT_SWIZZLE_R specifies that the component is set to the value of the R component of

the image.

• VK_COMPONENT_SWIZZLE_G specifies that the component is set to the value of the G component of

the image.

• VK_COMPONENT_SWIZZLE_B specifies that the component is set to the value of the B component of

the image.

• VK_COMPONENT_SWIZZLE_A specifies that the component is set to the value of the A component of

the image.

258

Setting the identity swizzle on a component is equivalent to setting the identity mapping on that

component. That is:

Table 9. Component Mappings Equivalent To VK_COMPONENT_SWIZZLE_IDENTITY

Component Identity Mapping

components.r VK_COMPONENT_SWIZZLE_R

components.g VK_COMPONENT_SWIZZLE_G

components.b VK_COMPONENT_SWIZZLE_B

components.a VK_COMPONENT_SWIZZLE_A

To destroy an image view, call:

void vkDestroyImageView(

 VkDevice device,

 VkImageView imageView,

 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the image view.

• imageView is the image view to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• All submitted commands that refer to imageView must have completed execution

• If VkAllocationCallbacks were provided when imageView was created, a compatible set of

callbacks must be provided here

• If no VkAllocationCallbacks were provided when imageView was created, pAllocator must

be NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If imageView is not VK_NULL_HANDLE, imageView must be a valid VkImageView handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• If imageView is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to imageView must be externally synchronized

259

11.6. Resource Memory Association

Resources are initially created as virtual allocations with no backing memory. Device memory is

allocated separately (see Device Memory) and then associated with the resource. This association is

done differently for sparse and non-sparse resources.

Resources created with any of the sparse creation flags are considered sparse resources. Resources

created without these flags are non-sparse. The details on resource memory association for sparse

resources is described in Sparse Resources.

Non-sparse resources must be bound completely and contiguously to a single VkDeviceMemory object

before the resource is passed as a parameter to any of the following operations:

• creating image or buffer views

• updating descriptor sets

• recording commands in a command buffer

Once bound, the memory binding is immutable for the lifetime of the resource.

To determine the memory requirements for a buffer resource, call:

void vkGetBufferMemoryRequirements(

 VkDevice device,

 VkBuffer buffer,

 VkMemoryRequirements* pMemoryRequirements);

• device is the logical device that owns the buffer.

• buffer is the buffer to query.

• pMemoryRequirements points to an instance of the VkMemoryRequirements structure in which the

memory requirements of the buffer object are returned.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• buffer must be a valid VkBuffer handle

• pMemoryRequirements must be a pointer to a VkMemoryRequirements structure

• buffer must have been created, allocated, or retrieved from device

To determine the memory requirements for an image resource, call:

260

void vkGetImageMemoryRequirements(

 VkDevice device,

 VkImage image,

 VkMemoryRequirements* pMemoryRequirements);

• device is the logical device that owns the image.

• image is the image to query.

• pMemoryRequirements points to an instance of the VkMemoryRequirements structure in which the

memory requirements of the image object are returned.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• image must be a valid VkImage handle

• pMemoryRequirements must be a pointer to a VkMemoryRequirements structure

• image must have been created, allocated, or retrieved from device

The VkMemoryRequirements structure is defined as:

typedef struct VkMemoryRequirements {

 VkDeviceSize size;

 VkDeviceSize alignment;

 uint32_t memoryTypeBits;

} VkMemoryRequirements;

• size is the size, in bytes, of the memory allocation required for the resource.

• alignment is the alignment, in bytes, of the offset within the allocation required for the

resource.

• memoryTypeBits is a bitmask and contains one bit set for every supported memory type for the

resource. Bit i is set if and only if the memory type i in the VkPhysicalDeviceMemoryProperties

structure for the physical device is supported for the resource.

The implementation guarantees certain properties about the memory requirements returned by

vkGetBufferMemoryRequirements and vkGetImageMemoryRequirements:

• The memoryTypeBits member always contains at least one bit set.

• If buffer is a VkBuffer not created with the VK_BUFFER_CREATE_SPARSE_BINDING_BIT bit set, or if

image is a VkImage that was created with a VK_IMAGE_TILING_LINEAR value in the tiling member of

the VkImageCreateInfo structure passed to vkCreateImage, then the memoryTypeBits member

always contains at least one bit set corresponding to a VkMemoryType with a propertyFlags that

has both the VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT bit and the

VK_MEMORY_PROPERTY_HOST_COHERENT_BIT bit set. In other words, mappable coherent memory can

always be attached to these objects.

261

• The memoryTypeBits member always contains at least one bit set corresponding to a VkMemoryType

with a propertyFlags that has the VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT bit set.

• The memoryTypeBits member is identical for all VkBuffer objects created with the same value for

the flags and usage members in the VkBufferCreateInfo structure passed to vkCreateBuffer.

Further, if usage1 and usage2 of type VkBufferUsageFlags are such that the bits set in usage2 are a

subset of the bits set in usage1, and they have the same flags, then the bits set in memoryTypeBits

returned for usage1 must be a subset of the bits set in memoryTypeBits returned for usage2, for all

values of flags.

• The alignment member is a power of two.

• The alignment member is identical for all VkBuffer objects created with the same combination of

values for the usage and flags members in the VkBufferCreateInfo structure passed to

vkCreateBuffer.

• For images created with a color format, the memoryTypeBits member is identical for all VkImage

objects created with the same combination of values for the tiling member, the

VK_IMAGE_CREATE_SPARSE_BINDING_BIT bit of the flags member, and the

VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT of the usage member in the VkImageCreateInfo

structure passed to vkCreateImage.

• For images created with a depth/stencil format, the memoryTypeBits member is identical for all

VkImage objects created with the same combination of values for the format member, the tiling

member, the VK_IMAGE_CREATE_SPARSE_BINDING_BIT bit of the flags member, and the

VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT of the usage member in the VkImageCreateInfo

structure passed to vkCreateImage.

• If the memory requirements are for a VkImage, the memoryTypeBits member must not refer to a

VkMemoryType with a propertyFlags that has the VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT bit set if

the vkGetImageMemoryRequirements::image did not have

VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT bit set in the usage member of the VkImageCreateInfo

structure passed to vkCreateImage.

• If the memory requirements are for a VkBuffer, the memoryTypeBits member must not refer to a

VkMemoryType with a propertyFlags that has the VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT bit set.


Note

The implication of this requirement is that lazily allocated memory is

disallowed for buffers in all cases.

To attach memory to a buffer object, call:

VkResult vkBindBufferMemory(

 VkDevice device,

 VkBuffer buffer,

 VkDeviceMemory memory,

 VkDeviceSize memoryOffset);

• device is the logical device that owns the buffer and memory.

262

• buffer is the buffer to be attached to memory.

• memory is a VkDeviceMemory object describing the device memory to attach.

• memoryOffset is the start offset of the region of memory which is to be bound to the buffer. The

number of bytes returned in the VkMemoryRequirements::size member in memory, starting from

memoryOffset bytes, will be bound to the specified buffer.

Valid Usage

• buffer must not already be backed by a memory object

• buffer must not have been created with any sparse memory binding flags

• memoryOffset must be less than the size of memory

• If buffer was created with the VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT or

VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT, memoryOffset must be a multiple of

VkPhysicalDeviceLimits::minTexelBufferOffsetAlignment

• If buffer was created with the VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, memoryOffset must be

a multiple of VkPhysicalDeviceLimits::minUniformBufferOffsetAlignment

• If buffer was created with the VK_BUFFER_USAGE_STORAGE_BUFFER_BIT, memoryOffset must be

a multiple of VkPhysicalDeviceLimits::minStorageBufferOffsetAlignment

• memory must have been allocated using one of the memory types allowed in the

memoryTypeBits member of the VkMemoryRequirements structure returned from a call to

vkGetBufferMemoryRequirements with buffer

• memoryOffset must be an integer multiple of the alignment member of the

VkMemoryRequirements structure returned from a call to vkGetBufferMemoryRequirements with

buffer

• The size member of the VkMemoryRequirements structure returned from a call to

vkGetBufferMemoryRequirements with buffer must be less than or equal to the size of memory

minus memoryOffset

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• buffer must be a valid VkBuffer handle

• memory must be a valid VkDeviceMemory handle

• buffer must have been created, allocated, or retrieved from device

• memory must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to buffer must be externally synchronized

263

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To attach memory to an image object, call:

VkResult vkBindImageMemory(

 VkDevice device,

 VkImage image,

 VkDeviceMemory memory,

 VkDeviceSize memoryOffset);

• device is the logical device that owns the image and memory.

• image is the image.

• memory is the VkDeviceMemory object describing the device memory to attach.

• memoryOffset is the start offset of the region of memory which is to be bound to the image. The

number of bytes returned in the VkMemoryRequirements::size member in memory, starting from

memoryOffset bytes, will be bound to the specified image.

Valid Usage

• image must not already be backed by a memory object

• image must not have been created with any sparse memory binding flags

• memoryOffset must be less than the size of memory

• memory must have been allocated using one of the memory types allowed in the

memoryTypeBits member of the VkMemoryRequirements structure returned from a call to

vkGetImageMemoryRequirements with image

• memoryOffset must be an integer multiple of the alignment member of the

VkMemoryRequirements structure returned from a call to vkGetImageMemoryRequirements with
image

• The size member of the VkMemoryRequirements structure returned from a call to

vkGetImageMemoryRequirements with image must be less than or equal to the size of memory

minus memoryOffset

264

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• image must be a valid VkImage handle

• memory must be a valid VkDeviceMemory handle

• image must have been created, allocated, or retrieved from device

• memory must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to image must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

Buffer-Image Granularity

There is an implementation-dependent limit, bufferImageGranularity, which specifies a page-like

granularity at which linear and non-linear resources must be placed in adjacent memory locations

to avoid aliasing. Two resources which do not satisfy this granularity requirement are said to alias.

bufferImageGranularity is specified in bytes, and must be a power of two. Implementations which

do not require such an additional granularity may report a value of one.


Note

Despite its name, bufferImageGranularity is really a granularity between "linear"

and "non-linear" resources.

Given resourceA at the lower memory offset and resourceB at the higher memory offset in the

same VkDeviceMemory object, where one resource linear and the other is non-linear (as defined in the

glossary), and the following:

resourceA.end = resourceA.memoryOffset + resourceA.size - 1

resourceA.endPage = resourceA.end & ~(bufferImageGranularity-1)

resourceB.start = resourceB.memoryOffset

resourceB.startPage = resourceB.start & ~(bufferImageGranularity-1)

The following property must hold:

265

resourceA.endPage < resourceB.startPage

That is, the end of the first resource (A) and the beginning of the second resource (B) must be on

separate “pages” of size bufferImageGranularity. bufferImageGranularity may be different than the

physical page size of the memory heap. This restriction is only needed when a linear resource and a

non-linear resource are adjacent in memory and will be used simultaneously. The memory ranges

of adjacent resources can be closer than bufferImageGranularity, provided they meet the alignment

requirement for the objects in question.

Sparse block size in bytes and sparse image and buffer memory alignments must all be multiples of

the bufferImageGranularity. Therefore, memory bound to sparse resources naturally satisfies the

bufferImageGranularity.

11.7. Resource Sharing Mode

Buffer and image objects are created with a sharing mode controlling how they can be accessed

from queues. The supported sharing modes are:

typedef enum VkSharingMode {

 VK_SHARING_MODE_EXCLUSIVE = 0,

 VK_SHARING_MODE_CONCURRENT = 1,

} VkSharingMode;

• VK_SHARING_MODE_EXCLUSIVE specifies that access to any range or image subresource of the object

will be exclusive to a single queue family at a time.

• VK_SHARING_MODE_CONCURRENT specifies that concurrent access to any range or image subresource

of the object from multiple queue families is supported.


Note

VK_SHARING_MODE_CONCURRENT may result in lower performance access to the buffer

or image than VK_SHARING_MODE_EXCLUSIVE.

Ranges of buffers and image subresources of image objects created using VK_SHARING_MODE_EXCLUSIVE

must only be accessed by queues in the same queue family at any given time. In order for a

different queue family to be able to interpret the memory contents of a range or image

subresource, the application must perform a queue family ownership transfer.

Upon creation, resources using VK_SHARING_MODE_EXCLUSIVE are not owned by any queue family. A

buffer or image memory barrier is not required to acquire ownership when no queue family owns

the resource - it is implicitly acquired upon first use within a queue.


Note

Images still require a layout transition from VK_IMAGE_LAYOUT_UNDEFINED or

VK_IMAGE_LAYOUT_PREINITIALIZED before being used on the first queue.

266

A queue family can take ownership of an image subresource or buffer range of a resource created

with VK_SHARING_MODE_EXCLUSIVE, without an ownership transfer, in the same way as for a resource

that was just created; however, taking ownership in this way has the effect that the contents of the

image subresource or buffer range are undefined.

Ranges of buffers and image subresources of image objects created using

VK_SHARING_MODE_CONCURRENT must only be accessed by queues from the queue families specified

through the queueFamilyIndexCount and pQueueFamilyIndices members of the corresponding create

info structures.

11.8. Memory Aliasing

A range of a VkDeviceMemory allocation is aliased if it is bound to multiple resources simultaneously,

as described below, via vkBindImageMemory, vkBindBufferMemory, or via sparse memory

bindings.

Consider two resources, resourceA and resourceB, bound respectively to memory rangeA and rangeB.

Let paddedRangeA and paddedRangeB be, respectively, rangeA and rangeB aligned to

bufferImageGranularity. If the resources are both linear or both non-linear (as defined in the

glossary), then the resources alias the memory in the intersection of rangeA and rangeB. If one

resource is linear and the other is non-linear, then the resources alias the memory in the

intersection of paddedRangeA and paddedRangeB.

Applications can alias memory, but use of multiple aliases is subject to several constraints.


Note

Memory aliasing can be useful to reduce the total device memory footprint of an

application, if some large resources are used for disjoint periods of time.

When an opaque, non-VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT image is bound to an aliased range, all

image subresources of the image overlap the range. When a linear image is bound to an aliased

range, the image subresources that (according to the image’s advertised layout) include bytes from

the aliased range overlap the range. When a VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT image has

sparse image blocks bound to an aliased range, only image subresources including those sparse

image blocks overlap the range, and when the memory bound to the image’s mip tail overlaps an

aliased range all image subresources in the mip tail overlap the range.

Buffers, and linear image subresources in either the VK_IMAGE_LAYOUT_PREINITIALIZED or

VK_IMAGE_LAYOUT_GENERAL layouts, are host-accessible subresources. That is, the host has a well-

defined addressing scheme to interpret the contents, and thus the layout of the data in memory can

be consistently interpreted across aliases if each of those aliases is a host-accessible subresource.

Non-linear images, and linear image subresources in other layouts, are not host-accessible.

If two aliases are both host-accessible, then they interpret the contents of the memory in consistent

ways, and data written to one alias can be read by the other alias.

Otherwise, the aliases interpret the contents of the memory differently, and writes via one alias

make the contents of memory partially or completely undefined to the other alias. If the first alias is

a host-accessible subresource, then the bytes affected are those written by the memory operations

267

according to its addressing scheme. If the first alias is not host-accessible, then the bytes affected

are those overlapped by the image subresources that were written. If the second alias is a host-

accessible subresource, the affected bytes become undefined. If the second alias is a not host-

accessible, all sparse image blocks (for sparse partially-resident images) or all image subresources

(for non-sparse image and fully resident sparse images) that overlap the affected bytes become

undefined.

If any image subresources are made undefined due to writes to an alias, then each of those image

subresources must have its layout transitioned from VK_IMAGE_LAYOUT_UNDEFINED to a valid layout

before it is used, or from VK_IMAGE_LAYOUT_PREINITIALIZED if the memory has been written by the

host. If any sparse blocks of a sparse image have been made undefined, then only the image

subresources containing them must be transitioned.

Use of an overlapping range by two aliases must be separated by a memory dependency using the

appropriate access types if at least one of those uses performs writes, whether the aliases interpret

memory consistently or not. If buffer or image memory barriers are used, the scope of the barrier

must contain the entire range and/or set of image subresources that overlap.

If two aliasing image views are used in the same framebuffer, then the render pass must declare

the attachments using the VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT, and follow the other rules

listed in that section.

Access to resources which alias memory from shaders using variables decorated with Coherent are

not automatically coherent with each other.



Note

Memory recycled via an application suballocator (i.e. without freeing and

reallocating the memory objects) is not substantially different from memory

aliasing. However, a suballocator usually waits on a fence before recycling a

region of memory, and signaling a fence involves sufficient implicit dependencies

to satisfy all the above requirements.

268

Chapter 12. Samplers

VkSampler objects represent the state of an image sampler which is used by the implementation to

read image data and apply filtering and other transformations for the shader.

Samplers are represented by VkSampler handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkSampler)

To create a sampler object, call:

VkResult vkCreateSampler(

 VkDevice device,

 const VkSamplerCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkSampler* pSampler);

• device is the logical device that creates the sampler.

• pCreateInfo is a pointer to an instance of the VkSamplerCreateInfo structure specifying the state

of the sampler object.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pSampler points to a VkSampler handle in which the resulting sampler object is returned.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkSamplerCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• pSampler must be a pointer to a VkSampler handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_TOO_MANY_OBJECTS

The VkSamplerCreateInfo structure is defined as:

269

typedef struct VkSamplerCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkSamplerCreateFlags flags;

 VkFilter magFilter;

 VkFilter minFilter;

 VkSamplerMipmapMode mipmapMode;

 VkSamplerAddressMode addressModeU;

 VkSamplerAddressMode addressModeV;

 VkSamplerAddressMode addressModeW;

 float mipLodBias;

 VkBool32 anisotropyEnable;

 float maxAnisotropy;

 VkBool32 compareEnable;

 VkCompareOp compareOp;

 float minLod;

 float maxLod;

 VkBorderColor borderColor;

 VkBool32 unnormalizedCoordinates;

} VkSamplerCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• magFilter is a VkFilter value specifying the magnification filter to apply to lookups.

• minFilter is a VkFilter value specifying the minification filter to apply to lookups.

• mipmapMode is a VkSamplerMipmapMode value specifying the mipmap filter to apply to lookups.

• addressModeU is a VkSamplerAddressMode value specifying the addressing mode for outside

[0..1] range for U coordinate.

• addressModeV is a VkSamplerAddressMode value specifying the addressing mode for outside

[0..1] range for V coordinate.

• addressModeW is a VkSamplerAddressMode value specifying the addressing mode for outside

[0..1] range for W coordinate.

• mipLodBias is the bias to be added to mipmap LOD calculation and bias provided by image

sampling functions in SPIR-V, as described in the Level-of-Detail Operation section.

• anisotropyEnable is VK_TRUE to enable anisotropic filtering, as described in the Texel Anisotropic

Filtering section, or VK_FALSE otherwise.

• maxAnisotropy is the anisotropy value clamp.

• compareEnable is VK_TRUE to enable comparison against a reference value during lookups, or

VK_FALSE otherwise.

◦ Note: Some implementations will default to shader state if this member does not match.

• compareOp is a VkCompareOp value specifying the comparison function to apply to fetched data

270

before filtering as described in the Depth Compare Operation section.

• minLod and maxLod are the values used to clamp the computed level-of-detail value, as described

in the Level-of-Detail Operation section. maxLod must be greater than or equal to minLod.

• borderColor is a VkBorderColor value specifying the predefined border color to use.

• unnormalizedCoordinates controls whether to use unnormalized or normalized texel coordinates

to address texels of the image. When set to VK_TRUE, the range of the image coordinates used to

lookup the texel is in the range of zero to the image dimensions for x, y and z. When set to

VK_FALSE the range of image coordinates is zero to one. When unnormalizedCoordinates is VK_TRUE,

samplers have the following requirements:

◦ minFilter and magFilter must be equal.

◦ mipmapMode must be VK_SAMPLER_MIPMAP_MODE_NEAREST.

◦ minLod and maxLod must be zero.

◦ addressModeU and addressModeV must each be either VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

or VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER.

◦ anisotropyEnable must be VK_FALSE.

◦ compareEnable must be VK_FALSE.

• When unnormalizedCoordinates is VK_TRUE, images the sampler is used with in the shader have

the following requirements:

◦ The viewType must be either VK_IMAGE_VIEW_TYPE_1D or VK_IMAGE_VIEW_TYPE_2D.

◦ The image view must have a single layer and a single mip level.

• When unnormalizedCoordinates is VK_TRUE, image built-in functions in the shader that use the

sampler have the following requirements:

◦ The functions must not use projection.

◦ The functions must not use offsets.

271



Mapping of OpenGL to Vulkan filter modes

magFilter values of VK_FILTER_NEAREST and VK_FILTER_LINEAR directly correspond to

GL_NEAREST and GL_LINEAR magnification filters. minFilter and mipmapMode combine

to correspond to the similarly named OpenGL minification filter of

GL_minFilter_MIPMAP_mipmapMode (e.g. minFilter of VK_FILTER_LINEAR and mipmapMode

of VK_SAMPLER_MIPMAP_MODE_NEAREST correspond to GL_LINEAR_MIPMAP_NEAREST).

There are no Vulkan filter modes that directly correspond to OpenGL minification

filters of GL_LINEAR or GL_NEAREST, but they can be emulated using

VK_SAMPLER_MIPMAP_MODE_NEAREST, minLod = 0, and maxLod = 0.25, and using minFilter =

VK_FILTER_LINEAR or minFilter = VK_FILTER_NEAREST, respectively.

Note that using a maxLod of zero would cause magnification to always be

performed, and the magFilter to always be used. This is valid, just not an exact

match for OpenGL behavior. Clamping the maximum LOD to 0.25 allows the λ

value to be non-zero and minification to be performed, while still always rounding

down to the base level. If the minFilter and magFilter are equal, then using a

maxLod of zero also works.

The maximum number of sampler objects which can be simultaneously created on a device is

implementation-dependent and specified by the maxSamplerAllocationCount member of the

VkPhysicalDeviceLimits structure. If maxSamplerAllocationCount is exceeded, vkCreateSampler will

return VK_ERROR_TOO_MANY_OBJECTS.

Since VkSampler is a non-dispatchable handle type, implementations may return the same handle

for sampler state vectors that are identical. In such cases, all such objects would only count once

against the maxSamplerAllocationCount limit.

272

Valid Usage

• The absolute value of mipLodBias must be less than or equal to VkPhysicalDeviceLimits

::maxSamplerLodBias

• If the anisotropic sampling feature is not enabled, anisotropyEnable must be VK_FALSE

• If anisotropyEnable is VK_TRUE, maxAnisotropy must be between 1.0 and

VkPhysicalDeviceLimits::maxSamplerAnisotropy, inclusive

• If unnormalizedCoordinates is VK_TRUE, minFilter and magFilter must be equal

• If unnormalizedCoordinates is VK_TRUE, mipmapMode must be VK_SAMPLER_MIPMAP_MODE_NEAREST

• If unnormalizedCoordinates is VK_TRUE, minLod and maxLod must be zero

• If unnormalizedCoordinates is VK_TRUE, addressModeU and addressModeV must each be either

VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE or VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER

• If unnormalizedCoordinates is VK_TRUE, anisotropyEnable must be VK_FALSE

• If unnormalizedCoordinates is VK_TRUE, compareEnable must be VK_FALSE

• If any of addressModeU, addressModeV or addressModeW are

VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER, borderColor must be a valid VkBorderColor

value

• If the VK_KHR_sampler_mirror_clamp_to_edge extension is not enabled, addressModeU,

addressModeV and addressModeW must not be VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE

• If compareEnable is VK_TRUE, compareOp must be a valid VkCompareOp value

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO

• pNext must be NULL

• flags must be 0

• magFilter must be a valid VkFilter value

• minFilter must be a valid VkFilter value

• mipmapMode must be a valid VkSamplerMipmapMode value

• addressModeU must be a valid VkSamplerAddressMode value

• addressModeV must be a valid VkSamplerAddressMode value

• addressModeW must be a valid VkSamplerAddressMode value

Possible values of the VkSamplerCreateInfo::magFilter and minFilter parameters, specifying filters

used for texture lookups, are:

273

typedef enum VkFilter {

 VK_FILTER_NEAREST = 0,

 VK_FILTER_LINEAR = 1,

} VkFilter;

• VK_FILTER_NEAREST specifies nearest filtering.

• VK_FILTER_LINEAR specifies linear filtering.

These filters are described in detail in Texel Filtering.

Possible values of the VkSamplerCreateInfo::mipmapMode, specifying the mipmap mode used for

texture lookups, are:

typedef enum VkSamplerMipmapMode {

 VK_SAMPLER_MIPMAP_MODE_NEAREST = 0,

 VK_SAMPLER_MIPMAP_MODE_LINEAR = 1,

} VkSamplerMipmapMode;

• VK_SAMPLER_MIPMAP_MODE_NEAREST specifies nearest filtering.

• VK_SAMPLER_MIPMAP_MODE_LINEAR specifies linear filtering.

These modes are described in detail in Texel Filtering.

Possible values of the VkSamplerCreateInfo::addressMode* parameters, specifying the behavior of

sampling with coordinates outside the range [0,1] for the respective u, v, or w coordinate as defined

in the Wrapping Operation section, are:

typedef enum VkSamplerAddressMode {

 VK_SAMPLER_ADDRESS_MODE_REPEAT = 0,

 VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT = 1,

 VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE = 2,

 VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER = 3,

 VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE = 4,

} VkSamplerAddressMode;

• VK_SAMPLER_ADDRESS_MODE_REPEAT specifies that the repeat wrap mode will be used.

• VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT specifies that the mirrored repeat wrap mode will be

used.

• VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE specifies that the clamp to edge wrap mode will be used.

• VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER specifies that the clamp to border wrap mode will be

used.

• VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE specifies that the mirror clamp to edge wrap

mode will be used. This is only valid if the VK_KHR_mirror_clamp_to_edge extension is enabled.

274

Possible values of VkSamplerCreateInfo::borderColor, specifying the border color used for texture

lookups, are:

typedef enum VkBorderColor {

 VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK = 0,

 VK_BORDER_COLOR_INT_TRANSPARENT_BLACK = 1,

 VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK = 2,

 VK_BORDER_COLOR_INT_OPAQUE_BLACK = 3,

 VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE = 4,

 VK_BORDER_COLOR_INT_OPAQUE_WHITE = 5,

} VkBorderColor;

• VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK specifies a transparent, floating-point format, black

color.

• VK_BORDER_COLOR_INT_TRANSPARENT_BLACK specifies a transparent, integer format, black color.

• VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK specifies an opaque, floating-point format, black color.

• VK_BORDER_COLOR_INT_OPAQUE_BLACK specifies an opaque, integer format, black color.

• VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE specifies an opaque, floating-point format, white color.

• VK_BORDER_COLOR_INT_OPAQUE_WHITE specifies an opaque, integer format, white color.

These colors are described in detail in Texel Replacement.

To destroy a sampler, call:

void vkDestroySampler(

 VkDevice device,

 VkSampler sampler,

 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the sampler.

• sampler is the sampler to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• All submitted commands that refer to sampler must have completed execution

• If VkAllocationCallbacks were provided when sampler was created, a compatible set of

callbacks must be provided here

• If no VkAllocationCallbacks were provided when sampler was created, pAllocator must be
NULL

275

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If sampler is not VK_NULL_HANDLE, sampler must be a valid VkSampler handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• If sampler is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to sampler must be externally synchronized

276

Chapter 13. Resource Descriptors

Shaders access buffer and image resources by using special shader variables which are indirectly

bound to buffer and image views via the API. These variables are organized into sets, where each

set of bindings is represented by a descriptor set object in the API and a descriptor set is bound all

at once. A descriptor is an opaque data structure representing a shader resource such as a buffer

view, image view, sampler, or combined image sampler. The content of each set is determined by its

descriptor set layout and the sequence of set layouts that can be used by resource variables in

shaders within a pipeline is specified in a pipeline layout.

Each shader can use up to maxBoundDescriptorSets (see Limits) descriptor sets, and each descriptor

set can include bindings for descriptors of all descriptor types. Each shader resource variable is

assigned a tuple of (set number, binding number, array element) that defines its location within a

descriptor set layout. In GLSL, the set number and binding number are assigned via layout

qualifiers, and the array element is implicitly assigned consecutively starting with index equal to

zero for the first element of an array (and array element is zero for non-array variables):

GLSL example

// Assign set number = M, binding number = N, array element = 0

layout (set=M, binding=N) uniform sampler2D variableName;

// Assign set number = M, binding number = N for all array elements, and

// array element = I for the I'th member of the array.

layout (set=M, binding=N) uniform sampler2D variableNameArray[I];

277

SPIR-V example

// Assign set number = M, binding number = N, array element = 0

 ...

 %1 = OpExtInstImport "GLSL.std.450"

 ...

 OpName %10 "variableName"

 OpDecorate %10 DescriptorSet M

 OpDecorate %10 Binding N

 %2 = OpTypeVoid

 %3 = OpTypeFunction %2

 %6 = OpTypeFloat 32

 %7 = OpTypeImage %6 2D 0 0 0 1 Unknown

 %8 = OpTypeSampledImage %7

 %9 = OpTypePointer UniformConstant %8

 %10 = OpVariable %9 UniformConstant

 ...

// Assign set number = M, binding number = N for all array elements, and

// array element = I for the I'th member of the array.

 ...

 %1 = OpExtInstImport "GLSL.std.450"

 ...

 OpName %13 "variableNameArray"

 OpDecorate %13 DescriptorSet M

 OpDecorate %13 Binding N

 %2 = OpTypeVoid

 %3 = OpTypeFunction %2

 %6 = OpTypeFloat 32

 %7 = OpTypeImage %6 2D 0 0 0 1 Unknown

 %8 = OpTypeSampledImage %7

 %9 = OpTypeInt 32 0

 %10 = OpConstant %9 I

 %11 = OpTypeArray %8 %10

 %12 = OpTypePointer UniformConstant %11

 %13 = OpVariable %12 UniformConstant

 ...

13.1. Descriptor Types

The following sections outline the various descriptor types supported by Vulkan. Each section

defines a descriptor type, and each descriptor type has a manifestation in the shading language and

SPIR-V as well as in descriptor sets. There is mostly a one-to-one correspondence between

descriptor types and classes of opaque types in the shading language, where the opaque types in

the shading language must refer to a descriptor in the pipeline layout of the corresponding

descriptor type. But there is an exception to this rule as described in Combined Image Sampler.

278

13.1.1. Storage Image

A storage image (VK_DESCRIPTOR_TYPE_STORAGE_IMAGE) is a descriptor type that is used for load, store,

and atomic operations on image memory from within shaders bound to pipelines.

Loads from storage images do not use samplers and are unfiltered and do not support coordinate

wrapping or clamping. Loads are supported in all shader stages for image formats which report

support for the VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT feature bit via

vkGetPhysicalDeviceFormatProperties.

Stores to storage images are supported in compute shaders for image formats which report support

for the VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT feature.

Storage images also support atomic operations in compute shaders for image formats which report

support for the VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT feature.

Load and store operations on storage images can only be done on images in the

VK_IMAGE_LAYOUT_GENERAL layout.

When the fragmentStoresAndAtomics feature is enabled, stores and atomic operations are also

supported for storage images in fragment shaders with the same set of image formats as supported

in compute shaders. When the vertexPipelineStoresAndAtomics feature is enabled, stores and atomic

operations are also supported in vertex, tessellation, and geometry shaders with the same set of

image formats as supported in compute shaders.

Storage image declarations must specify the image format in the shader if the variable is used for

atomic operations.

If the shaderStorageImageReadWithoutFormat feature is not enabled, storage image declarations must

specify the image format in the shader if the variable is used for load operations.

If the shaderStorageImageWriteWithoutFormat feature is not enabled, storage image declarations must

specify the image format in the shader if the variable is used for store operations.

Storage images are declared in GLSL shader source using uniform image variables of the

appropriate dimensionality as well as a format layout qualifier (if necessary):

GLSL example

layout (set=m, binding=n, r32f) uniform image2D myStorageImage;

279

SPIR-V example

 ...

 %1 = OpExtInstImport "GLSL.std.450"

 ...

 OpName %9 "myStorageImage"

 OpDecorate %9 DescriptorSet m

 OpDecorate %9 Binding n

 %2 = OpTypeVoid

 %3 = OpTypeFunction %2

 %6 = OpTypeFloat 32

 %7 = OpTypeImage %6 2D 0 0 0 2 R32f

 %8 = OpTypePointer UniformConstant %7

 %9 = OpVariable %8 UniformConstant

 ...

13.1.2. Sampler

A sampler (VK_DESCRIPTOR_TYPE_SAMPLER) represents a set of parameters which control address

calculations, filtering behavior, and other properties, that can be used to perform filtered loads

from sampled images (see Sampled Image).

Samplers are declared in GLSL shader source using uniform sampler variables, where the sampler

type has no associated texture dimensionality:

GLSL Example

layout (set=m, binding=n) uniform sampler mySampler;

SPIR-V example

 ...

 %1 = OpExtInstImport "GLSL.std.450"

 ...

 OpName %8 "mySampler"

 OpDecorate %8 DescriptorSet m

 OpDecorate %8 Binding n

 %2 = OpTypeVoid

 %3 = OpTypeFunction %2

 %6 = OpTypeSampler

 %7 = OpTypePointer UniformConstant %6

 %8 = OpVariable %7 UniformConstant

 ...

13.1.3. Sampled Image

A sampled image (VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE) can be used (usually in conjunction with a

sampler) to retrieve sampled image data. Shaders use a sampled image handle and a sampler

280

handle to sample data, where the image handle generally defines the shape and format of the

memory and the sampler generally defines how coordinate addressing is performed. The same

sampler can be used to sample from multiple images, and it is possible to sample from the same

sampled image with multiple samplers, each containing a different set of sampling parameters.

Sampled images are declared in GLSL shader source using uniform texture variables of the

appropriate dimensionality:

GLSL example

layout (set=m, binding=n) uniform texture2D mySampledImage;

SPIR-V example

 ...

 %1 = OpExtInstImport "GLSL.std.450"

 ...

 OpName %9 "mySampledImage"

 OpDecorate %9 DescriptorSet m

 OpDecorate %9 Binding n

 %2 = OpTypeVoid

 %3 = OpTypeFunction %2

 %6 = OpTypeFloat 32

 %7 = OpTypeImage %6 2D 0 0 0 1 Unknown

 %8 = OpTypePointer UniformConstant %7

 %9 = OpVariable %8 UniformConstant

 ...

13.1.4. Combined Image Sampler

A combined image sampler (VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) represents a sampled

image along with a set of sampling parameters. It is logically considered a sampled image and a

sampler bound together.



Note

On some implementations, it may be more efficient to sample from an image using

a combination of sampler and sampled image that are stored together in the

descriptor set in a combined descriptor.

Combined image samplers are declared in GLSL shader source using uniform sampler variables of

the appropriate dimensionality:

GLSL example

layout (set=m, binding=n) uniform sampler2D myCombinedImageSampler;

281

SPIR-V example

 ...

 %1 = OpExtInstImport "GLSL.std.450"

 ...

 OpName %10 "myCombinedImageSampler"

 OpDecorate %10 DescriptorSet m

 OpDecorate %10 Binding n

 %2 = OpTypeVoid

 %3 = OpTypeFunction %2

 %6 = OpTypeFloat 32

 %7 = OpTypeImage %6 2D 0 0 0 1 Unknown

 %8 = OpTypeSampledImage %7

 %9 = OpTypePointer UniformConstant %8

 %10 = OpVariable %9 UniformConstant

 ...

VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER descriptor set entries can also be accessed via separate

sampler and sampled image shader variables. Such variables refer exclusively to the corresponding

half of the descriptor, and can be combined in the shader with samplers or sampled images that

can come from the same descriptor or from other combined or separate descriptor types. There are

no additional restrictions on how a separate sampler or sampled image variable is used due to it

originating from a combined descriptor.

13.1.5. Uniform Texel Buffer

A uniform texel buffer (VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER) represents a tightly packed array

of homogeneous formatted data that is stored in a buffer and is made accessible to shaders.

Uniform texel buffers are read-only.

Uniform texel buffers are declared in GLSL shader source using uniform samplerBuffer variables:

GLSL example

layout (set=m, binding=n) uniform samplerBuffer myUniformTexelBuffer;

282

SPIR-V example

 ...

 %1 = OpExtInstImport "GLSL.std.450"

 ...

 OpName %9 "myUniformTexelBuffer"

 OpDecorate %9 DescriptorSet m

 OpDecorate %9 Binding n

 %2 = OpTypeVoid

 %3 = OpTypeFunction %2

 %6 = OpTypeFloat 32

 %7 = OpTypeImage %6 Buffer 0 0 0 1 Unknown

 %8 = OpTypePointer UniformConstant %7

 %9 = OpVariable %8 UniformConstant

 ...

13.1.6. Storage Texel Buffer

A storage texel buffer (VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER) represents a tightly packed array

of homogeneous formatted data that is stored in a buffer and is made accessible to shaders. Storage

texel buffers differ from uniform texel buffers in that they support stores and atomic operations in

shaders, may support a different maximum length, and may have different performance

characteristics.

Storage texel buffers are declared in GLSL shader source using uniform imageBuffer variables:

GLSL example

layout (set=m, binding=n, r32f) uniform imageBuffer myStorageTexelBuffer;

SPIR-V example

 ...

 %1 = OpExtInstImport "GLSL.std.450"

 ...

 OpName %9 "myStorageTexelBuffer"

 OpDecorate %9 DescriptorSet m

 OpDecorate %9 Binding n

 %2 = OpTypeVoid

 %3 = OpTypeFunction %2

 %6 = OpTypeFloat 32

 %7 = OpTypeImage %6 Buffer 0 0 0 2 R32f

 %8 = OpTypePointer UniformConstant %7

 %9 = OpVariable %8 UniformConstant

 ...

283

13.1.7. Uniform Buffer

A uniform buffer (VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) is a region of structured storage that is made

accessible for read-only access to shaders. It is typically used to store medium sized arrays of

constants such as shader parameters, matrices and other related data.

Uniform buffers are declared in GLSL shader source using the uniform storage qualifier and block

syntax:

GLSL example

layout (set=m, binding=n) uniform myUniformBuffer

{

 vec4 myElement[32];

};

SPIR-V example

 ...

 %1 = OpExtInstImport "GLSL.std.450"

 ...

 OpName %11 "myUniformBuffer"

 OpMemberName %11 0 "myElement"

 OpName %13 ""

 OpDecorate %10 ArrayStride 16

 OpMemberDecorate %11 0 Offset 0

 OpDecorate %11 Block

 OpDecorate %13 DescriptorSet m

 OpDecorate %13 Binding n

 %2 = OpTypeVoid

 %3 = OpTypeFunction %2

 %6 = OpTypeFloat 32

 %7 = OpTypeVector %6 4

 %8 = OpTypeInt 32 0

 %9 = OpConstant %8 32

 %10 = OpTypeArray %7 %9

 %11 = OpTypeStruct %10

 %12 = OpTypePointer Uniform %11

 %13 = OpVariable %12 Uniform

 ...

13.1.8. Storage Buffer

A storage buffer (VK_DESCRIPTOR_TYPE_STORAGE_BUFFER) is a region of structured storage that supports

both read and write access for shaders. In addition to general read and write operations, some

members of storage buffers can be used as the target of atomic operations. In general, atomic

operations are only supported on members that have unsigned integer formats.

Storage buffers are declared in GLSL shader source using buffer storage qualifier and block syntax:

284

GLSL example

layout (set=m, binding=n) buffer myStorageBuffer

{

 vec4 myElement[];

};

SPIR-V example

 ...

 %1 = OpExtInstImport "GLSL.std.450"

 ...

 OpName %9 "myStorageBuffer"

 OpMemberName %9 0 "myElement"

 OpName %11 ""

 OpDecorate %8 ArrayStride 16

 OpMemberDecorate %9 0 Offset 0

 OpDecorate %9 BufferBlock

 OpDecorate %11 DescriptorSet m

 OpDecorate %11 Binding n

 %2 = OpTypeVoid

 %3 = OpTypeFunction %2

 %6 = OpTypeFloat 32

 %7 = OpTypeVector %6 4

 %8 = OpTypeRuntimeArray %7

 %9 = OpTypeStruct %8

 %10 = OpTypePointer Uniform %9

 %11 = OpVariable %10 Uniform

 ...

13.1.9. Dynamic Uniform Buffer

A dynamic uniform buffer (VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC) differs from a uniform

buffer only in how its address and length are specified. Uniform buffers bind a buffer address and

length that is specified in the descriptor set update by a buffer handle, offset and range (see

Descriptor Set Updates). With dynamic uniform buffers the buffer handle, offset and range

specified in the descriptor set define the base address and length. The dynamic offset which is

relative to this base address is taken from the pDynamicOffsets parameter to

vkCmdBindDescriptorSets (see Descriptor Set Binding). The address used for a dynamic uniform

buffer is the sum of the buffer base address and the relative offset. The length is unmodified and

remains the range as specified in the descriptor update. The shader syntax is identical for uniform

buffers and dynamic uniform buffers.

13.1.10. Dynamic Storage Buffer

A dynamic storage buffer (VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) differs from a storage buffer

only in how its address and length are specified. The difference is identical to the difference

between uniform buffers and dynamic uniform buffers (see Dynamic Uniform Buffer). The shader

285

syntax is identical for storage buffers and dynamic storage buffers.

13.1.11. Input Attachment

An input attachment (VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT) is an image view that can be used for

pixel local load operations from within fragment shaders bound to pipelines. Loads from input

attachments are unfiltered. All image formats that are supported for color attachments

(VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT) or depth/stencil attachments

(VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) for a given image tiling mode are also supported

for input attachments.

In the shader, input attachments must be decorated with their input attachment index in addition

to descriptor set and binding numbers.

GLSL example

layout (input_attachment_index=i, set=m, binding=n) uniform subpassInput

myInputAttachment;

SPIR-V example

 ...

 %1 = OpExtInstImport "GLSL.std.450"

 ...

 OpName %9 "myInputAttachment"

 OpDecorate %9 DescriptorSet m

 OpDecorate %9 Binding n

 OpDecorate %9 InputAttachmentIndex i

 %2 = OpTypeVoid

 %3 = OpTypeFunction %2

 %6 = OpTypeFloat 32

 %7 = OpTypeImage %6 SubpassData 0 0 0 2 Unknown

 %8 = OpTypePointer UniformConstant %7

 %9 = OpVariable %8 UniformConstant

 ...

13.2. Descriptor Sets

Descriptors are grouped together into descriptor set objects. A descriptor set object is an opaque

object that contains storage for a set of descriptors, where the types and number of descriptors is

defined by a descriptor set layout. The layout object may be used to define the association of each

descriptor binding with memory or other hardware resources. The layout is used both for

determining the resources that need to be associated with the descriptor set, and determining the

interface between shader stages and shader resources.

13.2.1. Descriptor Set Layout

A descriptor set layout object is defined by an array of zero or more descriptor bindings. Each

286

individual descriptor binding is specified by a descriptor type, a count (array size) of the number of

descriptors in the binding, a set of shader stages that can access the binding, and (if using

immutable samplers) an array of sampler descriptors.

Descriptor set layout objects are represented by VkDescriptorSetLayout handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkDescriptorSetLayout)

To create descriptor set layout objects, call:

VkResult vkCreateDescriptorSetLayout(

 VkDevice device,

 const VkDescriptorSetLayoutCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkDescriptorSetLayout* pSetLayout);

• device is the logical device that creates the descriptor set layout.

• pCreateInfo is a pointer to an instance of the VkDescriptorSetLayoutCreateInfo structure

specifying the state of the descriptor set layout object.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pSetLayout points to a VkDescriptorSetLayout handle in which the resulting descriptor set layout

object is returned.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkDescriptorSetLayoutCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• pSetLayout must be a pointer to a VkDescriptorSetLayout handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

Information about the descriptor set layout is passed in an instance of the

VkDescriptorSetLayoutCreateInfo structure:

287

typedef struct VkDescriptorSetLayoutCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkDescriptorSetLayoutCreateFlags flags;

 uint32_t bindingCount;

 const VkDescriptorSetLayoutBinding* pBindings;

} VkDescriptorSetLayoutCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is a bitmask specifying options for descriptor set layout creation.

• bindingCount is the number of elements in pBindings.

• pBindings is a pointer to an array of VkDescriptorSetLayoutBinding structures.

Valid Usage

• The VkDescriptorSetLayoutBinding::binding members of the elements of the pBindings

array must each have different values.

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO

• pNext must be NULL

• flags must be a valid combination of VkDescriptorSetLayoutCreateFlagBits values

• If bindingCount is not 0, pBindings must be a pointer to an array of bindingCount valid

VkDescriptorSetLayoutBinding structures

Bits which can be set in VkDescriptorSetLayoutCreateInfo::flags to specify options for descriptor

set layout are:

typedef enum VkDescriptorSetLayoutCreateFlagBits {

} VkDescriptorSetLayoutCreateFlagBits;

The VkDescriptorSetLayoutBinding structure is defined as:

288

typedef struct VkDescriptorSetLayoutBinding {

 uint32_t binding;

 VkDescriptorType descriptorType;

 uint32_t descriptorCount;

 VkShaderStageFlags stageFlags;

 const VkSampler* pImmutableSamplers;

} VkDescriptorSetLayoutBinding;

• binding is the binding number of this entry and corresponds to a resource of the same binding

number in the shader stages.

• descriptorType is a VkDescriptorType specifying which type of resource descriptors are used for

this binding.

• descriptorCount is the number of descriptors contained in the binding, accessed in a shader as

an array. If descriptorCount is zero this binding entry is reserved and the resource must not be

accessed from any stage via this binding within any pipeline using the set layout.

• stageFlags member is a bitmask of VkShaderStageFlagBits specifying which pipeline shader

stages can access a resource for this binding. VK_SHADER_STAGE_ALL is a shorthand specifying that

all defined shader stages, including any additional stages defined by extensions, can access the

resource.

If a shader stage is not included in stageFlags, then a resource must not be accessed from that

stage via this binding within any pipeline using the set layout. There are no limitations on what

combinations of stages can be used by a descriptor binding, and in particular a binding can be

used by both graphics stages and the compute stage.

• pImmutableSamplers affects initialization of samplers. If descriptorType specifies a

VK_DESCRIPTOR_TYPE_SAMPLER or VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER type descriptor, then

pImmutableSamplers can be used to initialize a set of immutable samplers. Immutable samplers

are permanently bound into the set layout; later binding a sampler into an immutable sampler

slot in a descriptor set is not allowed. If pImmutableSamplers is not NULL, then it is considered to be

a pointer to an array of sampler handles that will be consumed by the set layout and used for

the corresponding binding. If pImmutableSamplers is NULL, then the sampler slots are dynamic and

sampler handles must be bound into descriptor sets using this layout. If descriptorType is not

one of these descriptor types, then pImmutableSamplers is ignored.

The above layout definition allows the descriptor bindings to be specified sparsely such that not all

binding numbers between 0 and the maximum binding number need to be specified in the

pBindings array. Bindings that are not specified have a descriptorCount and stageFlags of zero, and

the descriptorType is treated as undefined. However, all binding numbers between 0 and the

maximum binding number in the VkDescriptorSetLayoutCreateInfo::pBindings array may consume

memory in the descriptor set layout even if not all descriptor bindings are used, though it should

not consume additional memory from the descriptor pool.


Note

The maximum binding number specified should be as compact as possible to

avoid wasted memory.

289

Valid Usage

• If descriptorType is VK_DESCRIPTOR_TYPE_SAMPLER or

VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and descriptorCount is not 0 and

pImmutableSamplers is not NULL, pImmutableSamplers must be a pointer to an array of

descriptorCount valid VkSampler handles

• If descriptorCount is not 0, stageFlags must be a valid combination of

VkShaderStageFlagBits values

Valid Usage (Implicit)

• descriptorType must be a valid VkDescriptorType value

The following examples show a shader snippet using two descriptor sets, and application code that

creates corresponding descriptor set layouts.

GLSL example

//

// binding to a single sampled image descriptor in set 0

//

layout (set=0, binding=0) uniform texture2D mySampledImage;

//

// binding to an array of sampled image descriptors in set 0

//

layout (set=0, binding=1) uniform texture2D myArrayOfSampledImages[12];

//

// binding to a single uniform buffer descriptor in set 1

//

layout (set=1, binding=0) uniform myUniformBuffer

{

 vec4 myElement[32];

};

290

SPIR-V example

 ...

 %1 = OpExtInstImport "GLSL.std.450"

 ...

 OpName %9 "mySampledImage"

 OpName %14 "myArrayOfSampledImages"

 OpName %18 "myUniformBuffer"

 OpMemberName %18 0 "myElement"

 OpName %20 ""

 OpDecorate %9 DescriptorSet 0

 OpDecorate %9 Binding 0

 OpDecorate %14 DescriptorSet 0

 OpDecorate %14 Binding 1

 OpDecorate %17 ArrayStride 16

 OpMemberDecorate %18 0 Offset 0

 OpDecorate %18 Block

 OpDecorate %20 DescriptorSet 1

 OpDecorate %20 Binding 0

 %2 = OpTypeVoid

 %3 = OpTypeFunction %2

 %6 = OpTypeFloat 32

 %7 = OpTypeImage %6 2D 0 0 0 1 Unknown

 %8 = OpTypePointer UniformConstant %7

 %9 = OpVariable %8 UniformConstant

 %10 = OpTypeInt 32 0

 %11 = OpConstant %10 12

 %12 = OpTypeArray %7 %11

 %13 = OpTypePointer UniformConstant %12

 %14 = OpVariable %13 UniformConstant

 %15 = OpTypeVector %6 4

 %16 = OpConstant %10 32

 %17 = OpTypeArray %15 %16

 %18 = OpTypeStruct %17

 %19 = OpTypePointer Uniform %18

 %20 = OpVariable %19 Uniform

 ...

API example

VkResult myResult;

const VkDescriptorSetLayoutBinding myDescriptorSetLayoutBinding[] =

{

 // binding to a single image descriptor

 {

 0, // binding

 VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, // descriptorType

 1, // descriptorCount

 VK_SHADER_STAGE_FRAGMENT_BIT, // stageFlags

291

 NULL // pImmutableSamplers

 },

 // binding to an array of image descriptors

 {

 1, // binding

 VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, // descriptorType

 12, // descriptorCount

 VK_SHADER_STAGE_FRAGMENT_BIT, // stageFlags

 NULL // pImmutableSamplers

 },

 // binding to a single uniform buffer descriptor

 {

 0, // binding

 VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, // descriptorType

 1, // descriptorCount

 VK_SHADER_STAGE_FRAGMENT_BIT, // stageFlags

 NULL // pImmutableSamplers

 }

};

const VkDescriptorSetLayoutCreateInfo myDescriptorSetLayoutCreateInfo[] =

{

 // Create info for first descriptor set with two descriptor bindings

 {

 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, // sType

 NULL, // pNext

 0, // flags

 2, // bindingCount

 &myDescriptorSetLayoutBinding[0] // pBindings

 },

 // Create info for second descriptor set with one descriptor binding

 {

 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, // sType

 NULL, // pNext

 0, // flags

 1, // bindingCount

 &myDescriptorSetLayoutBinding[2] // pBindings

 }

};

VkDescriptorSetLayout myDescriptorSetLayout[2];

//

// Create first descriptor set layout

//

myResult = vkCreateDescriptorSetLayout(

 myDevice,

 &myDescriptorSetLayoutCreateInfo[0],

292

 NULL,

 &myDescriptorSetLayout[0]);

//

// Create second descriptor set layout

//

myResult = vkCreateDescriptorSetLayout(

 myDevice,

 &myDescriptorSetLayoutCreateInfo[1],

 NULL,

 &myDescriptorSetLayout[1]);

To destroy a descriptor set layout, call:

void vkDestroyDescriptorSetLayout(

 VkDevice device,

 VkDescriptorSetLayout descriptorSetLayout,

 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the descriptor set layout.

• descriptorSetLayout is the descriptor set layout to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• If VkAllocationCallbacks were provided when descriptorSetLayout was created, a

compatible set of callbacks must be provided here

• If no VkAllocationCallbacks were provided when descriptorSetLayout was created,

pAllocator must be NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If descriptorSetLayout is not VK_NULL_HANDLE, descriptorSetLayout must be a valid

VkDescriptorSetLayout handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• If descriptorSetLayout is a valid handle, it must have been created, allocated, or retrieved

from device

293

Host Synchronization

• Host access to descriptorSetLayout must be externally synchronized

13.2.2. Pipeline Layouts

Access to descriptor sets from a pipeline is accomplished through a pipeline layout. Zero or more

descriptor set layouts and zero or more push constant ranges are combined to form a pipeline

layout object which describes the complete set of resources that can be accessed by a pipeline. The

pipeline layout represents a sequence of descriptor sets with each having a specific layout. This

sequence of layouts is used to determine the interface between shader stages and shader resources.

Each pipeline is created using a pipeline layout.

Pipeline layout objects are represented by VkPipelineLayout handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkPipelineLayout)

To create a pipeline layout, call:

VkResult vkCreatePipelineLayout(

 VkDevice device,

 const VkPipelineLayoutCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkPipelineLayout* pPipelineLayout);

• device is the logical device that creates the pipeline layout.

• pCreateInfo is a pointer to an instance of the VkPipelineLayoutCreateInfo structure specifying

the state of the pipeline layout object.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pPipelineLayout points to a VkPipelineLayout handle in which the resulting pipeline layout object

is returned.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkPipelineLayoutCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• pPipelineLayout must be a pointer to a VkPipelineLayout handle

294

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkPipelineLayoutCreateInfo structure is defined as:

typedef struct VkPipelineLayoutCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineLayoutCreateFlags flags;

 uint32_t setLayoutCount;

 const VkDescriptorSetLayout* pSetLayouts;

 uint32_t pushConstantRangeCount;

 const VkPushConstantRange* pPushConstantRanges;

} VkPipelineLayoutCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• setLayoutCount is the number of descriptor sets included in the pipeline layout.

• pSetLayouts is a pointer to an array of VkDescriptorSetLayout objects.

• pushConstantRangeCount is the number of push constant ranges included in the pipeline layout.

• pPushConstantRanges is a pointer to an array of VkPushConstantRange structures defining a set of

push constant ranges for use in a single pipeline layout. In addition to descriptor set layouts, a

pipeline layout also describes how many push constants can be accessed by each stage of the

pipeline.


Note

Push constants represent a high speed path to modify constant data in

pipelines that is expected to outperform memory-backed resource updates.

295

Valid Usage

• setLayoutCount must be less than or equal to VkPhysicalDeviceLimits

::maxBoundDescriptorSets

• The total number of descriptors of the type VK_DESCRIPTOR_TYPE_SAMPLER and

VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER accessible to any given shader stage across all

elements of pSetLayouts must be less than or equal to VkPhysicalDeviceLimits

::maxPerStageDescriptorSamplers

• The total number of descriptors of the type VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER and

VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC accessible to any given shader stage across all

elements of pSetLayouts must be less than or equal to VkPhysicalDeviceLimits

::maxPerStageDescriptorUniformBuffers

• The total number of descriptors of the type VK_DESCRIPTOR_TYPE_STORAGE_BUFFER and

VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC accessible to any given shader stage across all

elements of pSetLayouts must be less than or equal to VkPhysicalDeviceLimits

::maxPerStageDescriptorStorageBuffers

• The total number of descriptors of the type VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,

VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, and VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER

accessible to any given shader stage across all elements of pSetLayouts must be less than

or equal to VkPhysicalDeviceLimits::maxPerStageDescriptorSampledImages

• The total number of descriptors of the type VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, and

VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER accessible to any given shader stage across all

elements of pSetLayouts must be less than or equal to VkPhysicalDeviceLimits

::maxPerStageDescriptorStorageImages

• Any two elements of pPushConstantRanges must not include the same stage in stageFlags

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO

• pNext must be NULL

• flags must be 0

• If setLayoutCount is not 0, pSetLayouts must be a pointer to an array of setLayoutCount

valid VkDescriptorSetLayout handles

• If pushConstantRangeCount is not 0, pPushConstantRanges must be a pointer to an array of

pushConstantRangeCount valid VkPushConstantRange structures

The VkPushConstantRange structure is defined as:

296

typedef struct VkPushConstantRange {

 VkShaderStageFlags stageFlags;

 uint32_t offset;

 uint32_t size;

} VkPushConstantRange;

• stageFlags is a set of stage flags describing the shader stages that will access a range of push

constants. If a particular stage is not included in the range, then accessing members of that

range of push constants from the corresponding shader stage will result in undefined data

being read.

• offset and size are the start offset and size, respectively, consumed by the range. Both offset

and size are in units of bytes and must be a multiple of 4. The layout of the push constant

variables is specified in the shader.

Valid Usage

• offset must be less than VkPhysicalDeviceLimits::maxPushConstantsSize

• offset must be a multiple of 4

• size must be greater than 0

• size must be a multiple of 4

• size must be less than or equal to VkPhysicalDeviceLimits::maxPushConstantsSize minus
offset

Valid Usage (Implicit)

• stageFlags must be a valid combination of VkShaderStageFlagBits values

• stageFlags must not be 0

Once created, pipeline layouts are used as part of pipeline creation (see Pipelines), as part of

binding descriptor sets (see Descriptor Set Binding), and as part of setting push constants (see Push

Constant Updates). Pipeline creation accepts a pipeline layout as input, and the layout may be used

to map (set, binding, arrayElement) tuples to hardware resources or memory locations within a

descriptor set. The assignment of hardware resources depends only on the bindings defined in the

descriptor sets that comprise the pipeline layout, and not on any shader source.

All resource variables statically used in all shaders in a pipeline must be declared with a

(set,binding,arrayElement) that exists in the corresponding descriptor set layout and is of an

appropriate descriptor type and includes the set of shader stages it is used by in stageFlags. The

pipeline layout can include entries that are not used by a particular pipeline, or that are dead-code

eliminated from any of the shaders. The pipeline layout allows the application to provide a

consistent set of bindings across multiple pipeline compiles, which enables those pipelines to be

compiled in a way that the implementation may cheaply switch pipelines without reprogramming

the bindings.

297

Similarly, the push constant block declared in each shader (if present) must only place variables at

offsets that are each included in a push constant range with stageFlags including the bit

corresponding to the shader stage that uses it. The pipeline layout can include ranges or portions of

ranges that are not used by a particular pipeline, or for which the variables have been dead-code

eliminated from any of the shaders.

There is a limit on the total number of resources of each type that can be included in bindings in all

descriptor set layouts in a pipeline layout as shown in Pipeline Layout Resource Limits. The “Total

Resources Available” column gives the limit on the number of each type of resource that can be

included in bindings in all descriptor sets in the pipeline layout. Some resource types count against

multiple limits. Additionally, there are limits on the total number of each type of resource that can

be used in any pipeline stage as described in Shader Resource Limits.

Table 10. Pipeline Layout Resource Limits

Total Resources Available Resource Types

maxDescriptorSetSamplers
sampler

combined image sampler

maxDescriptorSetSampledImages

sampled image

combined image sampler

uniform texel buffer

maxDescriptorSetStorageImages
storage image

storage texel buffer

maxDescriptorSetUniformBuffers
uniform buffer

uniform buffer dynamic

maxDescriptorSetUniformBuffersDynamic uniform buffer dynamic

maxDescriptorSetStorageBuffers
storage buffer

storage buffer dynamic

maxDescriptorSetStorageBuffersDynamic storage buffer dynamic

maxDescriptorSetInputAttachments input attachment

To destroy a pipeline layout, call:

void vkDestroyPipelineLayout(

 VkDevice device,

 VkPipelineLayout pipelineLayout,

 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the pipeline layout.

• pipelineLayout is the pipeline layout to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

298

Valid Usage

• If VkAllocationCallbacks were provided when pipelineLayout was created, a compatible

set of callbacks must be provided here

• If no VkAllocationCallbacks were provided when pipelineLayout was created, pAllocator

must be NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If pipelineLayout is not VK_NULL_HANDLE, pipelineLayout must be a valid

VkPipelineLayout handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• If pipelineLayout is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to pipelineLayout must be externally synchronized

Pipeline Layout Compatibility

Two pipeline layouts are defined to be “compatible for push constants” if they were created with

identical push constant ranges. Two pipeline layouts are defined to be “compatible for set N” if they

were created with identically defined descriptor set layouts for sets zero through N, and if they were

created with identical push constant ranges.

When binding a descriptor set (see Descriptor Set Binding) to set number N, if the previously bound

descriptor sets for sets zero through N-1 were all bound using compatible pipeline layouts, then

performing this binding does not disturb any of the lower numbered sets. If, additionally, the

previous bound descriptor set for set N was bound using a pipeline layout compatible for set N,

then the bindings in sets numbered greater than N are also not disturbed.

Similarly, when binding a pipeline, the pipeline can correctly access any previously bound

descriptor sets which were bound with compatible pipeline layouts, as long as all lower numbered

sets were also bound with compatible layouts.

Layout compatibility means that descriptor sets can be bound to a command buffer for use by any

pipeline created with a compatible pipeline layout, and without having bound a particular pipeline

first. It also means that descriptor sets can remain valid across a pipeline change, and the same

resources will be accessible to the newly bound pipeline.

299

Implementor’s Note

A consequence of layout compatibility is that when the implementation compiles a pipeline

layout and assigns hardware units to resources, the mechanism to assign hardware units for

set N should only be a function of sets [0..N].



Note

Place the least frequently changing descriptor sets near the start of the pipeline

layout, and place the descriptor sets representing the most frequently changing

resources near the end. When pipelines are switched, only the descriptor set

bindings that have been invalidated will need to be updated and the remainder of

the descriptor set bindings will remain in place.

The maximum number of descriptor sets that can be bound to a pipeline layout is queried from

physical device properties (see maxBoundDescriptorSets in Limits).

300

API example

const VkDescriptorSetLayout layouts[] = { layout1, layout2 };

const VkPushConstantRange ranges[] =

{

 {

 VK_PIPELINE_STAGE_VERTEX_SHADER_BIT, // stageFlags

 0, // offset

 4 // size

 },

 {

 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, // stageFlags

 4, // offset

 4 // size

 },

};

const VkPipelineLayoutCreateInfo createInfo =

{

 VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, // sType

 NULL, // pNext

 0, // flags

 2, // setLayoutCount

 layouts, // pSetLayouts

 2, // pushConstantRangeCount

 ranges // pPushConstantRanges

};

VkPipelineLayout myPipelineLayout;

myResult = vkCreatePipelineLayout(

 myDevice,

 &createInfo,

 NULL,

 &myPipelineLayout);

13.2.3. Allocation of Descriptor Sets

A descriptor pool maintains a pool of descriptors, from which descriptor sets are allocated.

Descriptor pools are externally synchronized, meaning that the application must not allocate

and/or free descriptor sets from the same pool in multiple threads simultaneously.

Descriptor pools are represented by VkDescriptorPool handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkDescriptorPool)

To create a descriptor pool object, call:

301

VkResult vkCreateDescriptorPool(

 VkDevice device,

 const VkDescriptorPoolCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkDescriptorPool* pDescriptorPool);

• device is the logical device that creates the descriptor pool.

• pCreateInfo is a pointer to an instance of the VkDescriptorPoolCreateInfo structure specifying

the state of the descriptor pool object.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pDescriptorPool points to a VkDescriptorPool handle in which the resulting descriptor pool

object is returned.

pAllocator controls host memory allocation as described in the Memory Allocation chapter.

The created descriptor pool is returned in pDescriptorPool.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkDescriptorPoolCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• pDescriptorPool must be a pointer to a VkDescriptorPool handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

Additional information about the pool is passed in an instance of the VkDescriptorPoolCreateInfo

structure:

302

typedef struct VkDescriptorPoolCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkDescriptorPoolCreateFlags flags;

 uint32_t maxSets;

 uint32_t poolSizeCount;

 const VkDescriptorPoolSize* pPoolSizes;

} VkDescriptorPoolCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is a bitmask of VkDescriptorPoolCreateFlagBits specifying certain supported operations on

the pool.

• maxSets is the maximum number of descriptor sets that can be allocated from the pool.

• poolSizeCount is the number of elements in pPoolSizes.

• pPoolSizes is a pointer to an array of VkDescriptorPoolSize structures, each containing a

descriptor type and number of descriptors of that type to be allocated in the pool.

If multiple VkDescriptorPoolSize structures appear in the pPoolSizes array then the pool will be

created with enough storage for the total number of descriptors of each type.

Fragmentation of a descriptor pool is possible and may lead to descriptor set allocation failures. A

failure due to fragmentation is defined as failing a descriptor set allocation despite the sum of all

outstanding descriptor set allocations from the pool plus the requested allocation requiring no

more than the total number of descriptors requested at pool creation. Implementations provide

certain guarantees of when fragmentation must not cause allocation failure, as described below.

If a descriptor pool has not had any descriptor sets freed since it was created or most recently reset

then fragmentation must not cause an allocation failure (note that this is always the case for a pool

created without the VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT bit set). Additionally, if all

sets allocated from the pool since it was created or most recently reset use the same number of

descriptors (of each type) and the requested allocation also uses that same number of descriptors

(of each type), then fragmentation must not cause an allocation failure.

If an allocation failure occurs due to fragmentation, an application can create an additional

descriptor pool to perform further descriptor set allocations.

Valid Usage

• maxSets must be greater than 0

303

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO

• pNext must be NULL

• flags must be a valid combination of VkDescriptorPoolCreateFlagBits values

• pPoolSizes must be a pointer to an array of poolSizeCount valid VkDescriptorPoolSize

structures

• poolSizeCount must be greater than 0

Bits which can be set in VkDescriptorPoolCreateInfo::flags to enable operations on a descriptor

pool are:

typedef enum VkDescriptorPoolCreateFlagBits {

 VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT = 0x00000001,

} VkDescriptorPoolCreateFlagBits;

• VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT specifies that descriptor sets can return

their individual allocations to the pool, i.e. all of vkAllocateDescriptorSets,

vkFreeDescriptorSets, and vkResetDescriptorPool are allowed. Otherwise, descriptor sets

allocated from the pool must not be individually freed back to the pool, i.e. only

vkAllocateDescriptorSets and vkResetDescriptorPool are allowed.

The VkDescriptorPoolSize structure is defined as:

typedef struct VkDescriptorPoolSize {

 VkDescriptorType type;

 uint32_t descriptorCount;

} VkDescriptorPoolSize;

• type is the type of descriptor.

• descriptorCount is the number of descriptors of that type to allocate.

Valid Usage

• descriptorCount must be greater than 0

Valid Usage (Implicit)

• type must be a valid VkDescriptorType value

To destroy a descriptor pool, call:

304

void vkDestroyDescriptorPool(

 VkDevice device,

 VkDescriptorPool descriptorPool,

 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the descriptor pool.

• descriptorPool is the descriptor pool to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

When a pool is destroyed, all descriptor sets allocated from the pool are implicitly freed and

become invalid. Descriptor sets allocated from a given pool do not need to be freed before

destroying that descriptor pool.

Valid Usage

• All submitted commands that refer to descriptorPool (via any allocated descriptor sets)

must have completed execution

• If VkAllocationCallbacks were provided when descriptorPool was created, a compatible

set of callbacks must be provided here

• If no VkAllocationCallbacks were provided when descriptorPool was created, pAllocator

must be NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If descriptorPool is not VK_NULL_HANDLE, descriptorPool must be a valid

VkDescriptorPool handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• If descriptorPool is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to descriptorPool must be externally synchronized

Descriptor sets are allocated from descriptor pool objects, and are represented by VkDescriptorSet

handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkDescriptorSet)

305

To allocate descriptor sets from a descriptor pool, call:

VkResult vkAllocateDescriptorSets(

 VkDevice device,

 const VkDescriptorSetAllocateInfo* pAllocateInfo,

 VkDescriptorSet* pDescriptorSets);

• device is the logical device that owns the descriptor pool.

• pAllocateInfo is a pointer to an instance of the VkDescriptorSetAllocateInfo structure describing

parameters of the allocation.

• pDescriptorSets is a pointer to an array of VkDescriptorSet handles in which the resulting

descriptor set objects are returned. The array must be at least the length specified by the

descriptorSetCount member of pAllocateInfo.

The allocated descriptor sets are returned in pDescriptorSets.

When a descriptor set is allocated, the initial state is largely uninitialized and all descriptors are

undefined. However, the descriptor set can be bound in a command buffer without causing errors

or exceptions. All entries that are statically used by a pipeline in a drawing or dispatching

command must have been populated before the descriptor set is bound for use by that command.

Entries that are not statically used by a pipeline can have uninitialized descriptors or descriptors of

resources that have been destroyed, and executing a draw or dispatch with such a descriptor set

bound does not cause undefined behavior. This means applications need not populate unused

entries with dummy descriptors.

If an allocation fails due to fragmentation, an indeterminate error is returned with an unspecified

error code. Any returned error other than VK_ERROR_FRAGMENTED_POOL does not imply its usual

meaning: applications should assume that the allocation failed due to fragmentation, and create a

new descriptor pool.



Note

Applications should check for a negative return value when allocating new

descriptor sets, assume that any error effectively means VK_ERROR_FRAGMENTED_POOL,

and try to create a new descriptor pool. If VK_ERROR_FRAGMENTED_POOL is the actual

return value, it adds certainty to that decision.

The reason for this is that VK_ERROR_FRAGMENTED_POOL was only added in a later

revision of the 1.0 specification, and so drivers may return other errors if they

were written against earlier revisions. To ensure full compatibility with earlier

patch revisions, these other errors are allowed.

306

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pAllocateInfo must be a pointer to a valid VkDescriptorSetAllocateInfo structure

• pDescriptorSets must be a pointer to an array of pAllocateInfo::descriptorSetCount

VkDescriptorSet handles

Host Synchronization

• Host access to pAllocateInfo::descriptorPool must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_FRAGMENTED_POOL

The VkDescriptorSetAllocateInfo structure is defined as:

typedef struct VkDescriptorSetAllocateInfo {

 VkStructureType sType;

 const void* pNext;

 VkDescriptorPool descriptorPool;

 uint32_t descriptorSetCount;

 const VkDescriptorSetLayout* pSetLayouts;

} VkDescriptorSetAllocateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• descriptorPool is the pool which the sets will be allocated from.

• descriptorSetCount determines the number of descriptor sets to be allocated from the pool.

• pSetLayouts is an array of descriptor set layouts, with each member specifying how the

corresponding descriptor set is allocated.

307

Valid Usage

• descriptorSetCount must not be greater than the number of sets that are currently

available for allocation in descriptorPool

• descriptorPool must have enough free descriptor capacity remaining to allocate the

descriptor sets of the specified layouts

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO

• pNext must be NULL

• descriptorPool must be a valid VkDescriptorPool handle

• pSetLayouts must be a pointer to an array of descriptorSetCount valid

VkDescriptorSetLayout handles

• descriptorSetCount must be greater than 0

• Both of descriptorPool, and the elements of pSetLayouts must have been created,

allocated, or retrieved from the same VkDevice

To free allocated descriptor sets, call:

VkResult vkFreeDescriptorSets(

 VkDevice device,

 VkDescriptorPool descriptorPool,

 uint32_t descriptorSetCount,

 const VkDescriptorSet* pDescriptorSets);

• device is the logical device that owns the descriptor pool.

• descriptorPool is the descriptor pool from which the descriptor sets were allocated.

• descriptorSetCount is the number of elements in the pDescriptorSets array.

• pDescriptorSets is an array of handles to VkDescriptorSet objects.

After a successful call to vkFreeDescriptorSets, all descriptor sets in pDescriptorSets are invalid.

308

Valid Usage

• All submitted commands that refer to any element of pDescriptorSets must have

completed execution

• pDescriptorSets must be a pointer to an array of descriptorSetCount VkDescriptorSet

handles, each element of which must either be a valid handle or VK_NULL_HANDLE

• Each valid handle in pDescriptorSets must have been allocated from descriptorPool

• descriptorPool must have been created with the

VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT flag

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• descriptorPool must be a valid VkDescriptorPool handle

• descriptorSetCount must be greater than 0

• descriptorPool must have been created, allocated, or retrieved from device

• Each element of pDescriptorSets that is a valid handle must have been created, allocated,

or retrieved from descriptorPool

Host Synchronization

• Host access to descriptorPool must be externally synchronized

• Host access to each member of pDescriptorSets must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To return all descriptor sets allocated from a given pool to the pool, rather than freeing individual

descriptor sets, call:

309

VkResult vkResetDescriptorPool(

 VkDevice device,

 VkDescriptorPool descriptorPool,

 VkDescriptorPoolResetFlags flags);

• device is the logical device that owns the descriptor pool.

• descriptorPool is the descriptor pool to be reset.

• flags is reserved for future use.

Resetting a descriptor pool recycles all of the resources from all of the descriptor sets allocated

from the descriptor pool back to the descriptor pool, and the descriptor sets are implicitly freed.

Valid Usage

• All uses of descriptorPool (via any allocated descriptor sets) must have completed

execution

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• descriptorPool must be a valid VkDescriptorPool handle

• flags must be 0

• descriptorPool must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to descriptorPool must be externally synchronized

• Host access to any VkDescriptorSet objects allocated from descriptorPool must be

externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

310

13.2.4. Descriptor Set Updates

Once allocated, descriptor sets can be updated with a combination of write and copy operations. To

update descriptor sets, call:

void vkUpdateDescriptorSets(

 VkDevice device,

 uint32_t descriptorWriteCount,

 const VkWriteDescriptorSet* pDescriptorWrites,

 uint32_t descriptorCopyCount,

 const VkCopyDescriptorSet* pDescriptorCopies);

• device is the logical device that updates the descriptor sets.

• descriptorWriteCount is the number of elements in the pDescriptorWrites array.

• pDescriptorWrites is a pointer to an array of VkWriteDescriptorSet structures describing the

descriptor sets to write to.

• descriptorCopyCount is the number of elements in the pDescriptorCopies array.

• pDescriptorCopies is a pointer to an array of VkCopyDescriptorSet structures describing the

descriptor sets to copy between.

The operations described by pDescriptorWrites are performed first, followed by the operations

described by pDescriptorCopies. Within each array, the operations are performed in the order they

appear in the array.

Each element in the pDescriptorWrites array describes an operation updating the descriptor set

using descriptors for resources specified in the structure.

Each element in the pDescriptorCopies array is a VkCopyDescriptorSet structure describing an

operation copying descriptors between sets.

If the dstSet member of any given element of pDescriptorWrites or pDescriptorCopies is bound,

accessed, or modified by any command that was recorded to a command buffer which is currently

in the recording or executable state, that command buffer becomes invalid.

Valid Usage

• The dstSet member of any given element of pDescriptorWrites or pDescriptorCopies must

not be used by any command that was recorded to a command buffer which is in the

pending state.

311

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If descriptorWriteCount is not 0, pDescriptorWrites must be a pointer to an array of

descriptorWriteCount valid VkWriteDescriptorSet structures

• If descriptorCopyCount is not 0, pDescriptorCopies must be a pointer to an array of

descriptorCopyCount valid VkCopyDescriptorSet structures

Host Synchronization

• Host access to pDescriptorWrites[].dstSet must be externally synchronized

• Host access to pDescriptorCopies[].dstSet must be externally synchronized

The VkWriteDescriptorSet structure is defined as:

typedef struct VkWriteDescriptorSet {

 VkStructureType sType;

 const void* pNext;

 VkDescriptorSet dstSet;

 uint32_t dstBinding;

 uint32_t dstArrayElement;

 uint32_t descriptorCount;

 VkDescriptorType descriptorType;

 const VkDescriptorImageInfo* pImageInfo;

 const VkDescriptorBufferInfo* pBufferInfo;

 const VkBufferView* pTexelBufferView;

} VkWriteDescriptorSet;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• dstSet is the destination descriptor set to update.

• dstBinding is the descriptor binding within that set.

• dstArrayElement is the starting element in that array.

• descriptorCount is the number of descriptors to update (the number of elements in pImageInfo,

pBufferInfo, or pTexelBufferView).

• descriptorType is a VkDescriptorType specifying the type of each descriptor in pImageInfo,

pBufferInfo, or pTexelBufferView, as described below. It must be the same type as that specified

in VkDescriptorSetLayoutBinding for dstSet at dstBinding. The type of the descriptor also controls

which array the descriptors are taken from.

• pImageInfo points to an array of VkDescriptorImageInfo structures or is ignored, as described

below.

312

• pBufferInfo points to an array of VkDescriptorBufferInfo structures or is ignored, as described

below.

• pTexelBufferView points to an array of VkBufferView handles as described in the Buffer Views

section or is ignored, as described below.

Only one of pImageInfo, pBufferInfo, or pTexelBufferView members is used according to the

descriptor type specified in the descriptorType member of the containing VkWriteDescriptorSet

structure, as specified below.

If the dstBinding has fewer than descriptorCount array elements remaining starting from

dstArrayElement, then the remainder will be used to update the subsequent binding - dstBinding+1

starting at array element zero. If a binding has a descriptorCount of zero, it is skipped. This

behavior applies recursively, with the update affecting consecutive bindings as needed to update all

descriptorCount descriptors.

313

Valid Usage

• dstBinding must be less than or equal to the maximum value of binding of all

VkDescriptorSetLayoutBinding structures specified when dstSet’s descriptor set layout

was created

• dstBinding must be a binding with a non-zero descriptorCount

• All consecutive bindings updated via a single VkWriteDescriptorSet structure, except those

with a descriptorCount of zero, must have identical descriptorType and stageFlags.

• All consecutive bindings updated via a single VkWriteDescriptorSet structure, except those

with a descriptorCount of zero, must all either use immutable samplers or must all not

use immutable samplers.

• descriptorType must match the type of dstBinding within dstSet

• dstSet must be a valid VkDescriptorSet handle

• The sum of dstArrayElement and descriptorCount must be less than or equal to the number

of array elements in the descriptor set binding specified by dstBinding, and all applicable

consecutive bindings, as described by consecutive binding updates

• If descriptorType is VK_DESCRIPTOR_TYPE_SAMPLER,

VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,

VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, pImageInfo

must be a pointer to an array of descriptorCount valid VkDescriptorImageInfo structures

• If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER or

VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, pTexelBufferView must be a pointer to an array

of descriptorCount valid VkBufferView handles

• If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,

VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, or

VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, pBufferInfo must be a pointer to an array of

descriptorCount valid VkDescriptorBufferInfo structures

• If descriptorType is VK_DESCRIPTOR_TYPE_SAMPLER or

VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and dstSet was not allocated with a layout

that included immutable samplers for dstBinding with descriptorType, the sampler

member of any given element of pImageInfo must be a valid VkSampler object

• If descriptorType is VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,

VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or

VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, the imageView and imageLayout members of any

given element of pImageInfo must be a valid VkImageView and VkImageLayout, respectively

• If descriptorType is VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, for each descriptor that will be

accessed via load or store operations the imageLayout member for corresponding elements

of pImageInfo must be VK_IMAGE_LAYOUT_GENERAL

• If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or

VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, the offset member of any given element of

pBufferInfo must be a multiple of VkPhysicalDeviceLimits

::minUniformBufferOffsetAlignment

314

• If descriptorType is VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or

VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, the offset member of any given element of

pBufferInfo must be a multiple of VkPhysicalDeviceLimits

::minStorageBufferOffsetAlignment

• If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,

VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, or

VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, the buffer member of any given element of

pBufferInfo that is non-sparse must be bound completely and contiguously to a single

VkDeviceMemory object

• If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or

VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, the buffer member of any given element of

pBufferInfo must have been created with VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT set

• If descriptorType is VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or

VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, the buffer member of any given element of

pBufferInfo must have been created with VK_BUFFER_USAGE_STORAGE_BUFFER_BIT set

• If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or

VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, the range member of any given element of

pBufferInfo, or the effective range if range is VK_WHOLE_SIZE, must be less than or equal to

VkPhysicalDeviceLimits::maxUniformBufferRange

• If descriptorType is VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or

VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, the range member of any given element of

pBufferInfo, or the effective range if range is VK_WHOLE_SIZE, must be less than or equal to

VkPhysicalDeviceLimits::maxStorageBufferRange

• If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, the VkBuffer that any given

element of pTexelBufferView was created from must have been created with

VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT set

• If descriptorType is VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, the VkBuffer that any given

element of pTexelBufferView was created from must have been created with

VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT set

• If descriptorType is VK_DESCRIPTOR_TYPE_STORAGE_IMAGE or

VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, the imageView member of any given element of

pImageInfo must have been created with the identity swizzle

• If descriptorType is VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE or

VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, the imageView member of any given element

of pImageInfo must have been created with VK_IMAGE_USAGE_SAMPLED_BIT set

• If descriptorType is VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE or

VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, the imageLayout member of any given element

of pImageInfo must be VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,

VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL

• If descriptorType is VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, the imageView member of any

given element of pImageInfo must have been created with

VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT set

• If descriptorType is VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, the imageView member of any given

315

element of pImageInfo must have been created with VK_IMAGE_USAGE_STORAGE_BIT set

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET

• pNext must be NULL

• descriptorType must be a valid VkDescriptorType value

• descriptorCount must be greater than 0

• Both of dstSet, and the elements of pTexelBufferView that are valid handles must have

been created, allocated, or retrieved from the same VkDevice

The type of descriptors in a descriptor set is specified by VkWriteDescriptorSet::descriptorType,

which must be one of the values:

typedef enum VkDescriptorType {

 VK_DESCRIPTOR_TYPE_SAMPLER = 0,

 VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER = 1,

 VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE = 2,

 VK_DESCRIPTOR_TYPE_STORAGE_IMAGE = 3,

 VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER = 4,

 VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER = 5,

 VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER = 6,

 VK_DESCRIPTOR_TYPE_STORAGE_BUFFER = 7,

 VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC = 8,

 VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC = 9,

 VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT = 10,

} VkDescriptorType;

• VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,

VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC

specify that the elements of the VkWriteDescriptorSet::pBufferInfo array of

VkDescriptorBufferInfo structures will be used to update the descriptors, and other arrays will

be ignored.

• VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER specify

that the VkWriteDescriptorSet::pTexelBufferView array will be used to update the descriptors,

and other arrays will be ignored.

• VK_DESCRIPTOR_TYPE_SAMPLER, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,

VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or

VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT specify that the elements of the VkWriteDescriptorSet

::pImageInfo array of VkDescriptorImageInfo structures will be used to update the descriptors,

and other arrays will be ignored.

The VkDescriptorBufferInfo structure is defined as:

316

typedef struct VkDescriptorBufferInfo {

 VkBuffer buffer;

 VkDeviceSize offset;

 VkDeviceSize range;

} VkDescriptorBufferInfo;

• buffer is the buffer resource.

• offset is the offset in bytes from the start of buffer. Access to buffer memory via this descriptor

uses addressing that is relative to this starting offset.

• range is the size in bytes that is used for this descriptor update, or VK_WHOLE_SIZE to use the range

from offset to the end of the buffer.



Note

When setting range to VK_WHOLE_SIZE, the effective range must not be larger than

the maximum range for the descriptor type (maxUniformBufferRange or

maxStorageBufferRange). This means that VK_WHOLE_SIZE is not typically useful in

the common case where uniform buffer descriptors are suballocated from a buffer

that is much larger than maxUniformBufferRange.

For VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC and VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC

descriptor types, offset is the base offset from which the dynamic offset is applied and range is the

static size used for all dynamic offsets.

Valid Usage

• offset must be less than the size of buffer

• If range is not equal to VK_WHOLE_SIZE, range must be greater than 0

• If range is not equal to VK_WHOLE_SIZE, range must be less than or equal to the size of buffer

minus offset

Valid Usage (Implicit)

• buffer must be a valid VkBuffer handle

The VkDescriptorImageInfo structure is defined as:

typedef struct VkDescriptorImageInfo {

 VkSampler sampler;

 VkImageView imageView;

 VkImageLayout imageLayout;

} VkDescriptorImageInfo;

317

• sampler is a sampler handle, and is used in descriptor updates for types

VK_DESCRIPTOR_TYPE_SAMPLER and VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER if the binding being

updated does not use immutable samplers.

• imageView is an image view handle, and is used in descriptor updates for types

VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,

VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT.

• imageLayout is the layout that the image subresources accessible from imageView will be in at the

time this descriptor is accessed. imageLayout is used in descriptor updates for types

VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,

VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT.

Members of VkDescriptorImageInfo that are not used in an update (as described above) are ignored.

Valid Usage

• imageLayout must match the actual VkImageLayout of each subresource accessible from

imageView at the time this descriptor is accessed

Valid Usage (Implicit)

• Both of imageView, and sampler that are valid handles must have been created, allocated,

or retrieved from the same VkDevice

The VkCopyDescriptorSet structure is defined as:

typedef struct VkCopyDescriptorSet {

 VkStructureType sType;

 const void* pNext;

 VkDescriptorSet srcSet;

 uint32_t srcBinding;

 uint32_t srcArrayElement;

 VkDescriptorSet dstSet;

 uint32_t dstBinding;

 uint32_t dstArrayElement;

 uint32_t descriptorCount;

} VkCopyDescriptorSet;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• srcSet, srcBinding, and srcArrayElement are the source set, binding, and array element,

respectively.

• dstSet, dstBinding, and dstArrayElement are the destination set, binding, and array element,

respectively.

318

• descriptorCount is the number of descriptors to copy from the source to destination. If

descriptorCount is greater than the number of remaining array elements in the source or

destination binding, those affect consecutive bindings in a manner similar to

VkWriteDescriptorSet above.

Valid Usage

• srcBinding must be a valid binding within srcSet

• The sum of srcArrayElement and descriptorCount must be less than or equal to the number

of array elements in the descriptor set binding specified by srcBinding, and all applicable

consecutive bindings, as described by consecutive binding updates

• dstBinding must be a valid binding within dstSet

• The sum of dstArrayElement and descriptorCount must be less than or equal to the number

of array elements in the descriptor set binding specified by dstBinding, and all applicable

consecutive bindings, as described by consecutive binding updates

• If srcSet is equal to dstSet, then the source and destination ranges of descriptors must not

overlap, where the ranges may include array elements from consecutive bindings as

described by consecutive binding updates

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET

• pNext must be NULL

• srcSet must be a valid VkDescriptorSet handle

• dstSet must be a valid VkDescriptorSet handle

• Both of dstSet, and srcSet must have been created, allocated, or retrieved from the same
VkDevice

13.2.5. Descriptor Set Binding

To bind one or more descriptor sets to a command buffer, call:

void vkCmdBindDescriptorSets(

 VkCommandBuffer commandBuffer,

 VkPipelineBindPoint pipelineBindPoint,

 VkPipelineLayout layout,

 uint32_t firstSet,

 uint32_t descriptorSetCount,

 const VkDescriptorSet* pDescriptorSets,

 uint32_t dynamicOffsetCount,

 const uint32_t* pDynamicOffsets);

319

• commandBuffer is the command buffer that the descriptor sets will be bound to.

• pipelineBindPoint is a VkPipelineBindPoint indicating whether the descriptors will be used by

graphics pipelines or compute pipelines. There is a separate set of bind points for each of

graphics and compute, so binding one does not disturb the other.

• layout is a VkPipelineLayout object used to program the bindings.

• firstSet is the set number of the first descriptor set to be bound.

• descriptorSetCount is the number of elements in the pDescriptorSets array.

• pDescriptorSets is an array of handles to VkDescriptorSet objects describing the descriptor sets

to write to.

• dynamicOffsetCount is the number of dynamic offsets in the pDynamicOffsets array.

• pDynamicOffsets is a pointer to an array of uint32_t values specifying dynamic offsets.

vkCmdBindDescriptorSets causes the sets numbered [firstSet.. firstSet+descriptorSetCount-1] to use

the bindings stored in pDescriptorSets[0..descriptorSetCount-1] for subsequent rendering

commands (either compute or graphics, according to the pipelineBindPoint). Any bindings that

were previously applied via these sets are no longer valid.

Once bound, a descriptor set affects rendering of subsequent graphics or compute commands in the

command buffer until a different set is bound to the same set number, or else until the set is

disturbed as described in Pipeline Layout Compatibility.

A compatible descriptor set must be bound for all set numbers that any shaders in a pipeline

access, at the time that a draw or dispatch command is recorded to execute using that pipeline.

However, if none of the shaders in a pipeline statically use any bindings with a particular set

number, then no descriptor set need be bound for that set number, even if the pipeline layout

includes a non-trivial descriptor set layout for that set number.

If any of the sets being bound include dynamic uniform or storage buffers, then pDynamicOffsets

includes one element for each array element in each dynamic descriptor type binding in each set.

Values are taken from pDynamicOffsets in an order such that all entries for set N come before set

N+1; within a set, entries are ordered by the binding numbers in the descriptor set layouts; and

within a binding array, elements are in order. dynamicOffsetCount must equal the total number of

dynamic descriptors in the sets being bound.

The effective offset used for dynamic uniform and storage buffer bindings is the sum of the relative

offset taken from pDynamicOffsets, and the base address of the buffer plus base offset in the

descriptor set. The length of the dynamic uniform and storage buffer bindings is the buffer range as

specified in the descriptor set.

Each of the pDescriptorSets must be compatible with the pipeline layout specified by layout. The

layout used to program the bindings must also be compatible with the pipeline used in subsequent

graphics or compute commands, as defined in the Pipeline Layout Compatibility section.

The descriptor set contents bound by a call to vkCmdBindDescriptorSets may be consumed during

host execution of the command, or during shader execution of the resulting draws, or any time in

between. Thus, the contents must not be altered (overwritten by an update command, or freed)

between when the command is recorded and when the command completes executing on the

320

queue. The contents of pDynamicOffsets are consumed immediately during execution of

vkCmdBindDescriptorSets. Once all pending uses have completed, it is legal to update and reuse a

descriptor set.

Valid Usage

• Any given element of pDescriptorSets must have been allocated with a

VkDescriptorSetLayout that matches (is the same as, or identically defined as) the

VkDescriptorSetLayout at set n in layout, where n is the sum of firstSet and the index into
pDescriptorSets

• dynamicOffsetCount must be equal to the total number of dynamic descriptors in
pDescriptorSets

• The sum of firstSet and descriptorSetCount must be less than or equal to

VkPipelineLayoutCreateInfo::setLayoutCount provided when layout was created

• pipelineBindPoint must be supported by the commandBuffer’s parent VkCommandPool’s queue

family

• Any given element of pDynamicOffsets must satisfy the required alignment for the

corresponding descriptor binding’s descriptor type

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• pipelineBindPoint must be a valid VkPipelineBindPoint value

• layout must be a valid VkPipelineLayout handle

• pDescriptorSets must be a pointer to an array of descriptorSetCount valid VkDescriptorSet

handles

• If dynamicOffsetCount is not 0, pDynamicOffsets must be a pointer to an array of

dynamicOffsetCount uint32_t values

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics, or

compute operations

• descriptorSetCount must be greater than 0

• Each of commandBuffer, layout, and the elements of pDescriptorSets must have been

created, allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

321

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Both Graphics

compute

13.2.6. Push Constant Updates

As described above in section Pipeline Layouts, the pipeline layout defines shader push constants

which are updated via Vulkan commands rather than via writes to memory or copy commands.


Note

Push constants represent a high speed path to modify constant data in pipelines

that is expected to outperform memory-backed resource updates.

The values of push constants are undefined at the start of a command buffer.

To update push constants, call:

void vkCmdPushConstants(

 VkCommandBuffer commandBuffer,

 VkPipelineLayout layout,

 VkShaderStageFlags stageFlags,

 uint32_t offset,

 uint32_t size,

 const void* pValues);

• commandBuffer is the command buffer in which the push constant update will be recorded.

• layout is the pipeline layout used to program the push constant updates.

• stageFlags is a bitmask of VkShaderStageFlagBits specifying the shader stages that will use the

push constants in the updated range.

• offset is the start offset of the push constant range to update, in units of bytes.

• size is the size of the push constant range to update, in units of bytes.

• pValues is an array of size bytes containing the new push constant values.

322

Valid Usage

• stageFlags must match exactly the shader stages used in layout for the range specified by

offset and size

• offset must be a multiple of 4

• size must be a multiple of 4

• offset must be less than VkPhysicalDeviceLimits::maxPushConstantsSize

• size must be less than or equal to VkPhysicalDeviceLimits::maxPushConstantsSize minus
offset

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• layout must be a valid VkPipelineLayout handle

• stageFlags must be a valid combination of VkShaderStageFlagBits values

• stageFlags must not be 0

• pValues must be a pointer to an array of size bytes

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics, or

compute operations

• size must be greater than 0

• Both of commandBuffer, and layout must have been created, allocated, or retrieved from

the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Both Graphics

compute

323

Chapter 14. Shader Interfaces

When a pipeline is created, the set of shaders specified in the corresponding Vk*PipelineCreateInfo

structure are implicitly linked at a number of different interfaces.

• Shader Input and Output Interface

• Vertex Input Interface

• Fragment Output Interface

• Fragment Input Attachment Interface

• Shader Resource Interface

Interface definitions make use of the following SPIR-V decorations:

• DescriptorSet and Binding

• Location, Component, and Index

• Flat, NoPerspective, Centroid, and Sample

• Block and BufferBlock

• InputAttachmentIndex

• Offset, ArrayStride, and MatrixStride

• BuiltIn

This specification describes valid uses for Vulkan of these decorations. Any other use of one of these

decorations is invalid.

14.1. Shader Input and Output Interfaces

When multiple stages are present in a pipeline, the outputs of one stage form an interface with the

inputs of the next stage. When such an interface involves a shader, shader outputs are matched

against the inputs of the next stage, and shader inputs are matched against the outputs of the

previous stage.

There are two classes of variables that can be matched between shader stages, built-in variables

and user-defined variables. Each class has a different set of matching criteria. Generally, when non-

shader stages are between shader stages, the user-defined variables, and most built-in variables,

form an interface between the shader stages.

The variables forming the input or output interfaces are listed as operands to the OpEntryPoint

instruction and are declared with the Input or Output storage classes, respectively, in the SPIR-V

module.

Output variables of a shader stage have undefined values until the shader writes to them or uses the

Initializer operand when declaring the variable.

324

14.1.1. Built-in Interface Block

Shader built-in variables meeting the following requirements define the built-in interface block.

They must

• be explicitly declared (there are no implicit built-ins),

• be identified with a BuiltIn decoration,

• form object types as described in the Built-in Variables section, and

• be declared in a block whose top-level members are the built-ins.

Built-ins only participate in interface matching if they are declared in such a block. They must not

have any Location or Component decorations.

There must be no more than one built-in interface block per shader per interface.

14.1.2. User-defined Variable Interface

The remaining variables listed by OpEntryPoint with the Input or Output storage class form the user-

defined variable interface. These variables must be identified with a Location decoration and can

also be identified with a Component decoration.

14.1.3. Interface Matching

A user-defined output variable is considered to match an input variable in the subsequent stage if

the two variables are declared with the same Location and Component decoration and match in type

and decoration, except that interpolation decorations are not required to match. For the purposes

of interface matching, variables declared without a Component decoration are considered to have a

Component decoration of zero.

Variables or block members declared as structures are considered to match in type if and only if

the structure members match in type, decoration, number, and declaration order. Variables or

block members declared as arrays are considered to match in type only if both declarations specify

the same element type and size.

Tessellation control shader per-vertex output variables and blocks, and tessellation control,

tessellation evaluation, and geometry shader per-vertex input variables and blocks are required to

be declared as arrays, with each element representing input or output values for a single vertex of

a multi-vertex primitive. For the purposes of interface matching, the outermost array dimension of

such variables and blocks is ignored.

At an interface between two non-fragment shader stages, the built-in interface block must match

exactly, as described above. At an interface involving the fragment shader inputs, the presence or

absence of any built-in output does not affect the interface matching.

At an interface between two shader stages, the user-defined variable interface must match exactly,

as described above.

Any input value to a shader stage is well-defined as long as the preceding stages writes to a

matching output, as described above.

325

Additionally, scalar and vector inputs are well-defined if there is a corresponding output satisfying

all of the following conditions:

• the input and output match exactly in decoration,

• the output is a vector with the same basic type and has at least as many components as the

input, and

• the common component type of the input and output is 32-bit integer or floating-point (64-bit

component types are excluded).

In this case, the components of the input will be taken from the first components of the output, and

any extra components of the output will be ignored.

14.1.4. Location Assignment

This section describes how many locations are consumed by a given type. As mentioned above,

geometry shader inputs, tessellation control shader inputs and outputs, and tessellation evaluation

inputs all have an additional level of arrayness relative to other shader inputs and outputs. This

outer array level is removed from the type before considering how many locations the type

consumes.

The Location value specifies an interface slot comprised of a 32-bit four-component vector

conveyed between stages. The Component specifies components within these vector locations. Only

types with widths of 32 or 64 are supported in shader interfaces.

Inputs and outputs of the following types consume a single interface location:

• 32-bit scalar and vector types, and

• 64-bit scalar and 2-component vector types.

64-bit three- and four-component vectors consume two consecutive locations.

If a declared input or output is an array of size n and each element takes m locations, it will be

assigned m × n consecutive locations starting with the location specified.

If the declared input or output is an n × m 32- or 64-bit matrix, it will be assigned multiple locations

starting with the location specified. The number of locations assigned for each matrix will be the

same as for an n-element array of m-component vectors.

The layout of a structure type used as an Input or Output depends on whether it is also a Block (i.e.

has a Block decoration).

If it is a not a Block, then the structure type must have a Location decoration. Its members are

assigned consecutive locations in their declaration order, with the first member assigned to the

location specified for the structure type. The members, and their nested types, must not themselves

have Location decorations.

If the structure type is a Block but without a Location, then each of its members must have a

Location decoration. If it is a Block with a Location decoration, then its members are assigned

consecutive locations in declaration order, starting from the first member which is initially

326

assigned the location specified for the Block. Any member with its own Location decoration is

assigned that location. Each remaining member is assigned the location after the immediately

preceding member in declaration order.

The locations consumed by block and structure members are determined by applying the rules

above in a depth-first traversal of the instantiated members as though the structure or block

member were declared as an input or output variable of the same type.

Any two inputs listed as operands on the same OpEntryPoint must not be assigned the same

location, either explicitly or implicitly. Any two outputs listed as operands on the same OpEntryPoint

must not be assigned the same location, either explicitly or implicitly.

The number of input and output locations available for a shader input or output interface are

limited, and dependent on the shader stage as described in Shader Input and Output Locations.

Table 11. Shader Input and Output Locations

Shader Interface Locations Available

vertex input maxVertexInputAttributes

vertex output maxVertexOutputComponents / 4

tessellation control input maxTessellationControlPerVertexInputComponents / 4

tessellation control output maxTessellationControlPerVertexOutputComponents / 4

tessellation evaluation

input

maxTessellationEvaluationInputComponents / 4

tessellation evaluation

output

maxTessellationEvaluationOutputComponents / 4

geometry input maxGeometryInputComponents / 4

geometry output maxGeometryOutputComponents / 4

fragment input maxFragmentInputComponents / 4

fragment output maxFragmentOutputAttachments

14.1.5. Component Assignment

The Component decoration allows the Location to be more finely specified for scalars and vectors,

down to the individual components within a location that are consumed. The components within a

location are 0, 1, 2, and 3. A variable or block member starting at component N will consume

components N, N+1, N+2, … up through its size. For single precision types, it is invalid if this

sequence of components gets larger than 3. A scalar 64-bit type will consume two of these

components in sequence, and a two-component 64-bit vector type will consume all four

components available within a location. A three- or four-component 64-bit vector type must not

specify a Component decoration. A three-component 64-bit vector type will consume all four

components of the first location and components 0 and 1 of the second location. This leaves

components 2 and 3 available for other component-qualified declarations.

A scalar or two-component 64-bit data type must not specify a Component decoration of 1 or 3. A

Component decoration must not be specified for any type that is not a scalar or vector.

327

14.2. Vertex Input Interface

When the vertex stage is present in a pipeline, the vertex shader input variables form an interface

with the vertex input attributes. The vertex shader input variables are matched by the Location and

Component decorations to the vertex input attributes specified in the pVertexInputState member of

the VkGraphicsPipelineCreateInfo structure.

The vertex shader input variables listed by OpEntryPoint with the Input storage class form the vertex

input interface. These variables must be identified with a Location decoration and can also be

identified with a Component decoration.

For the purposes of interface matching: variables declared without a Component decoration are

considered to have a Component decoration of zero. The number of available vertex input locations is

given by the maxVertexInputAttributes member of the VkPhysicalDeviceLimits structure.

See Attribute Location and Component Assignment for details.

All vertex shader inputs declared as above must have a corresponding attribute and binding in the

pipeline.

14.3. Fragment Output Interface

When the fragment stage is present in a pipeline, the fragment shader outputs form an interface

with the output attachments of the current subpass. The fragment shader output variables are

matched by the Location and Component decorations to the color attachments specified in the

pColorAttachments array of the VkSubpassDescription structure that describes the subpass that the

fragment shader is executed in.

The fragment shader output variables listed by OpEntryPoint with the Output storage class form the

fragment output interface. These variables must be identified with a Location decoration. They can

also be identified with a Component decoration and/or an Index decoration. For the purposes of

interface matching: variables declared without a Component decoration are considered to have a

Component decoration of zero, and variables declared without an Index decoration are considered to

have an Index decoration of zero.

A fragment shader output variable identified with a Location decoration of i is directed to the color

attachment indicated by pColorAttachments[i], after passing through the blending unit as described

in Blending, if enabled. Locations are consumed as described in Location Assignment. The number

of available fragment output locations is given by the maxFragmentOutputAttachments member of the

VkPhysicalDeviceLimits structure.

Components of the output variables are assigned as described in Component Assignment. Output

components identified as 0, 1, 2, and 3 will be directed to the R, G, B, and A inputs to the blending

unit, respectively, or to the output attachment if blending is disabled. If two variables are placed

within the same location, they must have the same underlying type (floating-point or integer). The

input to blending or color attachment writes is undefined for components which do not correspond

to a fragment shader output.

Fragment outputs identified with an Index of zero are directed to the first input of the blending unit

328

associated with the corresponding Location. Outputs identified with an Index of one are directed to

the second input of the corresponding blending unit.

No component aliasing of output variables is allowed, that is there must not be two output variables

which have the same location, component, and index, either explicitly declared or implied.

Output values written by a fragment shader must be declared with either OpTypeFloat or OpTypeInt,

and a Width of 32. Composites of these types are also permitted. If the color attachment has a

signed or unsigned normalized fixed-point format, color values are assumed to be floating-point

and are converted to fixed-point as described in [fundamentals-fpfixedfpconv]; otherwise no type

conversion is applied. If the type of the values written by the fragment shader do not match the

format of the corresponding color attachment, the result is undefined for those components.

14.4. Fragment Input Attachment Interface

When a fragment stage is present in a pipeline, the fragment shader subpass inputs form an

interface with the input attachments of the current subpass. The fragment shader subpass input

variables are matched by InputAttachmentIndex decorations to the input attachments specified in

the pInputAttachments array of the VkSubpassDescription structure that describes the subpass that

the fragment shader is executed in.

The fragment shader subpass input variables with the UniformConstant storage class and a

decoration of InputAttachmentIndex that are statically used by OpEntryPoint form the fragment input

attachment interface. These variables must be declared with a type of OpTypeImage, a Dim operand of

SubpassData, and a Sampled operand of 2.

A subpass input variable identified with an InputAttachmentIndex decoration of i reads from the

input attachment indicated by pInputAttachments[i] member of VkSubpassDescription. If the subpass

input variable is declared as an array of size N, it consumes N consecutive input attachments,

starting with the index specified. There must not be more than one input variable with the same

InputAttachmentIndex whether explicitly declared or implied by an array declaration. The number

of available input attachment indices is given by the maxPerStageDescriptorInputAttachments

member of the VkPhysicalDeviceLimits structure.

Variables identified with the InputAttachmentIndex must only be used by a fragment stage. The basic

data type (floating-point, integer, unsigned integer) of the subpass input must match the basic

format of the corresponding input attachment, or the values of subpass loads from these variables

are undefined.

See Input Attachment for more details.

14.5. Shader Resource Interface

When a shader stage accesses buffer or image resources, as described in the Resource Descriptors

section, the shader resource variables must be matched with the pipeline layout that is provided at

pipeline creation time.

The set of shader resources that form the shader resource interface for a stage are the variables

statically used by OpEntryPoint with the storage class of Uniform, UniformConstant, or PushConstant.

329

For the fragment shader, this includes the fragment input attachment interface.

The shader resource interface consists of two sub-interfaces: the push constant interface and the

descriptor set interface.

14.5.1. Push Constant Interface

The shader variables defined with a storage class of PushConstant that are statically used by the

shader entry points for the pipeline define the push constant interface. They must be:

• typed as OpTypeStruct,

• identified with a Block decoration, and

• laid out explicitly using the Offset, ArrayStride, and MatrixStride decorations as specified in

Offset and Stride Assignment.

There must be no more than one push constant block statically used per shader entry point.

Each variable in a push constant block must be placed at an Offset such that the entire constant

value is entirely contained within the VkPushConstantRange for each OpEntryPoint that uses it, and

the stageFlags for that range must specify the appropriate VkShaderStageFlagBits for that stage.

The Offset decoration for any variable in a push constant block must not cause the space required

for that variable to extend outside the range [0, maxPushConstantsSize).

Any variable in a push constant block that is declared as an array must only be accessed with

dynamically uniform indices.

14.5.2. Descriptor Set Interface

The descriptor set interface is comprised of the shader variables with the storage class of Uniform or

UniformConstant (including the variables in the fragment input attachment interface) that are

statically used by the shader entry points for the pipeline.

These variables must have DescriptorSet and Binding decorations specified, which are assigned and

matched with the VkDescriptorSetLayout objects in the pipeline layout as described in DescriptorSet

and Binding Assignment.

Variables identified with the UniformConstant storage class are used only as handles to refer to

opaque resources. Such variables must be typed as OpTypeImage, OpTypeSampler, OpTypeSampledImage,

or arrays of only these types. Variables of type OpTypeImage must have a Sampled operand of 1

(sampled image) or 2 (storage image).

Any array of these types must only be indexed with constant integral expressions, except under the

following conditions:

• For arrays of OpTypeImage variables with Sampled operand of 2, if the

shaderStorageImageArrayDynamicIndexing feature is enabled and the shader module declares the

StorageImageArrayDynamicIndexing capability, the array must only be indexed by dynamically

uniform expressions.

• For arrays of OpTypeSampler, OpTypeSampledImage variables, or OpTypeImage variables with Sampled

330

operand of 1, if the shaderSampledImageArrayDynamicIndexing feature is enabled and the shader

module declares the SampledImageArrayDynamicIndexing capability, the array must only be

indexed by dynamically uniform expressions.

The Sampled Type of an OpTypeImage declaration must match the same basic data type as the

corresponding resource, or the values obtained by reading or sampling from this image are

undefined.

The Image Format of an OpTypeImage declaration must not be Unknown, for variables which are used

for OpImageRead or OpImageWrite operations, except under the following conditions:

• For OpImageWrite, if the shaderStorageImageWriteWithoutFormat feature is enabled and the shader

module declares the StorageImageWriteWithoutFormat capability.

• For OpImageRead, if the shaderStorageImageReadWithoutFormat feature is enabled and the shader

module declares the StorageImageReadWithoutFormat capability.

Variables identified with the Uniform storage class are used to access transparent buffer backed

resources. Such variables must be:

• typed as OpTypeStruct, or arrays of only this type,

• identified with a Block or BufferBlock decoration, and

• laid out explicitly using the Offset, ArrayStride, and MatrixStride decorations as specified in

Offset and Stride Assignment.

Any array of these types must only be indexed with constant integral expressions, except under the

following conditions.

• For arrays of Block variables in the Uniform storage class, if the

shaderUniformBufferArrayDynamicIndexing feature is enabled and the shader module declares the

UniformBufferArrayDynamicIndexing capability, the array must only be indexed by dynamically

uniform expressions.

• For arrays of BufferBlock variables in the Uniform storage class , if the

shaderStorageBufferArrayDynamicIndexing feature is enabled and the shader module declares the

StorageBufferArrayDynamicIndexing capability, the array must only be indexed by dynamically

uniform expressions.

The Offset decoration for any variable in a Block must not cause the space required for that

variable to extend outside the range [0, maxUniformBufferRange). The Offset decoration for any

variable in a BufferBlock must not cause the space required for that variable to extend outside the

range [0, maxStorageBufferRange).

Variables identified with a storage class of UniformConstant and a decoration of

InputAttachmentIndex must be declared as described in Fragment Input Attachment Interface.

Each shader variable declaration must refer to the same type of resource as is indicated by the

descriptorType. See Shader Resource and Descriptor Type Correspondence for the relationship

between shader declarations and descriptor types.

Table 12. Shader Resource and Descriptor Type Correspondence

331

Resource type Descriptor Type

sampler VK_DESCRIPTOR_TYPE_SAMPLER

sampled image VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE

storage image VK_DESCRIPTOR_TYPE_STORAGE_IMAGE

combined image sampler VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER

uniform texel buffer VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER

storage texel buffer VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER

uniform buffer VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER

VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC

storage buffer VK_DESCRIPTOR_TYPE_STORAGE_BUFFER

VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC

input attachment VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT

Table 13. Shader Resource and Storage Class Correspondence

Resource type Storage Class Type Decoration(s)
1

sampler UniformConstant OpTypeSampler

sampled image UniformConstant OpTypeImage (Sampled=1)

storage image UniformConstant OpTypeImage (Sampled=2)

combined image

sampler

UniformConstant OpTypeSampledImage

uniform texel

buffer

UniformConstant OpTypeImage (Dim=Buffer,

Sampled=1)

storage texel buffer UniformConstant OpTypeImage (Dim=Buffer,

Sampled=2)

uniform buffer Uniform OpTypeStruct Block, Offset, (ArrayStride),

(MatrixStride)

storage buffer Uniform OpTypeStruct BufferBlock, Offset,

(ArrayStride), (MatrixStride)

input attachment UniformConstant OpTypeImage (Dim

=SubpassData, Sampled=2)

InputAttachmentIndex

1

in addition to DescriptorSet and Binding

14.5.3. DescriptorSet and Binding Assignment

A variable identified with a DescriptorSet decoration of s and a Binding decoration of b indicates

that this variable is associated with the VkDescriptorSetLayoutBinding that has a binding equal to b

in pSetLayouts[s] that was specified in VkPipelineLayoutCreateInfo.

The range of descriptor sets is between zero and maxBoundDescriptorSets minus one. If a descriptor

set value is statically used by an entry point there must be an associated pSetLayout in the

corresponding pipeline layout as described in Pipeline Layouts consistency.

332

If the Binding decoration is used with an array, the entire array is identified with that binding value.

The size of the array declaration must be no larger than the descriptorCount of that

VkDescriptorSetLayoutBinding. The index of each element of the array is referred to as the

arrayElement. For the purposes of interface matching and descriptor set operations, if a resource

variable is not an array, it is treated as if it has an arrayElement of zero.

The binding can be any 32-bit unsigned integer value, as described in Descriptor Set Layout. Each

descriptor set has its own binding name space.

There is a limit on the number of resources of each type that can be accessed by a pipeline stage as

shown in Shader Resource Limits. The “Resources Per Stage” column gives the limit on the number

each type of resource that can be statically used for an entry point in any given stage in a pipeline.

The “Resource Types” column lists which resource types are counted against the limit. Some

resource types count against multiple limits.

If multiple entry points in the same pipeline refer to the same set and binding, all variable

definitions with that DescriptorSet and Binding must have the same basic type.

Not all descriptor sets and bindings specified in a pipeline layout need to be used in a particular

shader stage or pipeline, but if a DescriptorSet and Binding decoration is specified for a variable

that is statically used in that shader there must be a pipeline layout entry identified with that

descriptor set and binding and the corresponding stageFlags must specify the appropriate

VkShaderStageFlagBits for that stage.

Table 14. Shader Resource Limits

Resources per Stage Resource Types

maxPerStageDescriptorSamplers
sampler

combined image sampler

maxPerStageDescriptorSampledImages

sampled image

combined image sampler

uniform texel buffer

maxPerStageDescriptorStorageImages
storage image

storage texel buffer

maxPerStageDescriptorUniformBuffers
uniform buffer

uniform buffer dynamic

maxPerStageDescriptorStorageBuffers
storage buffer

storage buffer dynamic

maxPerStageDescriptorInputAttachments input attachment
1

1

Input attachments can only be used in the fragment shader stage

14.5.4. Offset and Stride Assignment

All variables with a storage class of PushConstant or Uniform must be explicitly laid out using the

333

Offset, ArrayStride, and MatrixStride decorations. There are two different layouts requirements

depending on the specific resources.

Standard Uniform Buffer Layout

The 'base alignment' of the type of an OpTypeStruct member of is defined recursively as follows:

• A scalar of size N has a base alignment of N.

• A two-component vector, with components of size N, has a base alignment of 2 N.

• A three- or four-component vector, with components of size N, has a base alignment of 4 N.

• An array has a base alignment equal to the base alignment of its element type, rounded up to a

multiple of 16.

• A structure has a base alignment equal to the largest base alignment of any of its members,

rounded up to a multiple of 16.

• A row-major matrix of C columns has a base alignment equal to the base alignment of a vector

of C matrix components.

• A column-major matrix has a base alignment equal to the base alignment of the matrix column

type.

Every member of an OpTypeStruct with storage class of Uniform and a decoration of Block (uniform

buffers) must be laid out according to the following rules:

• The Offset decoration must be a multiple of its base alignment.

• Any ArrayStride or MatrixStride decoration must be an integer multiple of the base alignment

of the array or matrix from above.

• The Offset decoration of a member must not place it between the end of a structure or an array

and the next multiple of the base alignment of that structure or array.

• The numeric order of Offset decorations need not follow member declaration order.


Note

The std140 layout in GLSL satisfies these rules.

Standard Storage Buffer Layout

Member variables of an OpTypeStruct with a storage class of PushConstant (push constants), or a

storage class of Uniform with a decoration of BufferBlock (storage buffers) must be laid out as above,

except for array and structure base alignment which do not need to be rounded up to a multiple of

16.


Note

The std430 layout in GLSL satisfies these rules.

334

14.6. Built-In Variables

Built-in variables are accessed in shaders by declaring a variable decorated with a BuiltIn

decoration. The meaning of each BuiltIn decoration is as follows. In the remainder of this section,

the name of a built-in is used interchangeably with a term equivalent to a variable decorated with

that particular built-in. Built-ins that represent integer values can be declared as either signed or

unsigned 32-bit integers.

ClipDistance

Decorating a variable with the ClipDistance built-in decoration will make that variable contain

the mechanism for controlling user clipping. ClipDistance is an array such that the i
th

 element of

the array specifies the clip distance for plane i. A clip distance of 0 means the vertex is on the

plane, a positive distance means the vertex is inside the clip half-space, and a negative distance

means the point is outside the clip half-space.

The ClipDistance decoration must be used only within vertex, fragment, tessellation control,

tessellation evaluation, and geometry shaders.

In vertex shaders, any variable decorated with ClipDistance must be declared using the Output

storage class.

In fragment shaders, any variable decorated with ClipDistance must be declared using the Input

storage class.

In tessellation control, tessellation evaluation, or geometry shaders, any variable decorated with

ClipDistance must not be in a storage class other than Input or Output.

Any variable decorated with ClipDistance must be declared as an array of 32-bit floating-point

values.


Note

The array variable decorated with ClipDistance is explicitly sized by the shader.



Note

In the last vertex processing stage, these values will be linearly interpolated across

the primitive and the portion of the primitive with interpolated distances less than

0 will be considered outside the clip volume. If ClipDistance is then used by a

fragment shader, ClipDistance contains these linearly interpolated values.

CullDistance

Decorating a variable with the CullDistance built-in decoration will make that variable contain

the mechanism for controlling user culling. If any member of this array is assigned a negative

value for all vertices belonging to a primitive, then the primitive is discarded before

rasterization.

The CullDistance decoration must be used only within vertex, fragment, tessellation control,

tessellation evaluation, and geometry shaders.

In vertex shaders, any variable decorated with CullDistance must be declared using the Output

335

storage class.

In fragment shaders, any variable decorated with CullDistance must be declared using the Input

storage class.

In tessellation control, tessellation evaluation, or geometry shaders, any variable decorated with

CullDistance must not be declared in a storage class other than input or output.

Any variable decorated with CullDistance must be declared as an array of 32-bit floating-point

values.


Note

In fragment shaders, the values of the CullDistance array are linearly interpolated

across each primitive.



Note

If CullDistance decorates an input variable, that variable will contain the

corresponding value from the CullDistance decorated output variable from the

previous shader stage.

FragCoord

Decorating a variable with the FragCoord built-in decoration will make that variable contain the

framebuffer coordinate of the fragment being processed. The (x,y) coordinate (0,0) is

the upper left corner of the upper left pixel in the framebuffer.

When sample shading is enabled, the x and y components of FragCoord reflect the location of the

sample corresponding to the shader invocation.

When sample shading is not enabled, the x and y components of FragCoord reflect the location of

the center of the pixel, (0.5,0.5).

The z component of FragCoord is the interpolated depth value of the primitive.

The w component is the interpolated .

The FragCoord decoration must be used only within fragment shaders.

The variable decorated with FragCoord must be declared using the Input storage class.

The Centroid interpolation decoration is ignored, but allowed, on FragCoord.

The variable decorated with FragCoord must be declared as a four-component vector of 32-bit

floating-point values.

FragDepth

Decorating a variable with the FragDepth built-in decoration will make that variable contain the

new depth value for all samples covered by the fragment. This value will be used for depth

testing and, if the depth test passes, any subsequent write to the depth/stencil attachment.

To write to FragDepth, a shader must declare the DepthReplacing execution mode. If a shader

336

declares the DepthReplacing execution mode and there is an execution path through the shader

that does not set FragDepth, then the fragment’s depth value is undefined for executions of the

shader that take that path.

The FragDepth decoration must be used only within fragment shaders.

The variable decorated with FragDepth must be declared using the Output storage class.

The variable decorated with FragDepth must be declared as a scalar 32-bit floating-point value.

FrontFacing

Decorating a variable with the FrontFacing built-in decoration will make that variable contain

whether the fragment is front or back facing. This variable is non-zero if the current fragment is

considered to be part of a front-facing polygon primitive or of a non-polygon primitive and is

zero if the fragment is considered to be part of a back-facing polygon primitive.

The FrontFacing decoration must be used only within fragment shaders.

The variable decorated with FrontFacing must be declared using the Input storage class.

The variable decorated with FrontFacing must be declared as a boolean.

GlobalInvocationId

Decorating a variable with the GlobalInvocationId built-in decoration will make that variable

contain the location of the current invocation within the global workgroup. Each component is

equal to the index of the local workgroup multiplied by the size of the local workgroup plus

LocalInvocationId.

The GlobalInvocationId decoration must be used only within compute shaders.

The variable decorated with GlobalInvocationId must be declared using the Input storage class.

The variable decorated with GlobalInvocationId must be declared as a three-component vector

of 32-bit integers.

HelperInvocation

Decorating a variable with the HelperInvocation built-in decoration will make that variable

contain whether the current invocation is a helper invocation. This variable is non-zero if the

current fragment being shaded is a helper invocation and zero otherwise. A helper invocation is

an invocation of the shader that is produced to satisfy internal requirements such as the

generation of derivatives.

The HelperInvocation decoration must be used only within fragment shaders.

The variable decorated with HelperInvocation must be declared using the Input storage class.

The variable decorated with HelperInvocation must be declared as a boolean.


Note

It is very likely that a helper invocation will have a value of SampleMask fragment

shader input value that is zero.

337

InvocationId

Decorating a variable with the InvocationId built-in decoration will make that variable contain

the index of the current shader invocation in a geometry shader, or the index of the output

patch vertex in a tessellation control shader.

In a geometry shader, the index of the current shader invocation ranges from zero to the

number of instances declared in the shader minus one. If the instance count of the geometry

shader is one or is not specified, then InvocationId will be zero.

The InvocationId decoration must be used only within tessellation control and geometry

shaders.

The variable decorated with InvocationId must be declared using the Input storage class.

The variable decorated with InvocationId must be declared as a scalar 32-bit integer.

InstanceIndex

Decorating a variable with the InstanceIndex built-in decoration will make that variable contain

the index of the instance that is being processed by the current vertex shader invocation.

InstanceIndex begins at the firstInstance parameter to vkCmdDraw or vkCmdDrawIndexed or

at the firstInstance member of a structure consumed by vkCmdDrawIndirect or

vkCmdDrawIndexedIndirect.

The InstanceIndex decoration must be used only within vertex shaders.

The variable decorated with InstanceIndex must be declared using the Input storage class.

The variable decorated with InstanceIndex must be declared as a scalar 32-bit integer.

Layer

Decorating a variable with the Layer built-in decoration will make that variable contain the

select layer of a multi-layer framebuffer attachment.

In a geometry shader, any variable decorated with Layer can be written with the framebuffer

layer index to which the primitive produced by that shader will be directed.

If the last active vertex processing stage shader entry point’s interface does not include a

variable decorated with Layer, then the first layer is used. If a vertex processing stage shader

entry point’s interface includes a variable decorated with Layer, it must write the same value to

Layer for all output vertices of a given primitive.

The Layer decoration must be used only within geometry, and fragment shaders.

In a geometry shader, any variable decorated with Layer must be declared using the Output

storage class.

In a fragment shader, a variable decorated with Layer contains the layer index of the primitive

that the fragment invocation belongs to.

In a fragment shader, any variable decorated with Layer must be declared using the Input

storage class.

338

Any variable decorated with Layer must be declared as a scalar 32-bit integer.

LocalInvocationId

Decorating a variable with the LocalInvocationId built-in decoration will make that variable

contain the location of the current compute shader invocation within the local workgroup. Each

component ranges from zero through to the size of the workgroup in that dimension minus one.

The LocalInvocationId decoration must be used only within compute shaders.

The variable decorated with LocalInvocationId must be declared using the Input storage class.

The variable decorated with LocalInvocationId must be declared as a three-component vector of

32-bit integers.



Note

If the size of the workgroup in a particular dimension is one, then the

LocalInvocationId in that dimension will be zero. If the workgroup is effectively

two-dimensional, then LocalInvocationId.z will be zero. If the workgroup is

effectively one-dimensional, then both LocalInvocationId.y and LocalInvocationId.z

will be zero.

NumWorkgroups

Decorating a variable with the NumWorkgroups built-in decoration will make that variable contain

the number of local workgroups that are part of the dispatch that the invocation belongs to.

Each component is equal to the values of the workgroup count parameters passed into the

dispatch commands.

The NumWorkgroups decoration must be used only within compute shaders.

The variable decorated with NumWorkgroups must be declared using the Input storage class.

The variable decorated with NumWorkgroups must be declared as a three-component vector of 32-

bit integers.

PatchVertices

Decorating a variable with the PatchVertices built-in decoration will make that variable contain

the number of vertices in the input patch being processed by the shader. A single tessellation

control or tessellation evaluation shader can read patches of differing sizes, so the value of the

PatchVertices variable may differ between patches.

The PatchVertices decoration must be used only within tessellation control and tessellation

evaluation shaders.

The variable decorated with PatchVertices must be declared using the Input storage class.

The variable decorated with PatchVertices must be declared as a scalar 32-bit integer.

PointCoord

Decorating a variable with the PointCoord built-in decoration will make that variable contain the

coordinate of the current fragment within the point being rasterized, normalized to the size of

339

the point with origin in the upper left corner of the point, as described in Basic Point

Rasterization. If the primitive the fragment shader invocation belongs to is not a point, then the

variable decorated with PointCoord contains an undefined value.

The PointCoord decoration must be used only within fragment shaders.

The variable decorated with PointCoord must be declared using the Input storage class.

The variable decorated with PointCoord must be declared as two-component vector of 32-bit

floating-point values.


Note

Depending on how the point is rasterized, PointCoord may never reach (0,0) or

(1,1).

PointSize

Decorating a variable with the PointSize built-in decoration will make that variable contain the

size of point primitives. The value written to the variable decorated with PointSize by the last

vertex processing stage in the pipeline is used as the framebuffer-space size of points produced

by rasterization.

The PointSize decoration must be used only within vertex, tessellation control, tessellation

evaluation, and geometry shaders.

In a vertex shader, any variable decorated with PointSize must be declared using the Output

storage class.

In a tessellation control, tessellation evaluation, or geometry shader, any variable decorated

with PointSize must be declared using either the Input or Output storage class.

Any variable decorated with PointSize must be declared as a scalar 32-bit floating-point value.



Note

When PointSize decorates a variable in the Input storage class, it contains the data

written to the output variable decorated with PointSize from the previous shader

stage.

Position

Decorating a variable with the Position built-in decoration will make that variable contain the

position of the current vertex. In the last vertex processing stage, the value of the variable

decorated with Position is used in subsequent primitive assembly, clipping, and rasterization

operations.

The Position decoration must be used only within vertex, tessellation control, tessellation

evaluation, and geometry shaders.

In a vertex shader, any variable decorated with Position must be declared using the Output

storage class.

In a tessellation control, tessellation evaluation, or geometry shader, any variable decorated

340

with Position must not be declared in a storage class other than Input or Output.

Any variable decorated with Position must be declared as a four-component vector of 32-bit

floating-point values.



Note

When Position decorates a variable in the Input storage class, it contains the data

written to the output variable decorated with Position from the previous shader

stage.

PrimitiveId

Decorating a variable with the PrimitiveId built-in decoration will make that variable contain

the index of the current primitive.

In tessellation control and tessellation evaluation shaders, it will contain the index of the patch

within the current set of rendering primitives that correspond to the shader invocation.

In a geometry shader, it will contain the number of primitives presented as input to the shader

since the current set of rendering primitives was started.

In a fragment shader, it will contain the primitive index written by the geometry shader if a

geometry shader is present, or with the value that would have been presented as input to the

geometry shader had it been present.

If a geometry shader is present and the fragment shader reads from an input variable decorated

with PrimitiveId, then the geometry shader must write to an output variable decorated with

PrimitiveId in all execution paths.

The PrimitiveId decoration must be used only within fragment, tessellation control, tessellation

evaluation, and geometry shaders.

In a tessellation control or tessellation evaluation shader, any variable decorated with

PrimitiveId must be declared using the Output storage class.

In a geometry shader, any variable decorated with PrimitiveId must be declared using either

the Input or Output storage class.

In a fragment shader, any variable decorated with PrimitiveId must be declared using the Input

storage class, and either the Geometry or Tessellation capability must also be declared.

Any variable decorated with PrimitiveId must be declared as a scalar 32-bit integer.



Note

When the PrimitiveId decoration is applied to an output variable in the geometry

shader, the resulting value is seen through the PrimitiveId decorated input

variable in the fragment shader.

SampleId

Decorating a variable with the SampleId built-in decoration will make that variable contain the

zero-based index of the sample the invocation corresponds to. SampleId ranges from zero to the

341

number of samples in the framebuffer minus one. If a fragment shader entry point’s interface

includes an input variable decorated with SampleId, per-sample shading is enabled for draws

that use that fragment shader.

The SampleId decoration must be used only within fragment shaders.

The variable decorated with SampleId must be declared using the Input storage class.

The variable decorated with SampleId must be declared as a scalar 32-bit integer.

SampleMask

Decorating a variable with the SampleMask built-in decoration will make any variable contain the

sample coverage mask for the current fragment shader invocation.

A variable in the Input storage class decorated with SampleMask will contain a bitmask of the set

of samples covered by the primitive generating the fragment during rasterization. It has a

sample bit set if and only if the sample is considered covered for this fragment shader

invocation. SampleMask[] is an array of integers. Bits are mapped to samples in a manner where

bit B of mask M (SampleMask[M]) corresponds to sample 32 × M + B.

When state specifies multiple fragment shader invocations for a given fragment, the sample

mask for any single fragment shader invocation specifies the subset of the covered samples for

the fragment that correspond to the invocation. In this case, the bit corresponding to each

covered sample will be set in exactly one fragment shader invocation.

A variable in the Output storage class decorated with SampleMask is an array of integers forming a

bit array in a manner similar an input variable decorated with SampleMask, but where each bit

represents coverage as computed by the shader. Modifying the sample mask by writing zero to a

bit of SampleMask causes the sample to be considered uncovered. However, setting sample mask

bits to one will never enable samples not covered by the original primitive. If the fragment

shader is being evaluated at any frequency other than per-fragment, bits of the sample mask not

corresponding to the current fragment shader invocation are ignored. This array must be sized

in the fragment shader either implicitly or explicitly, to be no larger than the implementation-

dependent maximum sample-mask (as an array of 32-bit elements), determined by the

maximum number of samples. If a fragment shader entry point’s interface includes an output

variable decorated with SampleMask, the sample mask will be undefined for any array elements of

any fragment shader invocations that fail to assign a value. If a fragment shader entry point’s

interface does not include an output variable decorated with SampleMask, the sample mask has no

effect on the processing of a fragment.

The SampleMask decoration must be used only within fragment shaders.

Any variable decorated with SampleMask must be declared using either the Input or Output

storage class.

Any variable decorated with SampleMask must be declared as an array of 32-bit integers.

SamplePosition

Decorating a variable with the SamplePosition built-in decoration will make that variable contain

the sub-pixel position of the sample being shaded. The top left of the pixel is considered to be at

342

coordinate (0,0) and the bottom right of the pixel is considered to be at coordinate (1,1). If a

fragment shader entry point’s interface includes an input variable decorated with

SamplePosition, per-sample shading is enabled for draws that use that fragment shader.

The SamplePosition decoration must be used only within fragment shaders.

The variable decorated with SamplePosition must be declared using the Input storage class.

The variable decorated with SamplePosition must be declared as a two-component vector of 32-

bit floating-point values.

TessCoord

Decorating a variable with the TessCoord built-in decoration will make that variable contain the

three-dimensional (u,v,w) barycentric coordinate of the tessellated vertex within the patch. u, v,

and w are in the range [0,1] and vary linearly across the primitive being subdivided. For the

tessellation modes of Quads or IsoLines, the third component is always zero.

The TessCoord decoration must be used only within tessellation evaluation shaders.

The variable decorated with TessCoord must be declared using the Input storage class.

The variable decorated with TessCoord must be declared as three-component vector of 32-bit

floating-point values.

TessLevelOuter

Decorating a variable with the TessLevelOuter built-in decoration will make that variable contain

the outer tessellation levels for the current patch.

In tessellation control shaders, the variable decorated with TessLevelOuter can be written to

which controls the tessellation factors for the resulting patch. These values are used by the

tessellator to control primitive tessellation and can be read by tessellation evaluation shaders.

In tessellation evaluation shaders, the variable decorated with TessLevelOuter can read the

values written by the tessellation control shader.

The TessLevelOuter decoration must be used only within tessellation control and tessellation

evaluation shaders.

In a tessellation control shader, any variable decorated with TessLevelOuter must be declared

using the Output storage class.

In a tessellation evaluation shader, any variable decorated with TessLevelOuter must be

declared using the Input storage class.

Any variable decorated with TessLevelOuter must be declared as an array of size four,

containing 32-bit floating-point values.

TessLevelInner

Decorating a variable with the TessLevelInner built-in decoration will make that variable contain

the inner tessellation levels for the current patch.

In tessellation control shaders, the variable decorated with TessLevelInner can be written to,

343

which controls the tessellation factors for the resulting patch. These values are used by the

tessellator to control primitive tessellation and can be read by tessellation evaluation shaders.

In tessellation evaluation shaders, the variable decorated with TessLevelInner can read the

values written by the tessellation control shader.

The TessLevelInner decoration must be used only within tessellation control and tessellation

evaluation shaders.

In a tessellation control shader, any variable decorated with TessLevelInner must be declared

using the Output storage class.

In a tessellation evaluation shader, any variable decorated with TessLevelInner must be

declared using the Input storage class.

Any variable decorated with TessLevelInner must be declared as an array of size two, containing

32-bit floating-point values.

VertexIndex

Decorating a variable with the VertexIndex built-in decoration will make that variable contain

the index of the vertex that is being processed by the current vertex shader invocation. For non-

indexed draws, this variable begins at the firstVertex parameter to vkCmdDraw or the

firstVertex member of a structure consumed by vkCmdDrawIndirect and increments by one for

each vertex in the draw. For indexed draws, its value is the content of the index buffer for the

vertex plus the vertexOffset parameter to vkCmdDrawIndexed or the vertexOffset member of

the structure consumed by vkCmdDrawIndexedIndirect.

The VertexIndex decoration must be used only within vertex shaders.

The variable decorated with VertexIndex must be declared using the Input storage class.

The variable decorated with VertexIndex must be declared as a scalar 32-bit integer.


Note

VertexIndex starts at the same starting value for each instance.

ViewportIndex

Decorating a variable with the ViewportIndex built-in decoration will make that variable contain

the index of the viewport.

In a geometry shader, the variable decorated with ViewportIndex can be written to with the

viewport index to which the primitive produced by that shader will be directed.

The selected viewport index is used to select the viewport transform and scissor rectangle.

If the last active vertex processing stage shader entry point’s interface does not include a

variable decorated with ViewportIndex, then the first viewport is used. If a vertex processing

stage shader entry point’s interface includes a variable decorated with ViewportIndex, it must

write the same value to ViewportIndex for all output vertices of a given primitive.

The ViewportIndex decoration must be used only within geometry, and fragment shaders.

344

In a geometry shader, any variable decorated with ViewportIndex must be declared using the

Output storage class.

In a fragment shader, the variable decorated with ViewportIndex contains the viewport index of

the primitive that the fragment invocation belongs to.

In a fragment shader, any variable decorated with ViewportIndex must be declared using the

Input storage class.

Any variable decorated with ViewportIndex must be declared as a scalar 32-bit integer.

WorkgroupId

Decorating a variable with the WorkgroupId built-in decoration will make that variable contain

the global workgroup that the current invocation is a member of. Each component ranges from a

base value to a base + count value, based on the parameters passed into the dispatch commands.

The WorkgroupId decoration must be used only within compute shaders.

The variable decorated with WorkgroupId must be declared using the Input storage class.

The variable decorated with WorkgroupId must be declared as a three-component vector of 32-bit

integers.

WorkgroupSize

Decorating an object with the WorkgroupSize built-in decoration will make that object contain the

dimensions of a local workgroup. If an object is decorated with the WorkgroupSize decoration, this

must take precedence over any execution mode set for LocalSize.

The WorkgroupSize decoration must be used only within compute shaders.

The object decorated with WorkgroupSize must be a specialization constant or a constant.

The object decorated with WorkgroupSize must be declared as a three-component vector of 32-bit

integers.

345

Chapter 15. Image Operations

15.1. Image Operations Overview

Image Operations are steps performed by SPIR-V image instructions, where those instructions

which take an OpTypeImage (representing a VkImageView) or OpTypeSampledImage (representing a

(VkImageView, VkSampler) pair) and texel coordinates as operands, and return a value based on one or

more neighboring texture elements (texels) in the image.



Note

Texel is a term which is a combination of the words texture and element. Early

interactive computer graphics supported texture operations on textures, a small

subset of the image operations on images described here. The discrete samples

remain essentially equivalent, however, so we retain the historical term texel to

refer to them.

SPIR-V Image Instructions include the following functionality:

• OpImageSample* and OpImageSparseSample* read one or more neighboring texels of the image, and

filter the texel values based on the state of the sampler.

◦ Instructions with ImplicitLod in the name determine the level of detail used in the sampling

operation based on the coordinates used in neighboring fragments.

◦ Instructions with ExplicitLod in the name determine the level of detail used in the sampling

operation based on additional coordinates.

◦ Instructions with Proj in the name apply homogeneous projection to the coordinates.

• OpImageFetch and OpImageSparseFetch return a single texel of the image. No sampler is used.

• OpImage*Gather and OpImageSparse*Gather read neighboring texels and return a single

component of each.

• OpImageRead (and OpImageSparseRead) and OpImageWrite read and write, respectively, a texel in the

image. No sampler is used.

• Instructions with Dref in the name apply depth comparison on the texel values.

• Instructions with Sparse in the name additionally return a sparse residency code.

15.1.1. Texel Coordinate Systems

Images are addressed by texel coordinates. There are three texel coordinate systems:

• normalized texel coordinates [0.0, 1.0]

• unnormalized texel coordinates [0.0, width / height / depth)

• integer texel coordinates [0, width / height / depth)

SPIR-V OpImageFetch, OpImageSparseFetch, OpImageRead, OpImageSparseRead, and OpImageWrite

instructions use integer texel coordinates. Other image instructions can use either normalized or

346

unnormalized texel coordinates (selected by the unnormalizedCoordinates state of the sampler used

in the instruction), but there are limitations on what operations, image state, and sampler state is

supported. Normalized coordinates are logically converted to unnormalized as part of image

operations, and certain steps are only performed on normalized coordinates. The array layer

coordinate is always treated as unnormalized even when other coordinates are normalized.

Normalized texel coordinates are referred to as (s,t,r,q,a), with the coordinates having the following

meanings:

• s: Coordinate in the first dimension of an image.

• t: Coordinate in the second dimension of an image.

• r: Coordinate in the third dimension of an image.

◦ (s,t,r) are interpreted as a direction vector for Cube images.

• q: Fourth coordinate, for homogeneous (projective) coordinates.

• a: Coordinate for array layer.

The coordinates are extracted from the SPIR-V operand based on the dimensionality of the image

variable and type of instruction. For Proj instructions, the components are in order (s, [t,] [r,] q)

with t and r being conditionally present based on the Dim of the image. For non-Proj instructions,

the coordinates are (s [,t] [,r] [,a]), with t and r being conditionally present based on the Dim of the

image and a being conditionally present based on the Arrayed property of the image. Projective

image instructions are not supported on Arrayed images.

Unnormalized texel coordinates are referred to as (u,v,w,a), with the coordinates having the

following meanings:

• u: Coordinate in the first dimension of an image.

• v: Coordinate in the second dimension of an image.

• w: Coordinate in the third dimension of an image.

• a: Coordinate for array layer.

Only the u and v coordinates are directly extracted from the SPIR-V operand, because only 1D and

2D (non-Arrayed) dimensionalities support unnormalized coordinates. The components are in order

(u [,v]), with v being conditionally present when the dimensionality is 2D. When normalized

coordinates are converted to unnormalized coordinates, all four coordinates are used.

Integer texel coordinates are referred to as (i,j,k,l,n), and the first four in that order have the same

meanings as unnormalized texel coordinates. They are extracted from the SPIR-V operand in order

(i, [,j], [,k], [,l]), with j and k conditionally present based on the Dim of the image, and l conditionally

present based on the Arrayed property of the image. n is the sample index and is taken from the

Sample image operand.

For all coordinate types, unused coordinates are assigned a value of zero.

347

Figure 2. Texel Coordinate Systems

The Texel Coordinate Systems - For the example shown of an 8×4 texel two dimensional image.

• Normalized texel coordinates:

◦ The s coordinate goes from 0.0 to 1.0, left to right.

◦ The t coordinate goes from 0.0 to 1.0, top to bottom.

• Unnormalized texel coordinates:

◦ The u coordinate goes from -1.0 to 9.0, left to right. The u coordinate within the range 0.0 to

8.0 is within the image, otherwise it is within the border.

◦ The v coordinate goes from -1.0 to 5.0, top to bottom. The v coordinate within the range 0.0

to 4.0 is within the image, otherwise it is within the border.

• Integer texel coordinates:

◦ The i coordinate goes from -1 to 8, left to right. The i coordinate within the range 0 to 7

addresses texels within the image, otherwise it addresses a border texel.

◦ The j coordinate goes from -1 to 5, top to bottom. The j coordinate within the range 0 to 3

addresses texels within the image, otherwise it addresses a border texel.

• Also shown for linear filtering:

◦ Given the unnormalized coordinates (u,v), the four texels selected are i0j0, i1j0, i0j1, and i1j1.

◦ The weights α and β.

348

◦ Given the offset Δi and Δj, the four texels selected by the offset are i0j'0, i1j'0, i0j'1, and i1j'1.

Figure 3. Texel Coordinate Systems

The Texel Coordinate Systems - For the example shown of an 8×4 texel two dimensional image.

• Texel coordinates as above. Also shown for nearest filtering:

◦ Given the unnormalized coordinates (u,v), the texel selected is ij.

◦ Given the offset Δi and Δj, the texel selected by the offset is ij'.

15.2. Conversion Formulas

15.2.1. RGB to Shared Exponent Conversion

An RGB color (red, green, blue) is transformed to a shared exponent color (redshared, greenshared,

blueshared, expshared) as follows:

First, the components (red, green, blue) are clamped to (redclamped, greenclamped, blueclamped) as:

redclamped = max(0, min(sharedexpmax, red))

greenclamped = max(0, min(sharedexpmax, green))

349

blueclamped = max(0, min(sharedexpmax, blue))

Where:


Note

NaN, if supported, is handled as in IEEE 754-2008 minNum() and maxNum(). That is the

result is a NaN is mapped to zero.

The largest clamped component, maxclamped is determined:

maxclamped = max(redclamped, greenclamped, blueclamped)

A preliminary shared exponent exp' is computed:

The shared exponent expshared is computed:

Finally, three integer values in the range 0 to 2
N
 are computed:

15.2.2. Shared Exponent to RGB

A shared exponent color (redshared, greenshared, blueshared, expshared) is transformed to an RGB color (red,

green, blue) as follows:

350

Where:

N = 9 (number of mantissa bits per component)

B = 15 (exponent bias)

15.3. Texel Input Operations

Texel input instructions are SPIR-V image instructions that read from an image. Texel input

operations are a set of steps that are performed on state, coordinates, and texel values while

processing a texel input instruction, and which are common to some or all texel input instructions.

They include the following steps, which are performed in the listed order:

• Validation operations

◦ Instruction/Sampler/Image validation

◦ Coordinate validation

◦ Sparse validation

• Format conversion

• Texel replacement

• Depth comparison

• Conversion to RGBA

• Component swizzle

For texel input instructions involving multiple texels (for sampling or gathering), these steps are

applied for each texel that is used in the instruction. Depending on the type of image instruction,

other steps are conditionally performed between these steps or involving multiple coordinate or

texel values.

15.3.1. Texel Input Validation Operations

Texel input validation operations inspect instruction/image/sampler state or coordinates, and in

certain circumstances cause the texel value to be replaced or become undefined. There are a series

of validations that the texel undergoes.

Instruction/Sampler/Image Validation

There are a number of cases where a SPIR-V instruction can mismatch with the sampler, the image,

or both. There are a number of cases where the sampler can mismatch with the image. In such

cases the value of the texel returned is undefined.

These cases include:

• The sampler borderColor is an integer type and the image format is not one of the VkFormat

integer types or a stencil component of a depth/stencil format.

351

• The sampler borderColor is a float type and the image format is not one of the VkFormat float

types or a depth component of a depth/stencil format.

• The sampler borderColor is one of the opaque black colors (VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK

or VK_BORDER_COLOR_INT_OPAQUE_BLACK) and the image VkComponentSwizzle for any of the

VkComponentMapping components is not VK_COMPONENT_SWIZZLE_IDENTITY.

• If the instruction is OpImageRead or OpImageSparseRead and the

shaderStorageImageReadWithoutFormat feature is not enabled, or the instruction is OpImageWrite

and the shaderStorageImageWriteWithoutFormat feature is not enabled, then the SPIR-V Image

Format must be compatible with the image view’s format.

• The sampler unnormalizedCoordinates is VK_TRUE and any of the limitations of unnormalized

coordinates are violated.

• The SPIR-V instruction is one of the OpImage*Dref* instructions and the sampler compareEnable is
VK_FALSE

• The SPIR-V instruction is not one of the OpImage*Dref* instructions and the sampler

compareEnable is VK_TRUE

• The SPIR-V instruction is one of the OpImage*Dref* instructions and the image format is not one

of the depth/stencil formats with a depth component, or the image aspect is not

VK_IMAGE_ASPECT_DEPTH_BIT.

• The SPIR-V instruction’s image variable’s properties are not compatible with the image view:

◦ Rules for viewType:

▪ VK_IMAGE_VIEW_TYPE_1D must have Dim = 1D, Arrayed = 0, MS = 0.

▪ VK_IMAGE_VIEW_TYPE_2D must have Dim = 2D, Arrayed = 0.

▪ VK_IMAGE_VIEW_TYPE_3D must have Dim = 3D, Arrayed = 0, MS = 0.

▪ VK_IMAGE_VIEW_TYPE_CUBE must have Dim = Cube, Arrayed = 0, MS = 0.

▪ VK_IMAGE_VIEW_TYPE_1D_ARRAY must have Dim = 1D, Arrayed = 1, MS = 0.

▪ VK_IMAGE_VIEW_TYPE_2D_ARRAY must have Dim = 2D, Arrayed = 1.

▪ VK_IMAGE_VIEW_TYPE_CUBE_ARRAY must have Dim = Cube, Arrayed = 1, MS = 0.

◦ If the image was created with VkImageCreateInfo::samples equal to VK_SAMPLE_COUNT_1_BIT,

the instruction must have MS = 0.

◦ If the image was created with VkImageCreateInfo::samples not equal to

VK_SAMPLE_COUNT_1_BIT, the instruction must have MS = 1.

Integer Texel Coordinate Validation

Integer texel coordinates are validated against the size of the image level, and the number of layers

and number of samples in the image. For SPIR-V instructions that use integer texel coordinates, this

is performed directly on the integer coordinates. For instructions that use normalized or

unnormalized texel coordinates, this is performed on the coordinates that result after conversion to

integer texel coordinates.

If the integer texel coordinates do not satisfy all of the conditions

352

0 ≤ i < ws

0 ≤ j < hs

0 ≤ k < ds

0 ≤ l < layers

0 ≤ n < samples

where:

ws = width of the image level

hs = height of the image level

ds = depth of the image level

layers = number of layers in the image

samples = number of samples per texel in the image

then the texel fails integer texel coordinate validation.

There are four cases to consider:

1. Valid Texel Coordinates

◦ If the texel coordinates pass validation (that is, the coordinates lie within the image),

then the texel value comes from the value in image memory.

2. Border Texel

◦ If the texel coordinates fail validation, and

◦ If the read is the result of an image sample instruction or image gather instruction, and

◦ If the image is not a cube image,

then the texel is a border texel and texel replacement is performed.

3. Invalid Texel

◦ If the texel coordinates fail validation, and

◦ If the read is the result of an image fetch instruction, image read instruction, or atomic

instruction,

then the texel is an invalid texel and texel replacement is performed.

4. Cube Map Edge or Corner

353

Otherwise the texel coordinates lie on the borders along the edges and corners of a cube map

image, and Cube map edge handling is performed.

Cube Map Edge Handling

If the texel coordinates lie on the borders along the edges and corners of a cube map image, the

following steps are performed. Note that this only occurs when using VK_FILTER_LINEAR filtering

within a mip level, since VK_FILTER_NEAREST is treated as using

VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE.

• Cube Map Edge Texel

◦ If the texel lies along the border in either only i or only j

then the texel lies along an edge, so the coordinates (i,j) and the array layer l are transformed to

select the adjacent texel from the appropriate neighboring face.

• Cube Map Corner Texel

◦ If the texel lies along the border in both i and j

then the texel lies at a corner and there is no unique neighboring face from which to read that

texel. The texel should be replaced by the average of the three values of the adjacent texels in

each incident face. However, implementations may replace the cube map corner texel by other

methods, subject to the constraint that if the three available samples have the same value, the

replacement texel also has that value.

Sparse Validation

If the texel reads from an unbound region of a sparse image, the texel is a sparse unbound texel, and

processing continues with texel replacement.

15.3.2. Format Conversion

Texels undergo a format conversion from the VkFormat of the image view to a vector of either

floating point or signed or unsigned integer components, with the number of components based on

the number of components present in the format.

• Color formats have one, two, three, or four components, according to the format.

• Depth/stencil formats are one component. The depth or stencil component is selected by the

aspectMask of the image view.

Each component is converted based on its type and size (as defined in the Format Definition section

for each VkFormat), using the appropriate equations in 16-Bit Floating-Point Numbers, Unsigned

11-Bit Floating-Point Numbers, Unsigned 10-Bit Floating-Point Numbers, Fixed-Point Data

Conversion, and Shared Exponent to RGB. Signed integer components smaller than 32 bits are sign-

extended.

If the image format is sRGB, the color components are first converted as if they are UNORM, and

then sRGB to linear conversion is applied to the R, G, and B components as described in the

354

“KHR_DF_TRANSFER_SRGB” section of the Khronos Data Format Specification. The A component, if

present, is unchanged.

If the image view format is block-compressed, then the texel value is first decoded, then converted

based on the type and number of components defined by the compressed format.

15.3.3. Texel Replacement

A texel is replaced if it is one (and only one) of:

• a border texel,

• an invalid texel, or

• a sparse unbound texel.

Border texels are replaced with a value based on the image format and the borderColor of the

sampler. The border color is:

Table 15. Border Color B

Sampler borderColor Corresponding Border Color

VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK B = (0.0, 0.0, 0.0, 0.0)

VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK B = (0.0, 0.0, 0.0, 1.0)

VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE B = (1.0, 1.0, 1.0, 1.0)

VK_BORDER_COLOR_INT_TRANSPARENT_BLACK B = (0, 0, 0, 0)

VK_BORDER_COLOR_INT_OPAQUE_BLACK B = (0, 0, 0, 1)

VK_BORDER_COLOR_INT_OPAQUE_WHITE B = (1, 1, 1, 1)



Note

The names VK_BORDER_COLOR_*_TRANSPARENT_BLACK, VK_BORDER_COLOR_*_OPAQUE_BLACK,

and VK_BORDER_COLOR_*_OPAQUE_WHITE are meant to describe which components are

zeros and ones in the vocabulary of compositing, and are not meant to imply that

the numerical value of VK_BORDER_COLOR_INT_OPAQUE_WHITE is a saturating value for

integers.

This is substituted for the texel value by replacing the number of components in the image format

Table 16. Border Texel Components After Replacement

Texel Aspect or Format Component Assignment

Depth aspect D = Br

Stencil aspect S = Br

One component color format Cr = Br

Two component color format Crg = (Br,Bg)

Three component color format Crgb = (Br,Bg,Bb)

Four component color format Crgba = (Br,Bg,Bb,Ba)

355

If the read operation is from a buffer resource, and the robustBufferAccess feature is enabled, an

invalid texel is replaced as described here.

If the robustBufferAccess feature is not enabled, the value of an invalid texel is undefined.

If the VkPhysicalDeviceSparseProperties::residencyNonResidentStrict property is VK_TRUE, a sparse

unbound texel is replaced with 0 or 0.0 values for integer and floating-point components of the

image format, respectively.

If residencyNonResidentStrict is VK_FALSE, the read must be safe, but the value of the sparse

unbound texel is undefined.

15.3.4. Depth Compare Operation

If the image view has a depth/stencil format, the depth component is selected by the aspectMask, and

the operation is a Dref instruction, a depth comparison is performed. The value of the result D is 1.0

if the result of the compare operation is true, and 0.0 otherwise. The compare operation is selected

by the compareOp member of the sampler.

where, in the depth comparison:

Dref = shaderOp.Dref (from optional SPIR-V operand)

D (texel depth value)

15.3.5. Conversion to RGBA

The texel is expanded from one, two, or three to four components based on the image base color:

Table 17. Texel Color After Conversion To RGBA

Texel Aspect or Format RGBA Color

Depth aspect Crgba = (D,0,0,one)

Stencil aspect Crgba = (S,0,0,one)

One component color format Crgba = (Cr,0,0,one)

Two component color format Crgba = (Crg,0,one)

Three component color format Crgba = (Crgb,one)

Four component color format Crgba = Crgba

where one = 1.0f for floating-point formats and depth aspects, and one = 1 for integer formats and

356

stencil aspects.

15.3.6. Component Swizzle

All texel input instructions apply a swizzle based on the VkComponentSwizzle enums in the

components member of the VkImageViewCreateInfo structure for the image being read. The swizzle

can rearrange the components of the texel, or substitute zero and one for any components. It is

defined as follows for the R component, and operates similarly for the other components.

where:

For each component this is applied to, the VK_COMPONENT_SWIZZLE_IDENTITY swizzle selects the

corresponding component from Crgba.

If the border color is one of the VK_BORDER_COLOR_*_OPAQUE_BLACK enums and the

VkComponentSwizzle is not VK_COMPONENT_SWIZZLE_IDENTITY for all components (or the equivalent

identity mapping), the value of the texel after swizzle is undefined.

15.3.7. Sparse Residency

OpImageSparse* instructions return a structure which includes a residency code indicating whether

any texels accessed by the instruction are sparse unbound texels. This code can be interpreted by

the OpImageSparseTexelsResident instruction which converts the residency code to a boolean value.

15.4. Texel Output Operations

Texel output instructions are SPIR-V image instructions that write to an image. Texel output

operations are a set of steps that are performed on state, coordinates, and texel values while

processing a texel output instruction, and which are common to some or all texel output

instructions. They include the following steps, which are performed in the listed order:

• Validation operations

◦ Format validation

◦ Coordinate validation

357

◦ Sparse validation

• Texel output format conversion

15.4.1. Texel Output Validation Operations

Texel output validation operations inspect instruction/image state or coordinates, and in certain

circumstances cause the write to have no effect. There are a series of validations that the texel

undergoes.

Texel Format Validation

If the image format of the OpTypeImage is not compatible with the VkImageView’s format, the effect of

the write on the image view’s memory is undefined, but the write must not access memory outside

of the image view.

15.4.2. Integer Texel Coordinate Validation

The integer texel coordinates are validated according to the same rules as for texel input coordinate

validation.

If the texel fails integer texel coordinate validation, then the write has no effect.

15.4.3. Sparse Texel Operation

If the texel attempts to write to an unbound region of a sparse image, the texel is a sparse unbound

texel. In such a case, if the VkPhysicalDeviceSparseProperties::residencyNonResidentStrict property

is VK_TRUE, the sparse unbound texel write has no effect. If residencyNonResidentStrict is VK_FALSE,

the effect of the write is undefined but must be safe. In addition, the write may have a side effect

that is visible to other image instructions, but must not be written to any device memory allocation.

15.4.4. Texel Output Format Conversion

Texels undergo a format conversion from the floating point, signed, or unsigned integer type of the

texel data to the VkFormat of the image view. Any unused components are ignored.

Each component is converted based on its type and size (as defined in the Format Definition section

for each VkFormat), using the appropriate equations in 16-Bit Floating-Point Numbers and Fixed-

Point Data Conversion.

15.5. Derivative Operations

SPIR-V derivative instructions include OpDPdx, OpDPdy, OpDPdxFine, OpDPdyFine, OpDPdxCoarse, and

OpDPdyCoarse. Derivative instructions are only available in a fragment shader.

358

Figure 4. Implicit Derivatives

Derivatives are computed as if there is a 2×2 neighborhood of fragments for each fragment shader

invocation. These neighboring fragments are used to compute derivatives with the assumption that

the values of P in the neighborhood are piecewise linear. It is further assumed that the values of P

in the neighborhood are locally continuous, therefore derivatives in non-uniform control flow are

undefined.

The Fine derivative instructions must return the values above, for a group of fragments in a 2×2

neighborhood. Coarse derivatives may return only two values. In this case, the values should be:

359

OpDPdx and OpDPdy must return the same result as either OpDPdxFine or OpDPdxCoarse and either

OpDPdyFine or OpDPdyCoarse, respectively. Implementations must make the same choice of either

coarse or fine for both OpDPdx and OpDPdy, and implementations should make the choice that is

more efficient to compute.

15.6. Normalized Texel Coordinate Operations

If the image sampler instruction provides normalized texel coordinates, some of the following

operations are performed.

15.6.1. Projection Operation

For Proj image operations, the normalized texel coordinates (s,t,r,q,a) and (if present) the Dref

coordinate are transformed as follows:

15.6.2. Derivative Image Operations

Derivatives are used for level-of-detail selection. These derivatives are either implicit (in an

ImplicitLod image instruction in a fragment shader) or explicit (provided explicitly by shader to the

image instruction in any shader).

For implicit derivatives image instructions, the derivatives of texel coordinates are calculated in the

same manner as derivative operations above. That is:

Partial derivatives not defined above for certain image dimensionalities are set to zero.

For explicit level-of-detail image instructions, if the optional SPIR-V operand Grad is provided, then

the operand values are used for the derivatives. The number of components present in each

derivative for a given image dimensionality matches the number of partial derivatives computed

above.

If the optional SPIR-V operand Lod is provided, then derivatives are set to zero, the cube map

360

derivative transformation is skipped, and the scale factor operation is skipped. Instead, the floating

point scalar coordinate is directly assigned to λbase as described in Level-of-Detail Operation.

15.6.3. Cube Map Face Selection and Transformations

For cube map image instructions, the (s,t,r) coordinates are treated as a direction vector (rx,ry,rz).

The direction vector is used to select a cube map face. The direction vector is transformed to a per-

face texel coordinate system (sface,tface), The direction vector is also used to transform the derivatives

to per-face derivatives.

15.6.4. Cube Map Face Selection

The direction vector selects one of the cube map’s faces based on the largest magnitude coordinate

direction (the major axis direction). Since two or more coordinates can have identical magnitude,

the implementation must have rules to disambiguate this situation.

The rules should have as the first rule that rz wins over ry and rx, and the second rule that ry wins

over rx. An implementation may choose other rules, but the rules must be deterministic and

depend only on (rx,ry,rz).

The layer number (corresponding to a cube map face), the coordinate selections for sc, tc, rc, and the

selection of derivatives, are determined by the major axis direction as specified in the following

two tables.

Table 18. Cube map face and coordinate selection

Major

Axis

Direction

Layer

Number

Cube Map

Face

sc tc rc

+rx 0 Positive X -rz -ry rx

-rx 1 Negative X +rz -ry rx

+ry 2 Positive Y +rx +rz ry

-ry 3 Negative Y +rx -rz ry

+rz 4 Positive Z +rx -ry rz

-rz 5 Negative Z -rx -ry rz

Table 19. Cube map derivative selection

Major

Axis

Directio

n

∂sc / ∂x ∂sc / ∂y ∂tc / ∂x ∂tc / ∂y ∂rc / ∂x ∂rc / ∂y

+rx -∂rz / ∂x -∂rz / ∂y -∂ry / ∂x -∂ry / ∂y +∂rx / ∂x +∂rx / ∂y

-rx +∂rz / ∂x +∂rz / ∂y -∂ry / ∂x -∂ry / ∂y -∂rx / ∂x -∂rx / ∂y

+ry +∂rx / ∂x +∂rx / ∂y +∂rz / ∂x +∂rz / ∂y +∂ry / ∂x +∂ry / ∂y

-ry +∂rx / ∂x +∂rx / ∂y -∂rz / ∂x -∂rz / ∂y -∂ry / ∂x -∂ry / ∂y

+rz +∂rx / ∂x +∂rx / ∂y -∂ry / ∂x -∂ry / ∂y +∂rz / ∂x +∂rz / ∂y

361

Major

Axis

Directio

n

∂sc / ∂x ∂sc / ∂y ∂tc / ∂x ∂tc / ∂y ∂rc / ∂x ∂rc / ∂y

-rz -∂rx / ∂x -∂rx / ∂y -∂ry / ∂x -∂ry / ∂y -∂rz / ∂x -∂rz / ∂y

15.6.5. Cube Map Coordinate Transformation

15.6.6. Cube Map Derivative Transformation

15.6.7. Scale Factor Operation, Level-of-Detail Operation and Image Level(s)

Selection

Level-of-detail selection can be either explicit (provided explicitly by the image instruction) or

implicit (determined from a scale factor calculated from the derivatives).

Scale Factor Operation

The magnitude of the derivatives are calculated by:

mux = |∂s/∂x| × wbase

mvx = |∂t/∂x| × hbase

mwx = |∂r/∂x| × dbase

muy = |∂s/∂y| × wbase

mvy = |∂t/∂y| × hbase

362

mwy = |∂r/∂y| × dbase

where:

∂t/∂x = ∂t/∂y = 0 (for 1D images)

∂r/∂x = ∂r/∂y = 0 (for 1D, 2D or Cube images)

and

wbase = image.w

hbase = image.h

dbase = image.d

(for the baseMipLevel, from the image descriptor).

A point sampled in screen space has an elliptical footprint in texture space. The minimum and

maximum scale factors (ρmin, ρmax) should be the minor and major axes of this ellipse.

The scale factors ρx and ρy, calculated from the magnitude of the derivatives in x and y, are used to

compute the minimum and maximum scale factors.

ρx and ρy may be approximated with functions fx and fy, subject to the following constraints:

The minimum and maximum scale factors (ρmin,ρmax) are determined by:

ρmax = max(ρx, ρy)

ρmin = min(ρx, ρy)

The sampling rate is determined by:

where:

sampler.maxAniso = maxAnisotropy (from sampler descriptor)

limits.maxAniso = maxSamplerAnisotropy (from physical device limits)

maxAniso = min(sampler.maxAniso, limits.maxAniso)

363

If ρmax = ρmin = 0, then all the partial derivatives are zero, the fragment’s footprint in texel space is a

point, and N should be treated as 1. If ρmax ≠ 0 and ρmin = 0 then all partial derivatives along one axis

are zero, the fragment’s footprint in texel space is a line segment, and N should be treated as

maxAniso. However, anytime the footprint is small in texel space the implementation may use a

smaller value of N, even when ρmin is zero or close to zero.

An implementation may round N up to the nearest supported sampling rate.

If N = 1, sampling is isotropic. If N > 1, sampling is anisotropic.

Level-of-Detail Operation

The level-of-detail parameter λ is computed as follows:

where:

and maxSamplerLodBias is the value of the VkPhysicalDeviceLimits feature maxSamplerLodBias.

Image Level(s) Selection

The image level(s) d, dhi, and dlo which texels are read from are selected based on the level-of-detail

parameter, as follows. If the sampler’s mipmapMode is VK_SAMPLER_MIPMAP_MODE_NEAREST, then level d is

used:

where:

and

364

levelbase = baseMipLevel

q = levelbase + levelCount - 1

baseMipLevel and levelCount are taken from the subresourceRange of the image view.

If the sampler’s mipmapMode is VK_SAMPLER_MIPMAP_MODE_LINEAR, two neighboring levels are selected:

δ is the fractional value used for linear filtering between levels.

15.6.8. (s,t,r,q,a) to (u,v,w,a) Transformation

The normalized texel coordinates are scaled by the image level dimensions and the array layer is

selected. This transformation is performed once for each level (d or dhi and dlo) used in filtering.

Operations then proceed to Unnormalized Texel Coordinate Operations.

15.7. Unnormalized Texel Coordinate Operations

15.7.1. (u,v,w,a) to (i,j,k,l,n) Transformation And Array Layer Selection

The unnormalized texel coordinates are transformed to integer texel coordinates relative to the

selected mipmap level.

The layer index l is computed as:

l = clamp(RNE(a), 0, layerCount - 1) + baseArrayLayer

where layerCount is the number of layers in the image subresource range of the image view,

baseArrayLayer is the first layer from the subresource range, and where:

The sample index n is assigned the value zero.

365

Nearest filtering (VK_FILTER_NEAREST) computes the integer texel coordinates that the unnormalized

coordinates lie within:

Linear filtering (VK_FILTER_LINEAR) computes a set of neighboring coordinates which bound the

unnormalized coordinates. The integer texel coordinates are combinations of i0 or i1, j0 or j1, k0 or k1,

as well as weights α, β, and γ.

If the image instruction includes a ConstOffset operand, the constant offsets (Δi, Δj, Δk) are added to

(i,j,k) components of the integer texel coordinates.

15.8. Image Sample Operations

15.8.1. Wrapping Operation

Cube images ignore the wrap modes specified in the sampler. Instead, if VK_FILTER_NEAREST is used

within a mip level then VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE is used, and if VK_FILTER_LINEAR is

used within a mip level then sampling at the edges is performed as described earlier in the Cube

map edge handling section.

The first integer texel coordinate i is transformed based on the addressModeU parameter of the

sampler.

where:

j (for 2D and Cube image) and k (for 3D image) are similarly transformed based on the addressModeV

and addressModeW parameters of the sampler, respectively.

366

15.8.2. Texel Gathering

SPIR-V instructions with Gather in the name return a vector derived from a 2×2 rectangular region

of texels in the base level of the image view. The rules for the VK_FILTER_LINEAR minification filter

are applied to identify the four selected texels. Each texel is then converted to an RGBA value

according to conversion to RGBA and then swizzled. A four-component vector is then assembled by

taking the component indicated by the Component value in the instruction from the swizzled color

value of the four texels:

where:

15.8.3. Texel Filtering

If λ is less than or equal to zero, the texture is said to be magnified, and the filter mode within a mip

level is selected by the magFilter in the sampler. If λ is greater than zero, the texture is said to be

minified, and the filter mode within a mip level is selected by the minFilter in the sampler.

Within a mip level, VK_FILTER_NEAREST filtering selects a single value using the (i, j, k) texel

coordinates, with all texels taken from layer l.

Within a mip level, VK_FILTER_LINEAR filtering combines 8 (for 3D), 4 (for 2D or Cube), or 2 (for 1D)

texel values, using the weights computed earlier:

367

The function reduce() is defined to operate on pairs of weights and texel values as follows. When

using linear or anisotropic filtering, the values of multiple texels are combined using a weighted

average to produce a filtered texture value.

Finally, mipmap filtering either selects a value from one mip level or computes a weighted average

between neighboring mip levels:

15.8.4. Texel Anisotropic Filtering

Anisotropic filtering is enabled by the anisotropyEnable in the sampler. When enabled, the image

filtering scheme accounts for a degree of anisotropy.

The particular scheme for anisotropic texture filtering is implementation dependent.

Implementations should consider the magFilter, minFilter and mipmapMode of the sampler to control

the specifics of the anisotropic filtering scheme used. In addition, implementations should consider

minLod and maxLod of the sampler.

The following describes one particular approach to implementing anisotropic filtering for the 2D

Image case, implementations may choose other methods:

Given a magFilter, minFilter of VK_FILTER_LINEAR and a mipmapMode of

VK_SAMPLER_MIPMAP_MODE_NEAREST:

Instead of a single isotropic sample, N isotropic samples are be sampled within the image footprint

of the image level d to approximate an anisotropic filter. The sum τ2Daniso is defined using the single

isotropic τ2D(u,v) at level d.

15.9. Image Operation Steps

Each step described in this chapter is performed by a subset of the image instructions:

• Texel Input Validation Operations, Format Conversion, Texel Replacement, Conversion to RGBA,

and Component Swizzle: Performed by all instructions except OpImageWrite.

• Depth Comparison: Performed by OpImage*Dref instructions.

368

• All Texel output operations: Performed by OpImageWrite.

• Projection: Performed by all OpImage*Proj instructions.

• Derivative Image Operations, Cube Map Operations, Scale Factor Operation, Level-of-Detail

Operation and Image Level(s) Selection, and Texel Anisotropic Filtering: Performed by all

OpImageSample* and OpImageSparseSample* instructions.

• (s,t,r,q,a) to (u,v,w,a) Transformation, Wrapping, and (u,v,w,a) to (i,j,k,l,n) Transformation And

Array Layer Selection: Performed by all OpImageSample, OpImageSparseSample, and OpImage*Gather

instructions.

• Texel Gathering: Performed by OpImage*Gather instructions.

• Texel Filtering: Performed by all OpImageSample* and OpImageSparseSample* instructions.

• Sparse Residency: Performed by all OpImageSparse* instructions.

369

Chapter 16. Queries

Queries provide a mechanism to return information about the processing of a sequence of Vulkan

commands. Query operations are asynchronous, and as such, their results are not returned

immediately. Instead, their results, and their availability status, are stored in a Query Pool. The

state of these queries can be read back on the host, or copied to a buffer object on the device.

The supported query types are Occlusion Queries, Pipeline Statistics Queries, and Timestamp

Queries.

16.1. Query Pools

Queries are managed using query pool objects. Each query pool is a collection of a specific number

of queries of a particular type.

Query pools are represented by VkQueryPool handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkQueryPool)

To create a query pool, call:

VkResult vkCreateQueryPool(

 VkDevice device,

 const VkQueryPoolCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkQueryPool* pQueryPool);

• device is the logical device that creates the query pool.

• pCreateInfo is a pointer to an instance of the VkQueryPoolCreateInfo structure containing the

number and type of queries to be managed by the pool.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pQueryPool is a pointer to a VkQueryPool handle in which the resulting query pool object is

returned.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkQueryPoolCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• pQueryPool must be a pointer to a VkQueryPool handle

370

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkQueryPoolCreateInfo structure is defined as:

typedef struct VkQueryPoolCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkQueryPoolCreateFlags flags;

 VkQueryType queryType;

 uint32_t queryCount;

 VkQueryPipelineStatisticFlags pipelineStatistics;

} VkQueryPoolCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• queryType is a VkQueryType value specifying the type of queries managed by the pool.

• queryCount is the number of queries managed by the pool.

• pipelineStatistics is a bitmask of VkQueryPipelineStatisticFlagBits specifying which counters

will be returned in queries on the new pool, as described below in Pipeline Statistics Queries.

pipelineStatistics is ignored if queryType is not VK_QUERY_TYPE_PIPELINE_STATISTICS.

Valid Usage

• If the pipeline statistics queries feature is not enabled, queryType must not be
VK_QUERY_TYPE_PIPELINE_STATISTICS

• If queryType is VK_QUERY_TYPE_PIPELINE_STATISTICS, pipelineStatistics must be a valid

combination of VkQueryPipelineStatisticFlagBits values

371

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO

• pNext must be NULL

• flags must be 0

• queryType must be a valid VkQueryType value

To destroy a query pool, call:

void vkDestroyQueryPool(

 VkDevice device,

 VkQueryPool queryPool,

 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the query pool.

• queryPool is the query pool to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• All submitted commands that refer to queryPool must have completed execution

• If VkAllocationCallbacks were provided when queryPool was created, a compatible set of

callbacks must be provided here

• If no VkAllocationCallbacks were provided when queryPool was created, pAllocator must

be NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If queryPool is not VK_NULL_HANDLE, queryPool must be a valid VkQueryPool handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks

structure

• If queryPool is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to queryPool must be externally synchronized

372

Possible values of VkQueryPoolCreateInfo::queryType, specifying the type of queries managed by the

pool, are:

typedef enum VkQueryType {

 VK_QUERY_TYPE_OCCLUSION = 0,

 VK_QUERY_TYPE_PIPELINE_STATISTICS = 1,

 VK_QUERY_TYPE_TIMESTAMP = 2,

} VkQueryType;

• VK_QUERY_TYPE_OCCLUSION specifies an occlusion query.

• VK_QUERY_TYPE_PIPELINE_STATISTICS specifies a pipeline statistics query.

• VK_QUERY_TYPE_TIMESTAMP specifies a timestamp query.

16.2. Query Operation

The operation of queries is controlled by the commands vkCmdBeginQuery, vkCmdEndQuery,

vkCmdResetQueryPool, vkCmdCopyQueryPoolResults, and vkCmdWriteTimestamp.

In order for a VkCommandBuffer to record query management commands, the queue family for which

its VkCommandPool was created must support the appropriate type of operations (graphics, compute)

suitable for the query type of a given query pool.

Each query in a query pool has a status that is either unavailable or available, and also has state to

store the numerical results of a query operation of the type requested when the query pool was

created. Resetting a query via vkCmdResetQueryPool sets the status to unavailable and makes the

numerical results undefined. Performing a query operation with vkCmdBeginQuery and

vkCmdEndQuery changes the status to available when the query finishes, and updates the

numerical results. Both the availability status and numerical results are retrieved by calling either

vkGetQueryPoolResults or vkCmdCopyQueryPoolResults.

Query commands, for the same query and submitted to the same queue, execute in their entirety in

submission order, relative to each other. In effect there is an implicit execution dependency from

each such query command to all query command previously submitted to the same queue. There is

one significant exception to this; if the flags parameter of vkCmdCopyQueryPoolResults does not

include VK_QUERY_RESULT_WAIT_BIT, execution of vkCmdCopyQueryPoolResults may happen-before

the results of vkCmdEndQuery are available.

After query pool creation, each query is in an undefined state and must be reset prior to use.

Queries must also be reset between uses. Using a query that has not been reset will result in

undefined behavior.

To reset a range of queries in a query pool, call:

373

void vkCmdResetQueryPool(

 VkCommandBuffer commandBuffer,

 VkQueryPool queryPool,

 uint32_t firstQuery,

 uint32_t queryCount);

• commandBuffer is the command buffer into which this command will be recorded.

• queryPool is the handle of the query pool managing the queries being reset.

• firstQuery is the initial query index to reset.

• queryCount is the number of queries to reset.

When executed on a queue, this command sets the status of query indices [firstQuery, firstQuery +

queryCount - 1] to unavailable.

Valid Usage

• firstQuery must be less than the number of queries in queryPool

• The sum of firstQuery and queryCount must be less than or equal to the number of queries

in queryPool

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• queryPool must be a valid VkQueryPool handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics, or

compute operations

• This command must only be called outside of a render pass instance

• Both of commandBuffer, and queryPool must have been created, allocated, or retrieved from

the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

374

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Outside Graphics

compute

Once queries are reset and ready for use, query commands can be issued to a command buffer.

Occlusion queries and pipeline statistics queries count events - drawn samples and pipeline stage

invocations, respectively - resulting from commands that are recorded between a

vkCmdBeginQuery command and a vkCmdEndQuery command within a specified command

buffer, effectively scoping a set of drawing and/or compute commands. Timestamp queries write

timestamps to a query pool.

A query must begin and end in the same command buffer, although if it is a primary command

buffer, and the inherited queries feature is enabled, it can execute secondary command buffers

during the query operation. For a secondary command buffer to be executed while a query is

active, it must set the occlusionQueryEnable, queryFlags, and/or pipelineStatistics members of

VkCommandBufferInheritanceInfo to conservative values, as described in the Command Buffer

Recording section. A query must either begin and end inside the same subpass of a render pass

instance, or must both begin and end outside of a render pass instance (i.e. contain entire render

pass instances).

To begin a query, call:

void vkCmdBeginQuery(

 VkCommandBuffer commandBuffer,

 VkQueryPool queryPool,

 uint32_t query,

 VkQueryControlFlags flags);

• commandBuffer is the command buffer into which this command will be recorded.

• queryPool is the query pool that will manage the results of the query.

• query is the query index within the query pool that will contain the results.

• flags is a bitmask of VkQueryControlFlagBits specifying constraints on the types of queries that

can be performed.

If the queryType of the pool is VK_QUERY_TYPE_OCCLUSION and flags contains

VK_QUERY_CONTROL_PRECISE_BIT, an implementation must return a result that matches the actual

number of samples passed. This is described in more detail in Occlusion Queries.

After beginning a query, that query is considered active within the command buffer it was called in

until that same query is ended. Queries active in a primary command buffer when secondary

command buffers are executed are considered active for those secondary command buffers.

375

Valid Usage

• The query identified by queryPool and query must currently not be active

• The query identified by queryPool and query must be unavailable

• If the precise occlusion queries feature is not enabled, or the queryType used to create

queryPool was not VK_QUERY_TYPE_OCCLUSION, flags must not contain
VK_QUERY_CONTROL_PRECISE_BIT

• queryPool must have been created with a queryType that differs from that of any other

queries that have been made active, and are currently still active within commandBuffer

• query must be less than the number of queries in queryPool

• If the queryType used to create queryPool was VK_QUERY_TYPE_OCCLUSION, the VkCommandPool

that commandBuffer was allocated from must support graphics operations

• If the queryType used to create queryPool was VK_QUERY_TYPE_PIPELINE_STATISTICS and any

of the pipelineStatistics indicate graphics operations, the VkCommandPool that

commandBuffer was allocated from must support graphics operations

• If the queryType used to create queryPool was VK_QUERY_TYPE_PIPELINE_STATISTICS and any

of the pipelineStatistics indicate compute operations, the VkCommandPool that

commandBuffer was allocated from must support compute operations

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• queryPool must be a valid VkQueryPool handle

• flags must be a valid combination of VkQueryControlFlagBits values

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics, or

compute operations

• Both of commandBuffer, and queryPool must have been created, allocated, or retrieved from

the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

376

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Both Graphics

compute

Bits which can be set in vkCmdBeginQuery::flags, specifying constraints on the types of queries

that can be performed, are:

typedef enum VkQueryControlFlagBits {

 VK_QUERY_CONTROL_PRECISE_BIT = 0x00000001,

} VkQueryControlFlagBits;

• VK_QUERY_CONTROL_PRECISE_BIT specifies the precision of occlusion queries.

To end a query after the set of desired draw or dispatch commands is executed, call:

void vkCmdEndQuery(

 VkCommandBuffer commandBuffer,

 VkQueryPool queryPool,

 uint32_t query);

• commandBuffer is the command buffer into which this command will be recorded.

• queryPool is the query pool that is managing the results of the query.

• query is the query index within the query pool where the result is stored.

As queries operate asynchronously, ending a query does not immediately set the query’s status to

available. A query is considered finished when the final results of the query are ready to be

retrieved by vkGetQueryPoolResults and vkCmdCopyQueryPoolResults, and this is when the

query’s status is set to available.

Once a query is ended the query must finish in finite time, unless the state of the query is changed

using other commands, e.g. by issuing a reset of the query.

Valid Usage

• The query identified by queryPool and query must currently be active

• query must be less than the number of queries in queryPool

377

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• queryPool must be a valid VkQueryPool handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics, or

compute operations

• Both of commandBuffer, and queryPool must have been created, allocated, or retrieved from

the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Both Graphics

compute

An application can retrieve results either by requesting they be written into application-provided

memory, or by requesting they be copied into a VkBuffer. In either case, the layout in memory is

defined as follows:

• The first query’s result is written starting at the first byte requested by the command, and each

subsequent query’s result begins stride bytes later.

• Each query’s result is a tightly packed array of unsigned integers, either 32- or 64-bits as

requested by the command, storing the numerical results and, if requested, the availability

status.

• If VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is used, the final element of each query’s result is an

integer indicating whether the query’s result is available, with any non-zero value indicating

that it is available.

• Occlusion queries write one integer value - the number of samples passed. Pipeline statistics

queries write one integer value for each bit that is enabled in the pipelineStatistics when the

pool is created, and the statistics values are written in bit order starting from the least

significant bit. Timestamps write one integer value.

• If more than one query is retrieved and stride is not at least as large as the size of the array of

integers corresponding to a single query, the values written to memory are undefined.

378

To retrieve status and results for a set of queries, call:

VkResult vkGetQueryPoolResults(

 VkDevice device,

 VkQueryPool queryPool,

 uint32_t firstQuery,

 uint32_t queryCount,

 size_t dataSize,

 void* pData,

 VkDeviceSize stride,

 VkQueryResultFlags flags);

• device is the logical device that owns the query pool.

• queryPool is the query pool managing the queries containing the desired results.

• firstQuery is the initial query index.

• queryCount is the number of queries. firstQuery and queryCount together define a range of

queries. For pipeline statistics queries, each query index in the pool contains one integer value

for each bit that is enabled in VkQueryPoolCreateInfo::pipelineStatistics when the pool is

created.

• dataSize is the size in bytes of the buffer pointed to by pData.

• pData is a pointer to a user-allocated buffer where the results will be written

• stride is the stride in bytes between results for individual queries within pData.

• flags is a bitmask of VkQueryResultFlagBits specifying how and when results are returned.

If no bits are set in flags, and all requested queries are in the available state, results are written as

an array of 32-bit unsigned integer values. The behavior when not all queries are available, is

described below.

If VK_QUERY_RESULT_64_BIT is not set and the result overflows a 32-bit value, the value may either

wrap or saturate. Similarly, if VK_QUERY_RESULT_64_BIT is set and the result overflows a 64-bit value,

the value may either wrap or saturate.

If VK_QUERY_RESULT_WAIT_BIT is set, Vulkan will wait for each query to be in the available state before

retrieving the numerical results for that query. In this case, vkGetQueryPoolResults is guaranteed to

succeed and return VK_SUCCESS if the queries become available in a finite time (i.e. if they have been

issued and not reset). If queries will never finish (e.g. due to being reset but not issued), then

vkGetQueryPoolResults may not return in finite time.

If VK_QUERY_RESULT_WAIT_BIT and VK_QUERY_RESULT_PARTIAL_BIT are both not set then no result values

are written to pData for queries that are in the unavailable state at the time of the call, and

vkGetQueryPoolResults returns VK_NOT_READY. However, availability state is still written to pData for

those queries if VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is set.

379



Note

Applications must take care to ensure that use of the VK_QUERY_RESULT_WAIT_BIT bit

has the desired effect.

For example, if a query has been used previously and a command buffer records

the commands vkCmdResetQueryPool, vkCmdBeginQuery, and vkCmdEndQuery for that

query, then the query will remain in the available state until the

vkCmdResetQueryPool command executes on a queue. Applications can use fences or

events to ensure that a query has already been reset before checking for its results

or availability status. Otherwise, a stale value could be returned from a previous

use of the query.

The above also applies when VK_QUERY_RESULT_WAIT_BIT is used in combination with

VK_QUERY_RESULT_WITH_AVAILABILITY_BIT. In this case, the returned availability

status may reflect the result of a previous use of the query unless the

vkCmdResetQueryPool command has been executed since the last use of the query.


Note

Applications can double-buffer query pool usage, with a pool per frame, and reset

queries at the end of the frame in which they are read.

If VK_QUERY_RESULT_PARTIAL_BIT is set, VK_QUERY_RESULT_WAIT_BIT is not set, and the query’s status is

unavailable, an intermediate result value between zero and the final result value is written to pData

for that query.

VK_QUERY_RESULT_PARTIAL_BIT must not be used if the pool’s queryType is VK_QUERY_TYPE_TIMESTAMP.

If VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is set, the final integer value written for each query is

non-zero if the query’s status was available or zero if the status was unavailable. When

VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is used, implementations must guarantee that if they return

a non-zero availability value then the numerical results must be valid, assuming the results are not

reset by a subsequent command.


Note

Satisfying this guarantee may require careful ordering by the application, e.g. to

read the availability status before reading the results.

380

Valid Usage

• firstQuery must be less than the number of queries in queryPool

• If VK_QUERY_RESULT_64_BIT is not set in flags then pData and stride must be multiples of 4

• If VK_QUERY_RESULT_64_BIT is set in flags then pData and stride must be multiples of 8

• The sum of firstQuery and queryCount must be less than or equal to the number of queries

in queryPool

• dataSize must be large enough to contain the result of each query, as described here

• If the queryType used to create queryPool was VK_QUERY_TYPE_TIMESTAMP, flags must not

contain VK_QUERY_RESULT_PARTIAL_BIT

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• queryPool must be a valid VkQueryPool handle

• pData must be a pointer to an array of dataSize bytes

• flags must be a valid combination of VkQueryResultFlagBits values

• dataSize must be greater than 0

• queryPool must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

• VK_NOT_READY

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

Bits which can be set in vkGetQueryPoolResults::flags and vkCmdCopyQueryPoolResults::flags,

specifying how and when results are returned, are:

typedef enum VkQueryResultFlagBits {

 VK_QUERY_RESULT_64_BIT = 0x00000001,

 VK_QUERY_RESULT_WAIT_BIT = 0x00000002,

 VK_QUERY_RESULT_WITH_AVAILABILITY_BIT = 0x00000004,

 VK_QUERY_RESULT_PARTIAL_BIT = 0x00000008,

} VkQueryResultFlagBits;

381

• VK_QUERY_RESULT_64_BIT specifies the results will be written as an array of 64-bit unsigned

integer values. If this bit is not set, the results will be written as an array of 32-bit unsigned

integer values.

• VK_QUERY_RESULT_WAIT_BIT specifies that Vulkan will wait for each query’s status to become

available before retrieving its results.

• VK_QUERY_RESULT_WITH_AVAILABILITY_BIT specifies that the availability status accompanies the

results.

• VK_QUERY_RESULT_PARTIAL_BIT specifies that returning partial results is acceptable.

To copy query statuses and numerical results directly to buffer memory, call:

void vkCmdCopyQueryPoolResults(

 VkCommandBuffer commandBuffer,

 VkQueryPool queryPool,

 uint32_t firstQuery,

 uint32_t queryCount,

 VkBuffer dstBuffer,

 VkDeviceSize dstOffset,

 VkDeviceSize stride,

 VkQueryResultFlags flags);

• commandBuffer is the command buffer into which this command will be recorded.

• queryPool is the query pool managing the queries containing the desired results.

• firstQuery is the initial query index.

• queryCount is the number of queries. firstQuery and queryCount together define a range of

queries.

• dstBuffer is a VkBuffer object that will receive the results of the copy command.

• dstOffset is an offset into dstBuffer.

• stride is the stride in bytes between results for individual queries within dstBuffer. The

required size of the backing memory for dstBuffer is determined as described above for

vkGetQueryPoolResults.

• flags is a bitmask of VkQueryResultFlagBits specifying how and when results are returned.

vkCmdCopyQueryPoolResults is guaranteed to see the effect of previous uses of vkCmdResetQueryPool in

the same queue, without any additional synchronization. Thus, the results will always reflect the

most recent use of the query.

flags has the same possible values described above for the flags parameter of

vkGetQueryPoolResults, but the different style of execution causes some subtle behavioral

differences. Because vkCmdCopyQueryPoolResults executes in order with respect to other query

commands, there is less ambiguity about which use of a query is being requested.

If no bits are set in flags, results for all requested queries in the available state are written as 32-bit

unsigned integer values, and nothing is written for queries in the unavailable state.

382

If VK_QUERY_RESULT_64_BIT is set, the results are written as an array of 64-bit unsigned integer values

as described for vkGetQueryPoolResults.

If VK_QUERY_RESULT_WAIT_BIT is set, the implementation will wait for each query’s status to be in the

available state before retrieving the numerical results for that query. This is guaranteed to reflect

the most recent use of the query on the same queue, assuming that the query is not being

simultaneously used by other queues. If the query does not become available in a finite amount of

time (e.g. due to not issuing a query since the last reset), a VK_ERROR_DEVICE_LOST error may occur.

Similarly, if VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is set and VK_QUERY_RESULT_WAIT_BIT is not set,

the availability is guaranteed to reflect the most recent use of the query on the same queue,

assuming that the query is not being simultaneously used by other queues. As with

vkGetQueryPoolResults, implementations must guarantee that if they return a non-zero availability

value, then the numerical results are valid.

If VK_QUERY_RESULT_PARTIAL_BIT is set, VK_QUERY_RESULT_WAIT_BIT is not set, and the query’s status is

unavailable, an intermediate result value between zero and the final result value is written for that

query.

VK_QUERY_RESULT_PARTIAL_BIT must not be used if the pool’s queryType is VK_QUERY_TYPE_TIMESTAMP.

vkCmdCopyQueryPoolResults is considered to be a transfer operation, and its writes to buffer memory

must be synchronized using VK_PIPELINE_STAGE_TRANSFER_BIT and VK_ACCESS_TRANSFER_WRITE_BIT

before using the results.

Valid Usage

• dstOffset must be less than the size of dstBuffer

• firstQuery must be less than the number of queries in queryPool

• The sum of firstQuery and queryCount must be less than or equal to the number of queries

in queryPool

• If VK_QUERY_RESULT_64_BIT is not set in flags then dstOffset and stride must be multiples

of 4

• If VK_QUERY_RESULT_64_BIT is set in flags then dstOffset and stride must be multiples of 8

• dstBuffer must have enough storage, from dstOffset, to contain the result of each query,

as described here

• dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag

• If dstBuffer is non-sparse then it must be bound completely and contiguously to a single

VkDeviceMemory object

• If the queryType used to create queryPool was VK_QUERY_TYPE_TIMESTAMP, flags must not

contain VK_QUERY_RESULT_PARTIAL_BIT

383

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• queryPool must be a valid VkQueryPool handle

• dstBuffer must be a valid VkBuffer handle

• flags must be a valid combination of VkQueryResultFlagBits values

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics, or

compute operations

• This command must only be called outside of a render pass instance

• Each of commandBuffer, dstBuffer, and queryPool must have been created, allocated, or

retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Outside Graphics

compute

Transfer

Rendering operations such as clears, MSAA resolves, attachment load/store operations, and blits

may count towards the results of queries. This behavior is implementation-dependent and may

vary depending on the path used within an implementation. For example, some implementations

have several types of clears, some of which may include vertices and some not.

16.3. Occlusion Queries

Occlusion queries track the number of samples that pass the per-fragment tests for a set of drawing

commands. As such, occlusion queries are only available on queue families supporting graphics

operations. The application can then use these results to inform future rendering decisions. An

occlusion query is begun and ended by calling vkCmdBeginQuery and vkCmdEndQuery, respectively.

When an occlusion query begins, the count of passing samples always starts at zero. For each

drawing command, the count is incremented as described in Sample Counting. If flags does not

contain VK_QUERY_CONTROL_PRECISE_BIT an implementation may generate any non-zero result value

for the query if the count of passing samples is non-zero.

384



Note

Not setting VK_QUERY_CONTROL_PRECISE_BIT mode may be more efficient on some

implementations, and should be used where it is sufficient to know a boolean

result on whether any samples passed the per-fragment tests. In this case, some

implementations may only return zero or one, indifferent to the actual number of

samples passing the per-fragment tests.

When an occlusion query finishes, the result for that query is marked as available. The application

can then either copy the result to a buffer (via vkCmdCopyQueryPoolResults) or request it be put into

host memory (via vkGetQueryPoolResults).


Note

If occluding geometry is not drawn first, samples can pass the depth test, but still

not be visible in a final image.

16.4. Pipeline Statistics Queries

Pipeline statistics queries allow the application to sample a specified set of VkPipeline counters.

These counters are accumulated by Vulkan for a set of either draw or dispatch commands while a

pipeline statistics query is active. As such, pipeline statistics queries are available on queue families

supporting either graphics or compute operations. Further, the availability of pipeline statistics

queries is indicated by the pipelineStatisticsQuery member of the VkPhysicalDeviceFeatures object

(see vkGetPhysicalDeviceFeatures and vkCreateDevice for detecting and requesting this query type

on a VkDevice).

A pipeline statistics query is begun and ended by calling vkCmdBeginQuery and vkCmdEndQuery,

respectively. When a pipeline statistics query begins, all statistics counters are set to zero. While the

query is active, the pipeline type determines which set of statistics are available, but these must be

configured on the query pool when it is created. If a statistic counter is issued on a command buffer

that does not support the corresponding operation, that counter is undefined after the query has

finished. At least one statistic counter relevant to the operations supported on the recording

command buffer must be enabled.

Bits which can be set to individually enable pipeline statistics counters for query pools with

VkQueryPoolCreateInfo::pipelineStatistics, and for secondary command buffers with

VkCommandBufferInheritanceInfo::pipelineStatistics, are:

385

typedef enum VkQueryPipelineStatisticFlagBits {

 VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_VERTICES_BIT = 0x00000001,

 VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_PRIMITIVES_BIT = 0x00000002,

 VK_QUERY_PIPELINE_STATISTIC_VERTEX_SHADER_INVOCATIONS_BIT = 0x00000004,

 VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_INVOCATIONS_BIT = 0x00000008,

 VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT = 0x00000010,

 VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT = 0x00000020,

 VK_QUERY_PIPELINE_STATISTIC_CLIPPING_PRIMITIVES_BIT = 0x00000040,

 VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT = 0x00000080,

 VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_CONTROL_SHADER_PATCHES_BIT = 0x00000100,

 VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT =

0x00000200,

 VK_QUERY_PIPELINE_STATISTIC_COMPUTE_SHADER_INVOCATIONS_BIT = 0x00000400,

} VkQueryPipelineStatisticFlagBits;

• VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_VERTICES_BIT specifies that queries managed by the

pool will count the number of vertices processed by the input assembly stage. Vertices

corresponding to incomplete primitives may contribute to the count.

• VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_PRIMITIVES_BIT specifies that queries managed by

the pool will count the number of primitives processed by the input assembly stage. If primitive

restart is enabled, restarting the primitive topology has no effect on the count. Incomplete

primitives may be counted.

• VK_QUERY_PIPELINE_STATISTIC_VERTEX_SHADER_INVOCATIONS_BIT specifies that queries managed by

the pool will count the number of vertex shader invocations. This counter’s value is

incremented each time a vertex shader is invoked.

• VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_INVOCATIONS_BIT specifies that queries managed

by the pool will count the number of geometry shader invocations. This counter’s value is

incremented each time a geometry shader is invoked. In the case of instanced geometry

shaders, the geometry shader invocations count is incremented for each separate instanced

invocation.

• VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT specifies that queries managed by

the pool will count the number of primitives generated by geometry shader invocations. The

counter’s value is incremented each time the geometry shader emits a primitive. Restarting

primitive topology using the SPIR-V instructions OpEndPrimitive or OpEndStreamPrimitive has no

effect on the geometry shader output primitives count.

• VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT specifies that queries managed by the

pool will count the number of primitives processed by the Primitive Clipping stage of the

pipeline. The counter’s value is incremented each time a primitive reaches the primitive

clipping stage.

• VK_QUERY_PIPELINE_STATISTIC_CLIPPING_PRIMITIVES_BIT specifies that queries managed by the

pool will count the number of primitives output by the Primitive Clipping stage of the pipeline.

The counter’s value is incremented each time a primitive passes the primitive clipping stage.

The actual number of primitives output by the primitive clipping stage for a particular input

primitive is implementation-dependent but must satisfy the following conditions:

◦ If at least one vertex of the input primitive lies inside the clipping volume, the counter is

386

incremented by one or more.

◦ Otherwise, the counter is incremented by zero or more.

• VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT specifies that queries managed

by the pool will count the number of fragment shader invocations. The counter’s value is

incremented each time the fragment shader is invoked.

• VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_CONTROL_SHADER_PATCHES_BIT specifies that queries

managed by the pool will count the number of patches processed by the tessellation control

shader. The counter’s value is incremented once for each patch for which a tessellation control

shader is invoked.

• VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT specifies that

queries managed by the pool will count the number of invocations of the tessellation evaluation

shader. The counter’s value is incremented each time the tessellation evaluation shader is

invoked.

• VK_QUERY_PIPELINE_STATISTIC_COMPUTE_SHADER_INVOCATIONS_BIT specifies that queries managed by

the pool will count the number of compute shader invocations. The counter’s value is

incremented every time the compute shader is invoked. Implementations may skip the

execution of certain compute shader invocations or execute additional compute shader

invocations for implementation-dependent reasons as long as the results of rendering

otherwise remain unchanged.

These values are intended to measure relative statistics on one implementation. Various device

architectures will count these values differently. Any or all counters may be affected by the issues

described in Query Operation.


Note

For example, tile-based rendering devices may need to replay the scene multiple

times, affecting some of the counts.

If a pipeline has rasterizerDiscardEnable enabled, implementations may discard primitives after

the final vertex processing stage. As a result, if rasterizerDiscardEnable is enabled, the clipping

input and output primitives counters may not be incremented.

When a pipeline statistics query finishes, the result for that query is marked as available. The

application can copy the result to a buffer (via vkCmdCopyQueryPoolResults), or request it be put into

host memory (via vkGetQueryPoolResults).

16.5. Timestamp Queries

Timestamps provide applications with a mechanism for timing the execution of commands. A

timestamp is an integer value generated by the VkPhysicalDevice. Unlike other queries, timestamps

do not operate over a range, and so do not use vkCmdBeginQuery or vkCmdEndQuery. The

mechanism is built around a set of commands that allow the application to tell the VkPhysicalDevice

to write timestamp values to a query pool and then either read timestamp values on the host (using

vkGetQueryPoolResults) or copy timestamp values to a VkBuffer (using

vkCmdCopyQueryPoolResults). The application can then compute differences between timestamps

to determine execution time.

387

The number of valid bits in a timestamp value is determined by the VkQueueFamilyProperties

::timestampValidBits property of the queue on which the timestamp is written. Timestamps are

supported on any queue which reports a non-zero value for timestampValidBits via

vkGetPhysicalDeviceQueueFamilyProperties. If the timestampComputeAndGraphics limit is VK_TRUE,

timestamps are supported by every queue family that supports either graphics or compute

operations (see VkQueueFamilyProperties).

The number of nanoseconds it takes for a timestamp value to be incremented by 1 can be obtained

from VkPhysicalDeviceLimits::timestampPeriod after a call to vkGetPhysicalDeviceProperties.

To request a timestamp, call:

void vkCmdWriteTimestamp(

 VkCommandBuffer commandBuffer,

 VkPipelineStageFlagBits pipelineStage,

 VkQueryPool queryPool,

 uint32_t query);

• commandBuffer is the command buffer into which the command will be recorded.

• pipelineStage is one of the VkPipelineStageFlagBits, specifying a stage of the pipeline.

• queryPool is the query pool that will manage the timestamp.

• query is the query within the query pool that will contain the timestamp.

vkCmdWriteTimestamp latches the value of the timer when all previous commands have completed

executing as far as the specified pipeline stage, and writes the timestamp value to memory. When

the timestamp value is written, the availability status of the query is set to available.


Note

If an implementation is unable to detect completion and latch the timer at any

specific stage of the pipeline, it may instead do so at any logically later stage.

vkCmdCopyQueryPoolResults can then be called to copy the timestamp value from the query pool

into buffer memory, with ordering and synchronization behavior equivalent to how other queries

operate. Timestamp values can also be retrieved from the query pool using vkGetQueryPoolResults.

As with other queries, the query must be reset using vkCmdResetQueryPool before requesting the

timestamp value be written to it.

While vkCmdWriteTimestamp can be called inside or outside of a render pass instance,

vkCmdCopyQueryPoolResults must only be called outside of a render pass instance.

Valid Usage

• queryPool must have been created with a queryType of VK_QUERY_TYPE_TIMESTAMP

• The query identified by queryPool and query must be unavailable

• The command pool’s queue family must support a non-zero timestampValidBits

388

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• pipelineStage must be a valid VkPipelineStageFlagBits value

• queryPool must be a valid VkQueryPool handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics, or

compute operations

• Both of commandBuffer, and queryPool must have been created, allocated, or retrieved from

the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Both Graphics

compute

Transfer

389

Chapter 17. Clear Commands

17.1. Clearing Images Outside A Render Pass Instance

Color and depth/stencil images can be cleared outside a render pass instance using

vkCmdClearColorImage or vkCmdClearDepthStencilImage, respectively. These commands are only

allowed outside of a render pass instance.

To clear one or more subranges of a color image, call:

void vkCmdClearColorImage(

 VkCommandBuffer commandBuffer,

 VkImage image,

 VkImageLayout imageLayout,

 const VkClearColorValue* pColor,

 uint32_t rangeCount,

 const VkImageSubresourceRange* pRanges);

• commandBuffer is the command buffer into which the command will be recorded.

• image is the image to be cleared.

• imageLayout specifies the current layout of the image subresource ranges to be cleared, and

must be VK_IMAGE_LAYOUT_GENERAL or VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL.

• pColor is a pointer to a VkClearColorValue structure that contains the values the image

subresource ranges will be cleared to (see Clear Values below).

• rangeCount is the number of image subresource range structures in pRanges.

• pRanges points to an array of VkImageSubresourceRange structures that describe a range of

mipmap levels, array layers, and aspects to be cleared, as described in Image Views. The

aspectMask of all image subresource ranges must only include VK_IMAGE_ASPECT_COLOR_BIT.

Each specified range in pRanges is cleared to the value specified by pColor.

390

Valid Usage

• image must have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT usage flag

• If image is non-sparse then it must be bound completely and contiguously to a single

VkDeviceMemory object

• imageLayout must specify the layout of the image subresource ranges of image specified in

pRanges at the time this command is executed on a VkDevice

• imageLayout must be VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL

• The VkImageSubresourceRange::baseMipLevel members of the elements of the pRanges

array must each be less than the mipLevels specified in VkImageCreateInfo when image

was created

• If the VkImageSubresourceRange::levelCount member of any element of the pRanges array

is not VK_REMAINING_MIP_LEVELS, it must be non-zero and VkImageSubresourceRange

::baseMipLevel + VkImageSubresourceRange::levelCount for that element of the pRanges

array must be less than or equal to the mipLevels specified in VkImageCreateInfo when

image was created

• The VkImageSubresourceRange::baseArrayLayer members of the elements of the pRanges

array must each be less than the arrayLayers specified in VkImageCreateInfo when image

was created

• If the VkImageSubresourceRange::layerCount member of any element of the pRanges array

is not VK_REMAINING_ARRAY_LAYERS, it must be non-zero and VkImageSubresourceRange

::baseArrayLayer + VkImageSubresourceRange::layerCount for that element of the pRanges

array must be less than or equal to the arrayLayers specified in VkImageCreateInfo when

image was created

• image must not have a compressed or depth/stencil format

391

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• image must be a valid VkImage handle

• imageLayout must be a valid VkImageLayout value

• pColor must be a pointer to a valid VkClearColorValue union

• pRanges must be a pointer to an array of rangeCount valid VkImageSubresourceRange

structures

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics, or

compute operations

• This command must only be called outside of a render pass instance

• rangeCount must be greater than 0

• Both of commandBuffer, and image must have been created, allocated, or retrieved from the

same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Outside Graphics

compute

Transfer

To clear one or more subranges of a depth/stencil image, call:

void vkCmdClearDepthStencilImage(

 VkCommandBuffer commandBuffer,

 VkImage image,

 VkImageLayout imageLayout,

 const VkClearDepthStencilValue* pDepthStencil,

 uint32_t rangeCount,

 const VkImageSubresourceRange* pRanges);

• commandBuffer is the command buffer into which the command will be recorded.

392

• image is the image to be cleared.

• imageLayout specifies the current layout of the image subresource ranges to be cleared, and

must be VK_IMAGE_LAYOUT_GENERAL or VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL.

• pDepthStencil is a pointer to a VkClearDepthStencilValue structure that contains the values the

depth and stencil image subresource ranges will be cleared to (see Clear Values below).

• rangeCount is the number of image subresource range structures in pRanges.

• pRanges points to an array of VkImageSubresourceRange structures that describe a range of

mipmap levels, array layers, and aspects to be cleared, as described in Image Views. The

aspectMask of each image subresource range in pRanges can include VK_IMAGE_ASPECT_DEPTH_BIT if

the image format has a depth component, and VK_IMAGE_ASPECT_STENCIL_BIT if the image format

has a stencil component. pDepthStencil is a pointer to a VkClearDepthStencilValue structure that

contains the values the image subresource ranges will be cleared to (see Clear Values below).

Valid Usage

• image must have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT usage flag

• If image is non-sparse then it must be bound completely and contiguously to a single

VkDeviceMemory object

• imageLayout must specify the layout of the image subresource ranges of image specified in

pRanges at the time this command is executed on a VkDevice

• imageLayout must be either of VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or
VK_IMAGE_LAYOUT_GENERAL

• The VkImageSubresourceRange::baseMipLevel members of the elements of the pRanges

array must each be less than the mipLevels specified in VkImageCreateInfo when image

was created

• If the VkImageSubresourceRange::levelCount member of any element of the pRanges array

is not VK_REMAINING_MIP_LEVELS, it must be non-zero and VkImageSubresourceRange

::baseMipLevel + VkImageSubresourceRange::levelCount for that element of the pRanges

array must be less than or equal to the mipLevels specified in VkImageCreateInfo when

image was created

• The VkImageSubresourceRange::baseArrayLayer members of the elements of the pRanges

array must each be less than the arrayLayers specified in VkImageCreateInfo when image

was created

• If the VkImageSubresourceRange::layerCount member of any element of the pRanges array

is not VK_REMAINING_ARRAY_LAYERS, it must be non-zero and VkImageSubresourceRange

::baseArrayLayer + VkImageSubresourceRange::layerCount for that element of the pRanges

array must be less than or equal to the arrayLayers specified in VkImageCreateInfo when

image was created

• image must have a depth/stencil format

393

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• image must be a valid VkImage handle

• imageLayout must be a valid VkImageLayout value

• pDepthStencil must be a pointer to a valid VkClearDepthStencilValue structure

• pRanges must be a pointer to an array of rangeCount valid VkImageSubresourceRange

structures

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics

operations

• This command must only be called outside of a render pass instance

• rangeCount must be greater than 0

• Both of commandBuffer, and image must have been created, allocated, or retrieved from the

same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Outside Graphics Transfer

Clears outside render pass instances are treated as transfer operations for the purposes of memory

barriers.

17.2. Clearing Images Inside A Render Pass Instance

To clear one or more regions of color and depth/stencil attachments inside a render pass instance,

call:

394

void vkCmdClearAttachments(

 VkCommandBuffer commandBuffer,

 uint32_t attachmentCount,

 const VkClearAttachment* pAttachments,

 uint32_t rectCount,

 const VkClearRect* pRects);

• commandBuffer is the command buffer into which the command will be recorded.

• attachmentCount is the number of entries in the pAttachments array.

• pAttachments is a pointer to an array of VkClearAttachment structures defining the attachments

to clear and the clear values to use.

• rectCount is the number of entries in the pRects array.

• pRects points to an array of VkClearRect structures defining regions within each selected

attachment to clear.

vkCmdClearAttachments can clear multiple regions of each attachment used in the current subpass of

a render pass instance. This command must be called only inside a render pass instance, and

implicitly selects the images to clear based on the current framebuffer attachments and the

command parameters.

Valid Usage

• If the aspectMask member of any given element of pAttachments contains

VK_IMAGE_ASPECT_COLOR_BIT, the colorAttachment member of those elements must refer to a

valid color attachment in the current subpass

• The rectangular region specified by a given element of pRects must be contained within

the render area of the current render pass instance

• The layers specified by a given element of pRects must be contained within every

attachment that pAttachments refers to

395

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• pAttachments must be a pointer to an array of attachmentCount valid VkClearAttachment

structures

• pRects must be a pointer to an array of rectCount VkClearRect structures

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics

operations

• This command must only be called inside of a render pass instance

• attachmentCount must be greater than 0

• rectCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Inside Graphics Graphics

The VkClearRect structure is defined as:

typedef struct VkClearRect {

 VkRect2D rect;

 uint32_t baseArrayLayer;

 uint32_t layerCount;

} VkClearRect;

• rect is the two-dimensional region to be cleared.

• baseArrayLayer is the first layer to be cleared.

• layerCount is the number of layers to clear.

The layers [baseArrayLayer, baseArrayLayer + layerCount) counting from the base layer of the

attachment image view are cleared.

396

The VkClearAttachment structure is defined as:

typedef struct VkClearAttachment {

 VkImageAspectFlags aspectMask;

 uint32_t colorAttachment;

 VkClearValue clearValue;

} VkClearAttachment;

• aspectMask is a mask selecting the color, depth and/or stencil aspects of the attachment to be

cleared. aspectMask can include VK_IMAGE_ASPECT_COLOR_BIT for color attachments,

VK_IMAGE_ASPECT_DEPTH_BIT for depth/stencil attachments with a depth component, and

VK_IMAGE_ASPECT_STENCIL_BIT for depth/stencil attachments with a stencil component. If the

subpass’s depth/stencil attachment is VK_ATTACHMENT_UNUSED, then the clear has no effect.

• colorAttachment is only meaningful if VK_IMAGE_ASPECT_COLOR_BIT is set in aspectMask, in which

case it is an index to the pColorAttachments array in the VkSubpassDescription structure of the

current subpass which selects the color attachment to clear. If colorAttachment is

VK_ATTACHMENT_UNUSED then the clear has no effect.

• clearValue is the color or depth/stencil value to clear the attachment to, as described in Clear

Values below.

No memory barriers are needed between vkCmdClearAttachments and preceding or subsequent draw

or attachment clear commands in the same subpass.

The vkCmdClearAttachments command is not affected by the bound pipeline state.

Attachments can also be cleared at the beginning of a render pass instance by setting loadOp (or

stencilLoadOp) of VkAttachmentDescription to VK_ATTACHMENT_LOAD_OP_CLEAR, as described for

vkCreateRenderPass.

Valid Usage

• If aspectMask includes VK_IMAGE_ASPECT_COLOR_BIT, it must not include

VK_IMAGE_ASPECT_DEPTH_BIT or VK_IMAGE_ASPECT_STENCIL_BIT

• aspectMask must not include VK_IMAGE_ASPECT_METADATA_BIT

• clearValue must be a valid VkClearValue union

Valid Usage (Implicit)

• aspectMask must be a valid combination of VkImageAspectFlagBits values

• aspectMask must not be 0

397

17.3. Clear Values

The VkClearColorValue structure is defined as:

typedef union VkClearColorValue {

 float float32[4];

 int32_t int32[4];

 uint32_t uint32[4];

} VkClearColorValue;

• float32 are the color clear values when the format of the image or attachment is one of the

formats in the Interpretation of Numeric Format table other than signed integer (SINT) or

unsigned integer (UINT). Floating point values are automatically converted to the format of the

image, with the clear value being treated as linear if the image is sRGB.

• int32 are the color clear values when the format of the image or attachment is signed integer

(SINT). Signed integer values are converted to the format of the image by casting to the smaller

type (with negative 32-bit values mapping to negative values in the smaller type). If the integer

clear value is not representable in the target type (e.g. would overflow in conversion to that

type), the clear value is undefined.

• uint32 are the color clear values when the format of the image or attachment is unsigned

integer (UINT). Unsigned integer values are converted to the format of the image by casting to

the integer type with fewer bits.

The four array elements of the clear color map to R, G, B, and A components of image formats, in

order.

If the image has more than one sample, the same value is written to all samples for any pixels being

cleared.

The VkClearDepthStencilValue structure is defined as:

typedef struct VkClearDepthStencilValue {

 float depth;

 uint32_t stencil;

} VkClearDepthStencilValue;

• depth is the clear value for the depth aspect of the depth/stencil attachment. It is a floating-point

value which is automatically converted to the attachment’s format.

• stencil is the clear value for the stencil aspect of the depth/stencil attachment. It is a 32-bit

integer value which is converted to the attachment’s format by taking the appropriate number

of LSBs.

Valid Usage

• depth must be between 0.0 and 1.0, inclusive

398

The VkClearValue union is defined as:

typedef union VkClearValue {

 VkClearColorValue color;

 VkClearDepthStencilValue depthStencil;

} VkClearValue;

• color specifies the color image clear values to use when clearing a color image or attachment.

• depthStencil specifies the depth and stencil clear values to use when clearing a depth/stencil

image or attachment.

This union is used where part of the API requires either color or depth/stencil clear values,

depending on the attachment, and defines the initial clear values in the VkRenderPassBeginInfo

structure.

Valid Usage

• depthStencil must be a valid VkClearDepthStencilValue structure

17.4. Filling Buffers

To clear buffer data, call:

void vkCmdFillBuffer(

 VkCommandBuffer commandBuffer,

 VkBuffer dstBuffer,

 VkDeviceSize dstOffset,

 VkDeviceSize size,

 uint32_t data);

• commandBuffer is the command buffer into which the command will be recorded.

• dstBuffer is the buffer to be filled.

• dstOffset is the byte offset into the buffer at which to start filling, and must be a multiple of 4.

• size is the number of bytes to fill, and must be either a multiple of 4, or VK_WHOLE_SIZE to fill the

range from offset to the end of the buffer. If VK_WHOLE_SIZE is used and the remaining size of the

buffer is not a multiple of 4, then the nearest smaller multiple is used.

• data is the 4-byte word written repeatedly to the buffer to fill size bytes of data. The data word

is written to memory according to the host endianness.

vkCmdFillBuffer is treated as “transfer” operation for the purposes of synchronization barriers. The

VK_BUFFER_USAGE_TRANSFER_DST_BIT must be specified in usage of VkBufferCreateInfo in order for the

buffer to be compatible with vkCmdFillBuffer.

399

Valid Usage

• dstOffset must be less than the size of dstBuffer

• dstOffset must be a multiple of 4

• If size is not equal to VK_WHOLE_SIZE, size must be greater than 0

• If size is not equal to VK_WHOLE_SIZE, size must be less than or equal to the size of

dstBuffer minus dstOffset

• If size is not equal to VK_WHOLE_SIZE, size must be a multiple of 4

• dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag

• The VkCommandPool that commandBuffer was allocated from must support graphics or

compute operations

• If dstBuffer is non-sparse then it must be bound completely and contiguously to a single

VkDeviceMemory object

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• dstBuffer must be a valid VkBuffer handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics or

compute operations

• This command must only be called outside of a render pass instance

• Both of commandBuffer, and dstBuffer must have been created, allocated, or retrieved from

the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Outside Graphics

Compute

Transfer

400

17.5. Updating Buffers

To update buffer data inline in a command buffer, call:

void vkCmdUpdateBuffer(

 VkCommandBuffer commandBuffer,

 VkBuffer dstBuffer,

 VkDeviceSize dstOffset,

 VkDeviceSize dataSize,

 const void* pData);

• commandBuffer is the command buffer into which the command will be recorded.

• dstBuffer is a handle to the buffer to be updated.

• dstOffset is the byte offset into the buffer to start updating, and must be a multiple of 4.

• dataSize is the number of bytes to update, and must be a multiple of 4.

• pData is a pointer to the source data for the buffer update, and must be at least dataSize bytes in

size.

dataSize must be less than or equal to 65536 bytes. For larger updates, applications can use buffer

to buffer copies.

The source data is copied from the user pointer to the command buffer when the command is

called.

vkCmdUpdateBuffer is only allowed outside of a render pass. This command is treated as “transfer”

operation, for the purposes of synchronization barriers. The VK_BUFFER_USAGE_TRANSFER_DST_BIT

must be specified in usage of VkBufferCreateInfo in order for the buffer to be compatible with

vkCmdUpdateBuffer.

Valid Usage

• dstOffset must be less than the size of dstBuffer

• dataSize must be less than or equal to the size of dstBuffer minus dstOffset

• dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag

• If dstBuffer is non-sparse then it must be bound completely and contiguously to a single

VkDeviceMemory object

• dstOffset must be a multiple of 4

• dataSize must be less than or equal to 65536

• dataSize must be a multiple of 4

401

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• dstBuffer must be a valid VkBuffer handle

• pData must be a pointer to an array of dataSize bytes

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,

or compute operations

• This command must only be called outside of a render pass instance

• dataSize must be greater than 0

• Both of commandBuffer, and dstBuffer must have been created, allocated, or retrieved from

the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Outside Transfer

graphics

compute

Transfer



Note

The pData parameter was of type uint32_t*` instead of void* prior to revision

1.0.19 of the Specification and VK_HEADER_VERSION 19 of vulkan.h. This was a

historical anomaly, as the source data may be of other types.

402

Chapter 18. Copy Commands

An application can copy buffer and image data using several methods depending on the type of

data transfer. Data can be copied between buffer objects with vkCmdCopyBuffer and a portion of an

image can be copied to another image with vkCmdCopyImage. Image data can also be copied to and

from buffer memory using vkCmdCopyImageToBuffer and vkCmdCopyBufferToImage. Image data can be

blitted (with or without scaling and filtering) with vkCmdBlitImage. Multisampled images can be

resolved to a non-multisampled image with vkCmdResolveImage.

18.1. Common Operation

Some rules for valid operation are common to all copy commands:

• Copy commands must be recorded outside of a render pass instance.

• For non-sparse resources, the union of the source regions in a given buffer or image must not

overlap the union of the destination regions in the same buffer or image.

• For sparse resources, the set of bytes used by all the source regions must not intersect the set of

bytes used by all the destination regions.

• Copy regions must be non-empty.

• Regions must not extend outside the bounds of the buffer or image level, except that regions of

compressed images can extend as far as the dimension of the image level rounded up to a

complete compressed texel block.

• Source image subresources must be in either the VK_IMAGE_LAYOUT_GENERAL or

VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL layout. Destination image subresources must be in the

VK_IMAGE_LAYOUT_GENERAL or VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL layout. As a consequence, if

an image subresource is used as both source and destination of a copy, it must be in the

VK_IMAGE_LAYOUT_GENERAL layout.

• Source images must have been created with the VK_IMAGE_USAGE_TRANSFER_SRC_BIT usage bit

enabled and destination images must have been created with the

VK_IMAGE_USAGE_TRANSFER_DST_BIT usage bit enabled.

• Source buffers must have been created with the VK_BUFFER_USAGE_TRANSFER_SRC_BIT usage bit

enabled and destination buffers must have been created with the

VK_BUFFER_USAGE_TRANSFER_DST_BIT usage bit enabled.

All copy commands are treated as “transfer” operations for the purposes of synchronization

barriers.

18.2. Copying Data Between Buffers

To copy data between buffer objects, call:

403

void vkCmdCopyBuffer(

 VkCommandBuffer commandBuffer,

 VkBuffer srcBuffer,

 VkBuffer dstBuffer,

 uint32_t regionCount,

 const VkBufferCopy* pRegions);

• commandBuffer is the command buffer into which the command will be recorded.

• srcBuffer is the source buffer.

• dstBuffer is the destination buffer.

• regionCount is the number of regions to copy.

• pRegions is a pointer to an array of VkBufferCopy structures specifying the regions to copy.

Each region in pRegions is copied from the source buffer to the same region of the destination

buffer. srcBuffer and dstBuffer can be the same buffer or alias the same memory, but the result is

undefined if the copy regions overlap in memory.

Valid Usage

• The size member of a given element of pRegions must be greater than 0

• The srcOffset member of a given element of pRegions must be less than the size of
srcBuffer

• The dstOffset member of a given element of pRegions must be less than the size of
dstBuffer

• The size member of a given element of pRegions must be less than or equal to the size of

srcBuffer minus srcOffset

• The size member of a given element of pRegions must be less than or equal to the size of

dstBuffer minus dstOffset

• The union of the source regions, and the union of the destination regions, specified by the

elements of pRegions, must not overlap in memory

• srcBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_SRC_BIT usage flag

• If srcBuffer is non-sparse then it must be bound completely and contiguously to a single

VkDeviceMemory object

• dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag

• If dstBuffer is non-sparse then it must be bound completely and contiguously to a single

VkDeviceMemory object

404

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• srcBuffer must be a valid VkBuffer handle

• dstBuffer must be a valid VkBuffer handle

• pRegions must be a pointer to an array of regionCount VkBufferCopy structures

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,

or compute operations

• This command must only be called outside of a render pass instance

• regionCount must be greater than 0

• Each of commandBuffer, dstBuffer, and srcBuffer must have been created, allocated, or

retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Outside Transfer

graphics

compute

Transfer

The VkBufferCopy structure is defined as:

typedef struct VkBufferCopy {

 VkDeviceSize srcOffset;

 VkDeviceSize dstOffset;

 VkDeviceSize size;

} VkBufferCopy;

• srcOffset is the starting offset in bytes from the start of srcBuffer.

• dstOffset is the starting offset in bytes from the start of dstBuffer.

• size is the number of bytes to copy.

405

18.3. Copying Data Between Images

vkCmdCopyImage performs image copies in a similar manner to a host memcpy. It does not perform

general-purpose conversions such as scaling, resizing, blending, color-space conversion, or format

conversions. Rather, it simply copies raw image data. vkCmdCopyImage can copy between images with

different formats, provided the formats are compatible as defined below.

To copy data between image objects, call:

void vkCmdCopyImage(

 VkCommandBuffer commandBuffer,

 VkImage srcImage,

 VkImageLayout srcImageLayout,

 VkImage dstImage,

 VkImageLayout dstImageLayout,

 uint32_t regionCount,

 const VkImageCopy* pRegions);

• commandBuffer is the command buffer into which the command will be recorded.

• srcImage is the source image.

• srcImageLayout is the current layout of the source image subresource.

• dstImage is the destination image.

• dstImageLayout is the current layout of the destination image subresource.

• regionCount is the number of regions to copy.

• pRegions is a pointer to an array of VkImageCopy structures specifying the regions to copy.

Each region in pRegions is copied from the source image to the same region of the destination

image. srcImage and dstImage can be the same image or alias the same memory.

The formats of srcImage and dstImage must be compatible. Formats are considered compatible if

their element size is the same between both formats. For example, VK_FORMAT_R8G8B8A8_UNORM is

compatible with VK_FORMAT_R32_UINT because both texels are 4 bytes in size. Depth/stencil formats

must match exactly.

vkCmdCopyImage allows copying between size-compatible compressed and uncompressed internal

formats. Formats are size-compatible if the element size of the uncompressed format is equal to the

element size (compressed texel block size) of the compressed format. Such a copy does not perform

on-the-fly compression or decompression. When copying from an uncompressed format to a

compressed format, each texel of uncompressed data of the source image is copied as a raw value

to the corresponding compressed texel block of the destination image. When copying from a

compressed format to an uncompressed format, each compressed texel block of the source image is

copied as a raw value to the corresponding texel of uncompressed data in the destination image.

Thus, for example, it is legal to copy between a 128-bit uncompressed format and a compressed

format which has a 128-bit sized compressed texel block representing 4×4 texels (using 8 bits per

texel), or between a 64-bit uncompressed format and a compressed format which has a 64-bit sized

compressed texel block representing 4×4 texels (using 4 bits per texel).

406

When copying between compressed and uncompressed formats the extent members represent the

texel dimensions of the source image and not the destination. When copying from a compressed

image to an uncompressed image the image texel dimensions written to the uncompressed image

will be source extent divided by the compressed texel block dimensions. When copying from an

uncompressed image to a compressed image the image texel dimensions written to the compressed

image will be the source extent multiplied by the compressed texel block dimensions. In both cases

the number of bytes read and the number of bytes written will be identical.

Copying to or from block-compressed images is typically done in multiples of the compressed texel

block size. For this reason the extent must be a multiple of the compressed texel block dimension.

There is one exception to this rule which is required to handle compressed images created with

dimensions that are not a multiple of the compressed texel block dimensions: if the srcImage is

compressed, then:

• If extent.width is not a multiple of the compressed texel block width, then (extent.width +

srcOffset.x) must equal the image subresource width.

• If extent.height is not a multiple of the compressed texel block height, then (extent.height +

srcOffset.y) must equal the image subresource height.

• If extent.depth is not a multiple of the compressed texel block depth, then (extent.depth +

srcOffset.z) must equal the image subresource depth.

Similarly, if the dstImage is compressed, then:

• If extent.width is not a multiple of the compressed texel block width, then (extent.width +

dstOffset.x) must equal the image subresource width.

• If extent.height is not a multiple of the compressed texel block height, then (extent.height +

dstOffset.y) must equal the image subresource height.

• If extent.depth is not a multiple of the compressed texel block depth, then (extent.depth +

dstOffset.z) must equal the image subresource depth.

This allows the last compressed texel block of the image in each non-multiple dimension to be

included as a source or destination of the copy.

vkCmdCopyImage can be used to copy image data between multisample images, but both images must

have the same number of samples.

407

Valid Usage

• The source region specified by a given element of pRegions must be a region that is

contained within srcImage

• The destination region specified by a given element of pRegions must be a region that is

contained within dstImage

• The union of all source regions, and the union of all destination regions, specified by the

elements of pRegions, must not overlap in memory

• srcImage must have been created with VK_IMAGE_USAGE_TRANSFER_SRC_BIT usage flag

• If srcImage is non-sparse then it must be bound completely and contiguously to a single

VkDeviceMemory object

• srcImageLayout must specify the layout of the image subresources of srcImage specified in

pRegions at the time this command is executed on a VkDevice

• srcImageLayout must be VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL

• dstImage must have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT usage flag

• If dstImage is non-sparse then it must be bound completely and contiguously to a single

VkDeviceMemory object

• dstImageLayout must specify the layout of the image subresources of dstImage specified in

pRegions at the time this command is executed on a VkDevice

• dstImageLayout must be VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL

• The VkFormat of each of srcImage and dstImage must be compatible, as defined below

• The sample count of srcImage and dstImage must match

408

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• srcImage must be a valid VkImage handle

• srcImageLayout must be a valid VkImageLayout value

• dstImage must be a valid VkImage handle

• dstImageLayout must be a valid VkImageLayout value

• pRegions must be a pointer to an array of regionCount valid VkImageCopy structures

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,

or compute operations

• This command must only be called outside of a render pass instance

• regionCount must be greater than 0

• Each of commandBuffer, dstImage, and srcImage must have been created, allocated, or

retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Outside Transfer

graphics

compute

Transfer

The VkImageCopy structure is defined as:

typedef struct VkImageCopy {

 VkImageSubresourceLayers srcSubresource;

 VkOffset3D srcOffset;

 VkImageSubresourceLayers dstSubresource;

 VkOffset3D dstOffset;

 VkExtent3D extent;

} VkImageCopy;

409

• srcSubresource and dstSubresource are VkImageSubresourceLayers structures specifying the

image subresources of the images used for the source and destination image data, respectively.

• srcOffset and dstOffset select the initial x, y, and z offsets in texels of the sub-regions of the

source and destination image data.

• extent is the size in texels of the source image to copy in width, height and depth.

Copies are done layer by layer starting with baseArrayLayer member of srcSubresource for the

source and dstSubresource for the destination. layerCount layers are copied to the destination image.

410

Valid Usage

• The aspectMask member of srcSubresource and dstSubresource must match

• The layerCount member of srcSubresource and dstSubresource must match

• If either of the calling command’s srcImage or dstImage parameters are of VkImageType

VK_IMAGE_TYPE_3D, the baseArrayLayer and layerCount members of both srcSubresource and

dstSubresource must be 0 and 1, respectively

• The aspectMask member of srcSubresource must specify aspects present in the calling

command’s srcImage

• The aspectMask member of dstSubresource must specify aspects present in the calling

command’s dstImage

• srcOffset.x and (extent.width + srcOffset.x) must both be greater than or equal to 0 and

less than or equal to the source image subresource width

• srcOffset.y and (extent.height + srcOffset.y) must both be greater than or equal to 0 and

less than or equal to the source image subresource height

• If the calling command’s srcImage is of type VK_IMAGE_TYPE_1D, then srcOffset.y must be 0

and extent.height must be 1.

• srcOffset.z and (extent.depth + srcOffset.z) must both be greater than or equal to 0 and

less than or equal to the source image subresource depth

• If the calling command’s srcImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then

srcOffset.z must be 0 and extent.depth must be 1.

• srcSubresource.baseArrayLayer must be less than and (srcSubresource.layerCount +

srcSubresource.baseArrayLayer) must be less than or equal to the number of layers in the

source image

• dstOffset.x and (extent.width + dstOffset.x) must both be greater than or equal to 0 and

less than or equal to the destination image subresource width

• dstOffset.y and (extent.height + dstOffset.y) must both be greater than or equal to 0 and

less than or equal to the destination image subresource height

• If the calling command’s dstImage is of type VK_IMAGE_TYPE_1D, then dstOffset.y must be 0

and extent.height must be 1.

• dstOffset.z and (extent.depth + dstOffset.z) must both be greater than or equal to 0 and

less than or equal to the destination image subresource depth

• If the calling command’s dstImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then

dstOffset.z must be 0 and extent.depth must be 1.

• dstSubresource.baseArrayLayer must be less than and (dstSubresource.layerCount +

dstSubresource.baseArrayLayer) must be less than or equal to the number of layers in the

destination image

• If the calling command’s srcImage is a compressed format image, all members of srcOffset

must be a multiple of the corresponding dimensions of the compressed texel block

• If the calling command’s srcImage is a compressed format image, extent.width must be a

411

multiple of the compressed texel block width or (extent.width + srcOffset.x) must equal

the source image subresource width

• If the calling command’s srcImage is a compressed format image, extent.height must be a

multiple of the compressed texel block height or (extent.height + srcOffset.y) must equal

the source image subresource height

• If the calling command’s srcImage is a compressed format image, extent.depth must be a

multiple of the compressed texel block depth or (extent.depth + srcOffset.z) must equal

the source image subresource depth

• If the calling command’s dstImage is a compressed format image, all members of dstOffset

must be a multiple of the corresponding dimensions of the compressed texel block

• If the calling command’s dstImage is a compressed format image, extent.width must be a

multiple of the compressed texel block width or (extent.width + dstOffset.x) must equal

the destination image subresource width

• If the calling command’s dstImage is a compressed format image, extent.height must be a

multiple of the compressed texel block height or (extent.height + dstOffset.y) must equal

the destination image subresource height

• If the calling command’s dstImage is a compressed format image, extent.depth must be a

multiple of the compressed texel block depth or (extent.depth + dstOffset.z) must equal

the destination image subresource depth

• srcOffset, dstOffset, and extent must respect the image transfer granularity

requirements of the queue family that it will be submitted against, as described in

Physical Device Enumeration

Valid Usage (Implicit)

• srcSubresource must be a valid VkImageSubresourceLayers structure

• dstSubresource must be a valid VkImageSubresourceLayers structure

The VkImageSubresourceLayers structure is defined as:

typedef struct VkImageSubresourceLayers {

 VkImageAspectFlags aspectMask;

 uint32_t mipLevel;

 uint32_t baseArrayLayer;

 uint32_t layerCount;

} VkImageSubresourceLayers;

• aspectMask is a combination of VkImageAspectFlagBits, selecting the color, depth and/or stencil

aspects to be copied.

• mipLevel is the mipmap level to copy from.

• baseArrayLayer and layerCount are the starting layer and number of layers to copy.

412

Valid Usage

• If aspectMask contains VK_IMAGE_ASPECT_COLOR_BIT, it must not contain either of

VK_IMAGE_ASPECT_DEPTH_BIT or VK_IMAGE_ASPECT_STENCIL_BIT

• aspectMask must not contain VK_IMAGE_ASPECT_METADATA_BIT

• mipLevel must be less than the mipLevels specified in VkImageCreateInfo when the image

was created

• (baseArrayLayer + layerCount) must be less than or equal to the arrayLayers specified in

VkImageCreateInfo when the image was created

Valid Usage (Implicit)

• aspectMask must be a valid combination of VkImageAspectFlagBits values

• aspectMask must not be 0

18.4. Copying Data Between Buffers and Images

To copy data from a buffer object to an image object, call:

void vkCmdCopyBufferToImage(

 VkCommandBuffer commandBuffer,

 VkBuffer srcBuffer,

 VkImage dstImage,

 VkImageLayout dstImageLayout,

 uint32_t regionCount,

 const VkBufferImageCopy* pRegions);

• commandBuffer is the command buffer into which the command will be recorded.

• srcBuffer is the source buffer.

• dstImage is the destination image.

• dstImageLayout is the layout of the destination image subresources for the copy.

• regionCount is the number of regions to copy.

• pRegions is a pointer to an array of VkBufferImageCopy structures specifying the regions to copy.

Each region in pRegions is copied from the specified region of the source buffer to the specified

region of the destination image.

413

Valid Usage

• The buffer region specified by a given element of pRegions must be a region that is

contained within srcBuffer

• The image region specified by a given element of pRegions must be a region that is

contained within dstImage

• The union of all source regions, and the union of all destination regions, specified by the

elements of pRegions, must not overlap in memory

• srcBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_SRC_BIT usage flag

• If srcBuffer is non-sparse then it must be bound completely and contiguously to a single

VkDeviceMemory object

• dstImage must have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT usage flag

• If dstImage is non-sparse then it must be bound completely and contiguously to a single

VkDeviceMemory object

• dstImage must have a sample count equal to VK_SAMPLE_COUNT_1_BIT

• dstImageLayout must specify the layout of the image subresources of dstImage specified in

pRegions at the time this command is executed on a VkDevice

• dstImageLayout must be VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• srcBuffer must be a valid VkBuffer handle

• dstImage must be a valid VkImage handle

• dstImageLayout must be a valid VkImageLayout value

• pRegions must be a pointer to an array of regionCount valid VkBufferImageCopy structures

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,

or compute operations

• This command must only be called outside of a render pass instance

• regionCount must be greater than 0

• Each of commandBuffer, dstImage, and srcBuffer must have been created, allocated, or

retrieved from the same VkDevice

414

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Outside Transfer

graphics

compute

Transfer

To copy data from an image object to a buffer object, call:

void vkCmdCopyImageToBuffer(

 VkCommandBuffer commandBuffer,

 VkImage srcImage,

 VkImageLayout srcImageLayout,

 VkBuffer dstBuffer,

 uint32_t regionCount,

 const VkBufferImageCopy* pRegions);

• commandBuffer is the command buffer into which the command will be recorded.

• srcImage is the source image.

• srcImageLayout is the layout of the source image subresources for the copy.

• dstBuffer is the destination buffer.

• regionCount is the number of regions to copy.

• pRegions is a pointer to an array of VkBufferImageCopy structures specifying the regions to copy.

Each region in pRegions is copied from the specified region of the source image to the specified

region of the destination buffer.

415

Valid Usage

• The image region specified by a given element of pRegions must be a region that is

contained within srcImage

• The buffer region specified by a given element of pRegions must be a region that is

contained within dstBuffer

• The union of all source regions, and the union of all destination regions, specified by the

elements of pRegions, must not overlap in memory

• srcImage must have been created with VK_IMAGE_USAGE_TRANSFER_SRC_BIT usage flag

• If srcImage is non-sparse then it must be bound completely and contiguously to a single

VkDeviceMemory object

• srcImage must have a sample count equal to VK_SAMPLE_COUNT_1_BIT

• srcImageLayout must specify the layout of the image subresources of srcImage specified in

pRegions at the time this command is executed on a VkDevice

• srcImageLayout must be VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL

• dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag

• If dstBuffer is non-sparse then it must be bound completely and contiguously to a single

VkDeviceMemory object

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• srcImage must be a valid VkImage handle

• srcImageLayout must be a valid VkImageLayout value

• dstBuffer must be a valid VkBuffer handle

• pRegions must be a pointer to an array of regionCount valid VkBufferImageCopy structures

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,

or compute operations

• This command must only be called outside of a render pass instance

• regionCount must be greater than 0

• Each of commandBuffer, dstBuffer, and srcImage must have been created, allocated, or

retrieved from the same VkDevice

416

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Outside Transfer

graphics

compute

Transfer

For both vkCmdCopyBufferToImage and vkCmdCopyImageToBuffer, each element of pRegions is a

structure defined as:

typedef struct VkBufferImageCopy {

 VkDeviceSize bufferOffset;

 uint32_t bufferRowLength;

 uint32_t bufferImageHeight;

 VkImageSubresourceLayers imageSubresource;

 VkOffset3D imageOffset;

 VkExtent3D imageExtent;

} VkBufferImageCopy;

• bufferOffset is the offset in bytes from the start of the buffer object where the image data is

copied from or to.

• bufferRowLength and bufferImageHeight specify the data in buffer memory as a subregion of a

larger two- or three-dimensional image, and control the addressing calculations of data in

buffer memory. If either of these values is zero, that aspect of the buffer memory is considered

to be tightly packed according to the imageExtent.

• imageSubresource is a VkImageSubresourceLayers used to specify the specific image

subresources of the image used for the source or destination image data.

• imageOffset selects the initial x, y, z offsets in texels of the sub-region of the source or

destination image data.

• imageExtent is the size in texels of the image to copy in width, height and depth.

When copying to or from a depth or stencil aspect, the data in buffer memory uses a layout that is a

(mostly) tightly packed representation of the depth or stencil data. Specifically:

• data copied to or from the stencil aspect of any depth/stencil format is tightly packed with one

VK_FORMAT_S8_UINT value per texel.

417

• data copied to or from the depth aspect of a VK_FORMAT_D16_UNORM or VK_FORMAT_D16_UNORM_S8_UINT

format is tightly packed with one VK_FORMAT_D16_UNORM value per texel.

• data copied to or from the depth aspect of a VK_FORMAT_D32_SFLOAT or

VK_FORMAT_D32_SFLOAT_S8_UINT format is tightly packed with one VK_FORMAT_D32_SFLOAT value per

texel.

• data copied to or from the depth aspect of a VK_FORMAT_X8_D24_UNORM_PACK32 or

VK_FORMAT_D24_UNORM_S8_UINT format is packed with one 32-bit word per texel with the D24 value

in the LSBs of the word, and undefined values in the eight MSBs.



Note

To copy both the depth and stencil aspects of a depth/stencil format, two entries in

pRegions can be used, where one specifies the depth aspect in imageSubresource,

and the other specifies the stencil aspect.

Because depth or stencil aspect buffer to image copies may require format conversions on some

implementations, they are not supported on queues that do not support graphics. When copying to

a depth aspect, the data in buffer memory must be in the the range [0,1] or undefined results occur.

Copies are done layer by layer starting with image layer baseArrayLayer member of

imageSubresource. layerCount layers are copied from the source image or to the destination image.

418

Valid Usage

• If the the calling command’s VkImage parameter’s format is not a depth/stencil format,

then bufferOffset must be a multiple of the format’s element size

• bufferOffset must be a multiple of 4

• bufferRowLength must be 0, or greater than or equal to the width member of imageExtent

• bufferImageHeight must be 0, or greater than or equal to the height member of imageExtent

• imageOffset.x and (imageExtent.width + imageOffset.x) must both be greater than or equal

to 0 and less than or equal to the image subresource width

• imageOffset.y and (imageExtent.height + imageOffset.y) must both be greater than or

equal to 0 and less than or equal to the image subresource height

• If the calling command’s srcImage (vkCmdCopyImageToBuffer) or dstImage

(vkCmdCopyBufferToImage) is of type VK_IMAGE_TYPE_1D, then imageOffset.y must be 0 and

imageExtent.height must be 1.

• imageOffset.z and (imageExtent.depth + imageOffset.z) must both be greater than or

equal to 0 and less than or equal to the image subresource depth

• If the calling command’s srcImage (vkCmdCopyImageToBuffer) or dstImage

(vkCmdCopyBufferToImage) is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then

imageOffset.z must be 0 and imageExtent.depth must be 1.

• If the calling command’s VkImage parameter is a compressed format image,

bufferRowLength must be a multiple of the compressed texel block width

• If the calling command’s VkImage parameter is a compressed format image,

bufferImageHeight must be a multiple of the compressed texel block height

• If the calling command’s VkImage parameter is a compressed format image, all members of

imageOffset must be a multiple of the corresponding dimensions of the compressed texel

block

• If the calling command’s VkImage parameter is a compressed format image, bufferOffset

must be a multiple of the compressed texel block size in bytes

• If the calling command’s VkImage parameter is a compressed format image,

imageExtent.width must be a multiple of the compressed texel block width or

(imageExtent.width + imageOffset.x) must equal the image subresource width

• If the calling command’s VkImage parameter is a compressed format image,

imageExtent.height must be a multiple of the compressed texel block height or

(imageExtent.height + imageOffset.y) must equal the image subresource height

• If the calling command’s VkImage parameter is a compressed format image,

imageExtent.depth must be a multiple of the compressed texel block depth or

(imageExtent.depth + imageOffset.z) must equal the image subresource depth

• bufferOffset, bufferRowLength, bufferImageHeight and all members of imageOffset and

imageExtent must respect the image transfer granularity requirements of the queue

family that it will be submitted against, as described in Physical Device Enumeration

• The aspectMask member of imageSubresource must specify aspects present in the calling

419

command’s VkImage parameter

• The aspectMask member of imageSubresource must only have a single bit set

• If the calling command’s VkImage parameter is of VkImageType VK_IMAGE_TYPE_3D, the

baseArrayLayer and layerCount members of imageSubresource must be 0 and 1, respectively

• When copying to the depth aspect of an image subresource, the data in the source buffer

must be in the range [0,1]

Valid Usage (Implicit)

• imageSubresource must be a valid VkImageSubresourceLayers structure

Pseudocode for image/buffer addressing is:

rowLength = region->bufferRowLength;

if (rowLength == 0)

 rowLength = region->imageExtent.width;

imageHeight = region->bufferImageHeight;

if (imageHeight == 0)

 imageHeight = region->imageExtent.height;

elementSize = <element size of the format of the src/dstImage>;

address of (x,y,z) = region->bufferOffset + (((z * imageHeight) + y) * rowLength + x)

* elementSize;

where x,y,z range from (0,0,0) to region->imageExtent.{width,height,depth}.

Note that imageOffset does not affect addressing calculations for buffer memory. Instead,

bufferOffset can be used to select the starting address in buffer memory.

For block-compression formats, all parameters are still specified in texels rather than compressed

texel blocks, but the addressing math operates on whole compressed texel blocks. Pseudocode for

compressed copy addressing is:

420

rowLength = region->bufferRowLength;

if (rowLength == 0)

 rowLength = region->imageExtent.width;

imageHeight = region->bufferImageHeight;

if (imageHeight == 0)

 imageHeight = region->imageExtent.height;

compressedTexelBlockSizeInBytes = <compressed texel block size taken from the src

/dstImage>;

rowLength /= compressedTexelBlockWidth;

imageHeight /= compressedTexelBlockHeight;

address of (x,y,z) = region->bufferOffset + (((z * imageHeight) + y) * rowLength + x)

* compressedTexelBlockSizeInBytes;

where x,y,z range from (0,0,0) to region->imageExtent.{width/

compressedTexelBlockWidth,height/compressedTexelBlockHeight,depth/compressedTexelBlock

Depth}.

Copying to or from block-compressed images is typically done in multiples of the compressed texel

block size. For this reason the imageExtent must be a multiple of the compressed texel block

dimension. There is one exception to this rule which is required to handle compressed images

created with dimensions that are not a multiple of the compressed texel block dimensions:

• If imageExtent.width is not a multiple of the compressed texel block width, then

(imageExtent.width + imageOffset.x) must equal the image subresource width.

• If imageExtent.height is not a multiple of the compressed texel block height, then

(imageExtent.height + imageOffset.y) must equal the image subresource height.

• If imageExtent.depth is not a multiple of the compressed texel block depth, then

(imageExtent.depth + imageOffset.z) must equal the image subresource depth.

This allows the last compressed texel block of the image in each non-multiple dimension to be

included as a source or destination of the copy.

18.5. Image Copies with Scaling

To copy regions of a source image into a destination image, potentially performing format

conversion, arbitrary scaling, and filtering, call:

421

void vkCmdBlitImage(

 VkCommandBuffer commandBuffer,

 VkImage srcImage,

 VkImageLayout srcImageLayout,

 VkImage dstImage,

 VkImageLayout dstImageLayout,

 uint32_t regionCount,

 const VkImageBlit* pRegions,

 VkFilter filter);

• commandBuffer is the command buffer into which the command will be recorded.

• srcImage is the source image.

• srcImageLayout is the layout of the source image subresources for the blit.

• dstImage is the destination image.

• dstImageLayout is the layout of the destination image subresources for the blit.

• regionCount is the number of regions to blit.

• pRegions is a pointer to an array of VkImageBlit structures specifying the regions to blit.

• filter is a VkFilter specifying the filter to apply if the blits require scaling.

vkCmdBlitImage must not be used for multisampled source or destination images. Use

vkCmdResolveImage for this purpose.

As the sizes of the source and destination extents can differ in any dimension, texels in the source

extent are scaled and filtered to the destination extent. Scaling occurs via the following operations:

• For each destination texel, the integer coordinate of that texel is converted to an unnormalized

texture coordinate, using the effective inverse of the equations described in unnormalized to

integer conversion:

ubase = i + ½

vbase = j + ½

wbase = k + ½

• These base coordinates are then offset by the first destination offset:

uoffset = ubase - xdst0

voffset = vbase - ydst0

woffset = wbase - zdst0

aoffset = a - baseArrayCountdst

422

• The scale is determined from the source and destination regions, and applied to the offset

coordinates:

scale_u = (xsrc1 - xsrc0) / (xdst1 - xdst0)

scale_v = (ysrc1 - ysrc0) / (ydst1 - ydst0)

scale_w = (zsrc1 - zsrc0) / (zdst1 - zdst0)

uscaled = uoffset * scaleu

vscaled = voffset * scalev

wscaled = woffset * scalew

• Finally the source offset is added to the scaled coordinates, to determine the final unnormalized

coordinates used to sample from srcImage:

u = uscaled + xsrc0

v = vscaled + ysrc0

w = wscaled + zsrc0

q = mipLevel

a = aoffset + baseArrayCountsrc

These coordinates are used to sample from the source image, as described in Image Operations

chapter, with the filter mode equal to that of filter, a mipmap mode of

VK_SAMPLER_MIPMAP_MODE_NEAREST and an address mode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE.

Implementations must clamp at the edge of the source image, and may additionally clamp to the

edge of the source region.



Note

Due to allowable rounding errors in the generation of the source texture

coordinates, it is not always possible to guarantee exactly which source texels will

be sampled for a given blit. As rounding errors are implementation dependent, the

exact results of a blitting operation are also implementation dependent.

Blits are done layer by layer starting with the baseArrayLayer member of srcSubresource for the

source and dstSubresource for the destination. layerCount layers are blitted to the destination image.

3D textures are blitted slice by slice. Slices in the source region bounded by srcOffsets[0].z and

srcOffsets[1].z are copied to slices in the destination region bounded by dstOffsets[0].z and

dstOffsets[1].z. For each destination slice, a source z coordinate is linearly interpolated between

srcOffsets[0].z and srcOffsets[1].z. If the filter parameter is VK_FILTER_LINEAR then the value

423

sampled from the source image is taken by doing linear filtering using the interpolated z

coordinate. If filter parameter is VK_FILTER_NEAREST then value sampled from the source image is

taken from the single nearest slice (with undefined rounding mode).

The following filtering and conversion rules apply:

• Integer formats can only be converted to other integer formats with the same signedness.

• No format conversion is supported between depth/stencil images. The formats must match.

• Format conversions on unorm, snorm, unscaled and packed float formats of the copied aspect

of the image are performed by first converting the pixels to float values.

• For sRGB source formats, nonlinear RGB values are converted to linear representation prior to

filtering.

• After filtering, the float values are first clamped and then cast to the destination image format.

In case of sRGB destination format, linear RGB values are converted to nonlinear representation

before writing the pixel to the image.

Signed and unsigned integers are converted by first clamping to the representable range of the

destination format, then casting the value.

424

Valid Usage

• The source region specified by a given element of pRegions must be a region that is

contained within srcImage

• The destination region specified by a given element of pRegions must be a region that is

contained within dstImage

• The union of all destination regions, specified by the elements of pRegions, must not

overlap in memory with any texel that may be sampled during the blit operation

• srcImage must use a format that supports VK_FORMAT_FEATURE_BLIT_SRC_BIT, which is

indicated by VkFormatProperties::linearTilingFeatures (for linearly tiled images) or

VkFormatProperties::optimalTilingFeatures (for optimally tiled images) - as returned by
vkGetPhysicalDeviceFormatProperties

• srcImage must have been created with VK_IMAGE_USAGE_TRANSFER_SRC_BIT usage flag

• If srcImage is non-sparse then it must be bound completely and contiguously to a single

VkDeviceMemory object

• srcImageLayout must specify the layout of the image subresources of srcImage specified in

pRegions at the time this command is executed on a VkDevice

• srcImageLayout must be VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL

• dstImage must use a format that supports VK_FORMAT_FEATURE_BLIT_DST_BIT, which is

indicated by VkFormatProperties::linearTilingFeatures (for linearly tiled images) or

VkFormatProperties::optimalTilingFeatures (for optimally tiled images) - as returned by
vkGetPhysicalDeviceFormatProperties

• dstImage must have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT usage flag

• If dstImage is non-sparse then it must be bound completely and contiguously to a single

VkDeviceMemory object

• dstImageLayout must specify the layout of the image subresources of dstImage specified in

pRegions at the time this command is executed on a VkDevice

• dstImageLayout must be VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL

• The sample count of srcImage and dstImage must both be equal to VK_SAMPLE_COUNT_1_BIT

• If either of srcImage or dstImage was created with a signed integer VkFormat, the other

must also have been created with a signed integer VkFormat

• If either of srcImage or dstImage was created with an unsigned integer VkFormat, the other

must also have been created with an unsigned integer VkFormat

• If either of srcImage or dstImage was created with a depth/stencil format, the other must

have exactly the same format

• If srcImage was created with a depth/stencil format, filter must be VK_FILTER_NEAREST

• srcImage must have been created with a samples value of VK_SAMPLE_COUNT_1_BIT

• dstImage must have been created with a samples value of VK_SAMPLE_COUNT_1_BIT

• If filter is VK_FILTER_LINEAR, srcImage must be of a format which supports linear filtering,

as specified by the VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT flag in

425

VkFormatProperties::linearTilingFeatures (for a linear image) or VkFormatProperties

::optimalTilingFeatures(for an optimally tiled image) returned by
vkGetPhysicalDeviceFormatProperties

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• srcImage must be a valid VkImage handle

• srcImageLayout must be a valid VkImageLayout value

• dstImage must be a valid VkImage handle

• dstImageLayout must be a valid VkImageLayout value

• pRegions must be a pointer to an array of regionCount valid VkImageBlit structures

• filter must be a valid VkFilter value

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics

operations

• This command must only be called outside of a render pass instance

• regionCount must be greater than 0

• Each of commandBuffer, dstImage, and srcImage must have been created, allocated, or

retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Outside Graphics Transfer

The VkImageBlit structure is defined as:

426

typedef struct VkImageBlit {

 VkImageSubresourceLayers srcSubresource;

 VkOffset3D srcOffsets[2];

 VkImageSubresourceLayers dstSubresource;

 VkOffset3D dstOffsets[2];

} VkImageBlit;

• srcSubresource is the subresource to blit from.

• srcOffsets is an array of two VkOffset3D structures specifying the bounds of the source region

within srcSubresource.

• dstSubresource is the subresource to blit into.

• dstOffsets is an array of two VkOffset3D structures specifying the bounds of the destination

region within dstSubresource.

For each element of the pRegions array, a blit operation is performed the specified source and

destination regions.

427

Valid Usage

• The aspectMask member of srcSubresource and dstSubresource must match

• The layerCount member of srcSubresource and dstSubresource must match

• If either of the calling command’s srcImage or dstImage parameters are of VkImageType

VK_IMAGE_TYPE_3D, the baseArrayLayer and layerCount members of both srcSubresource and

dstSubresource must be 0 and 1, respectively

• The aspectMask member of srcSubresource must specify aspects present in the calling

command’s srcImage

• The aspectMask member of dstSubresource must specify aspects present in the calling

command’s dstImage

• srcOffset[0].x and srcOffset[1].x must both be greater than or equal to 0 and less than or

equal to the source image subresource width

• srcOffset[0].y and srcOffset[1].y must both be greater than or equal to 0 and less than or

equal to the source image subresource height

• If the calling command’s srcImage is of type VK_IMAGE_TYPE_1D, then srcOffset[0].y must be

0 and srcOffset[1].y must be 1.

• srcOffset[0].z and srcOffset[1].z must both be greater than or equal to 0 and less than or

equal to the source image subresource depth

• If the calling command’s srcImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then

srcOffset[0].z must be 0 and srcOffset[1].z must be 1.

• dstOffset[0].x and dstOffset[1].x must both be greater than or equal to 0 and less than or

equal to the destination image subresource width

• dstOffset[0].y and dstOffset[1].y must both be greater than or equal to 0 and less than or

equal to the destination image subresource height

• If the calling command’s dstImage is of type VK_IMAGE_TYPE_1D, then dstOffset[0].y must be

0 and dstOffset[1].y must be 1.

• dstOffset[0].z and dstOffset[1].z must both be greater than or equal to 0 and less than or

equal to the destination image subresource depth

• If the calling command’s dstImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then

dstOffset[0].z must be 0 and dstOffset[1].z must be 1.

Valid Usage (Implicit)

• srcSubresource must be a valid VkImageSubresourceLayers structure

• dstSubresource must be a valid VkImageSubresourceLayers structure

428

18.6. Resolving Multisample Images

To resolve a multisample image to a non-multisample image, call:

void vkCmdResolveImage(

 VkCommandBuffer commandBuffer,

 VkImage srcImage,

 VkImageLayout srcImageLayout,

 VkImage dstImage,

 VkImageLayout dstImageLayout,

 uint32_t regionCount,

 const VkImageResolve* pRegions);

• commandBuffer is the command buffer into which the command will be recorded.

• srcImage is the source image.

• srcImageLayout is the layout of the source image subresources for the resolve.

• dstImage is the destination image.

• dstImageLayout is the layout of the destination image subresources for the resolve.

• regionCount is the number of regions to resolve.

• pRegions is a pointer to an array of VkImageResolve structures specifying the regions to resolve.

During the resolve the samples corresponding to each pixel location in the source are converted to

a single sample before being written to the destination. If the source formats are floating-point or

normalized types, the sample values for each pixel are resolved in an implementation-dependent

manner. If the source formats are integer types, a single sample’s value is selected for each pixel.

srcOffset and dstOffset select the initial x, y, and z offsets in texels of the sub-regions of the source

and destination image data. extent is the size in texels of the source image to resolve in width,

height and depth.

Resolves are done layer by layer starting with baseArrayLayer member of srcSubresource for the

source and dstSubresource for the destination. layerCount layers are resolved to the destination

image.

429

Valid Usage

• The source region specified by a given element of pRegions must be a region that is

contained within srcImage

• The destination region specified by a given element of pRegions must be a region that is

contained within dstImage

• The union of all source regions, and the union of all destination regions, specified by the

elements of pRegions, must not overlap in memory

• If srcImage is non-sparse then it must be bound completely and contiguously to a single

VkDeviceMemory object

• srcImage must have a sample count equal to any valid sample count value other than
VK_SAMPLE_COUNT_1_BIT

• If dstImage is non-sparse then it must be bound completely and contiguously to a single

VkDeviceMemory object

• dstImage must have a sample count equal to VK_SAMPLE_COUNT_1_BIT

• srcImageLayout must specify the layout of the image subresources of srcImage specified in

pRegions at the time this command is executed on a VkDevice

• srcImageLayout must be VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL

• dstImageLayout must specify the layout of the image subresources of dstImage specified in

pRegions at the time this command is executed on a VkDevice

• dstImageLayout must be VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL

• If dstImage was created with tiling equal to VK_IMAGE_TILING_LINEAR, dstImage must have

been created with a format that supports being a color attachment, as specified by the

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT flag in VkFormatProperties::linearTilingFeatures

returned by vkGetPhysicalDeviceFormatProperties

• If dstImage was created with tiling equal to VK_IMAGE_TILING_OPTIMAL, dstImage must have

been created with a format that supports being a color attachment, as specified by the

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT flag in VkFormatProperties::optimalTilingFeatures

returned by vkGetPhysicalDeviceFormatProperties

• srcImage and dstImage must have been created with the same image format

430

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• srcImage must be a valid VkImage handle

• srcImageLayout must be a valid VkImageLayout value

• dstImage must be a valid VkImage handle

• dstImageLayout must be a valid VkImageLayout value

• pRegions must be a pointer to an array of regionCount valid VkImageResolve structures

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics

operations

• This command must only be called outside of a render pass instance

• regionCount must be greater than 0

• Each of commandBuffer, dstImage, and srcImage must have been created, allocated, or

retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Outside Graphics Transfer

The VkImageResolve structure is defined as:

typedef struct VkImageResolve {

 VkImageSubresourceLayers srcSubresource;

 VkOffset3D srcOffset;

 VkImageSubresourceLayers dstSubresource;

 VkOffset3D dstOffset;

 VkExtent3D extent;

} VkImageResolve;

431

• srcSubresource and dstSubresource are VkImageSubresourceLayers structures specifying the

image subresources of the images used for the source and destination image data, respectively.

Resolve of depth/stencil images is not supported.

• srcOffset and dstOffset select the initial x, y, and z offsets in texels of the sub-regions of the

source and destination image data.

• extent is the size in texels of the source image to resolve in width, height and depth.

Valid Usage

• The aspectMask member of srcSubresource and dstSubresource must only contain
VK_IMAGE_ASPECT_COLOR_BIT

• The layerCount member of srcSubresource and dstSubresource must match

• If either of the calling command’s srcImage or dstImage parameters are of VkImageType

VK_IMAGE_TYPE_3D, the baseArrayLayer and layerCount members of both srcSubresource and

dstSubresource must be 0 and 1, respectively

• srcOffset.x and (extent.width + srcOffset.x) must both be greater than or equal to 0 and

less than or equal to the source image subresource width

• srcOffset.y and (extent.height + srcOffset.y) must both be greater than or equal to 0 and

less than or equal to the source image subresource height

• If the calling command’s srcImage is of type VK_IMAGE_TYPE_1D, then srcOffset.y must be 0

and extent.height must be 1.

• srcOffset.z and (extent.depth + srcOffset.z) must both be greater than or equal to 0 and

less than or equal to the source image subresource depth

• If the calling command’s srcImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then

srcOffset.z must be 0 and extent.depth must be 1.

• dstOffset.x and (extent.width + dstOffset.x) must both be greater than or equal to 0 and

less than or equal to the destination image subresource width

• dstOffset.y and (extent.height + dstOffset.y) must both be greater than or equal to 0 and

less than or equal to the destination image subresource height

• If the calling command’s dstImage is of type VK_IMAGE_TYPE_1D, then dstOffset.y must be 0

and extent.height must be 1.

• dstOffset.z and (extent.depth + dstOffset.z) must both be greater than or equal to 0 and

less than or equal to the destination image subresource depth

• If the calling command’s dstImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then

dstOffset.z must be 0 and extent.depth must be 1.

Valid Usage (Implicit)

• srcSubresource must be a valid VkImageSubresourceLayers structure

• dstSubresource must be a valid VkImageSubresourceLayers structure

432

Chapter 19. Drawing Commands

Drawing commands (commands with Draw in the name) provoke work in a graphics pipeline.

Drawing commands are recorded into a command buffer and when executed by a queue, will

produce work which executes according to the currently bound graphics pipeline. A graphics

pipeline must be bound to a command buffer before any drawing commands are recorded in that

command buffer.

Each draw is made up of zero or more vertices and zero or more instances, which are processed by

the device and result in the assembly of primitives. Primitives are assembled according to the

pInputAssemblyState member of the VkGraphicsPipelineCreateInfo structure, which is of type

VkPipelineInputAssemblyStateCreateInfo:

typedef struct VkPipelineInputAssemblyStateCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineInputAssemblyStateCreateFlags flags;

 VkPrimitiveTopology topology;

 VkBool32 primitiveRestartEnable;

} VkPipelineInputAssemblyStateCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• topology is a VkPrimitiveTopology defining the primitive topology, as described below.

• primitiveRestartEnable controls whether a special vertex index value is treated as restarting the

assembly of primitives. This enable only applies to indexed draws (vkCmdDrawIndexed and

vkCmdDrawIndexedIndirect), and the special index value is either 0xFFFFFFFF when the

indexType parameter of vkCmdBindIndexBuffer is equal to VK_INDEX_TYPE_UINT32, or 0xFFFF when

indexType is equal to VK_INDEX_TYPE_UINT16. Primitive restart is not allowed for “list” topologies.

Restarting the assembly of primitives discards the most recent index values if those elements

formed an incomplete primitive, and restarts the primitive assembly using the subsequent indices,

but only assembling the immediately following element through the end of the originally specified

elements. The primitive restart index value comparison is performed before adding the

vertexOffset value to the index value.

433

Valid Usage

• If topology is VK_PRIMITIVE_TOPOLOGY_POINT_LIST, VK_PRIMITIVE_TOPOLOGY_LINE_LIST,

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY,

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY or VK_PRIMITIVE_TOPOLOGY_PATCH_LIST,

primitiveRestartEnable must be VK_FALSE

• If the geometry shaders feature is not enabled, topology must not be any of

VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY,

VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY,

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY or
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY

• If the tessellation shaders feature is not enabled, topology must not be
VK_PRIMITIVE_TOPOLOGY_PATCH_LIST

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO

• pNext must be NULL

• flags must be 0

• topology must be a valid VkPrimitiveTopology value

19.1. Primitive Topologies

Primitive topology determines how consecutive vertices are organized into primitives, and

determines the type of primitive that is used at the beginning of the graphics pipeline. The effective

topology for later stages of the pipeline is altered by tessellation or geometry shading (if either is in

use) and depends on the execution modes of those shaders. Supported topologies are defined by

VkPrimitiveTopology and include:

typedef enum VkPrimitiveTopology {

 VK_PRIMITIVE_TOPOLOGY_POINT_LIST = 0,

 VK_PRIMITIVE_TOPOLOGY_LINE_LIST = 1,

 VK_PRIMITIVE_TOPOLOGY_LINE_STRIP = 2,

 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST = 3,

 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP = 4,

 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN = 5,

 VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY = 6,

 VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY = 7,

 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY = 8,

 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY = 9,

 VK_PRIMITIVE_TOPOLOGY_PATCH_LIST = 10,

} VkPrimitiveTopology;

434

Each primitive topology, and its construction from a list of vertices, is summarized below.


Note

The terminology “the vertex i ” means “the vertex with index i in the ordered list

of vertices defining this primitive”.

19.1.1. Points

A series of individual points are specified with topology VK_PRIMITIVE_TOPOLOGY_POINT_LIST. Each

vertex defines a separate point.

19.1.2. Separate Lines

Individual line segments, each defined by a pair of vertices, are specified with topology

VK_PRIMITIVE_TOPOLOGY_LINE_LIST. The first two vertices define the first segment, with subsequent

pairs of vertices each defining one more segment. If the number of vertices is odd, then the last

vertex is ignored.

19.1.3. Line Strips

A series of one or more connected line segments are specified with topology

VK_PRIMITIVE_TOPOLOGY_LINE_STRIP. In this case, the first vertex specifies the first segment’s start

point while the second vertex specifies the first segment’s endpoint and the second segment’s start

point. In general, vertex i (for i > 0) specifies the beginning of the ith segment and the end of the

previous segment. The last vertex specifies the end of the last segment. If only one vertex is

specified, then no primitive is generated.

19.1.4. Triangle Strips

A triangle strip is a series of triangles connected along shared edges, and is specified with topology

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP. In this case, the first three vertices define the first triangle,

and their order is significant. Each subsequent vertex defines a new triangle using that point along

with the last two vertices from the previous triangle, as shown in figure Triangle strips, fans, and

lists. If fewer than three vertices are specified, no primitive is produced. The order of vertices in

successive triangles changes as shown in the figure, so that all triangle faces have the same

orientation.

435

0

1

2

3

4 0

1
2

3

4

0

1

2

3

4

5

Figure 5. Triangle strips, fans, and lists

Caption

In the Triangle strips, fans, and lists diagram, the sub-sections represent:

• (a) A triangle strip.

• (b) A triangle fan.

• (c) Independent triangles.

The numbers give the sequencing of the vertices in order within the vertex arrays. Note that

in (a) and (b) triangle edge ordering is determined by the first triangle, while in (c) the order

of each triangle’s edges is independent of the other triangles.

19.1.5. Triangle Fans

A triangle fan is specified with topology VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN. It is similar to a

triangle strip, but changes the vertex replaced from the previous triangle as shown in figure

Triangle strips, fans, and lists, so that all triangles in the fan share a common vertex.

19.1.6. Separate Triangles

Separate triangles are specified with topology VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, as shown in

figure Triangle strips, fans, and lists. In this case, vertices 3 i, 3 i + 1, and 3 i + 2 (in that order)

determine a triangle for each i = 0, 1, …, n-1, where there are 3 n + k vertices drawn. k is either 0, 1,

or 2; if k is not zero, the final k vertices are ignored.

19.1.7. Lines With Adjacency

Lines with adjacency are specified with topology VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY,

and are independent line segments where each endpoint has a corresponding adjacent vertex that

is accessible in a geometry shader. If a geometry shader is not active, the adjacent vertices are

ignored.

A line segment is drawn from vertex 4 i + 1 to vertex 4 i + 2 for each i = 0, 1, …, n-1, where there are

4 n + k vertices. k is either 0, 1, 2, or 3; if k is not zero, the final k vertices are ignored. For line

436

segment i, vertices 4 i and 4 i + 3 vertices are considered adjacent to vertices 4 i + 1 and 4 i + 2,

respectively, as shown in figure Lines with adjacency.

0 1 2 3

4 5 6 7

(a)

0 1 2 3 4 5

(b)
Figure 6. Lines with adjacency

Caption

In the Lines with adjacency diagram, the sub-sections represent:

• (a) Lines with adjacency.

• (b) Line strips with adjacency.

The vertices connected with solid lines belong to the main primitives. The vertices connected

by dashed lines are the adjacent vertices that are accessible in a geometry shader.

19.1.8. Line Strips With Adjacency

Line strips with adjacency are specified with topology

VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY and are similar to line strips, except that each

line segment has a pair of adjacent vertices that are accessible in a geometry shader. If a geometry

shader is not active, the adjacent vertices are ignored.

A line segment is drawn from vertex i + 1 vertex to vertex i + 2 for each i = 0, 1, …, n-1, where there

are n + 3 vertices. If there are fewer than four vertices, all vertices are ignored. For line segment i,

vertices i and i + 3 are considered adjacent to vertices i + 1 and i + 2, respectively, as shown in figure

Lines with adjacency.

19.1.9. Triangle List With Adjacency

Triangles with adjacency are specified with topology

437

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY, and are similar to separate triangles except

that each triangle edge has an adjacent vertex that is accessible in a geometry shader. If a geometry

shader is not active, the adjacent vertices are ignored.

Vertices 6 i, 6 i + 2, and 6 i + 4 (in that order) determine a triangle for each i = 0, 1, …, n-1, where

there are 6 n+k vertices. k is either 0, 1, 2, 3, 4, or 5; if k is non-zero, the final k vertices are ignored.

For triangle i, vertices 6 i + 1, 6 i + 3, and 6 i + 5 vertices are considered adjacent to edges from

vertex 6 i to 6 i + 2, from 6 i + 2 to 6 i + 4, and from 6 i + 4 to 6 i vertices, respectively, as shown in

figure Triangles with adjacency.

0

21

5

4

3

6

87

11

10

9

Figure 7. Triangles with adjacency

Caption

In the Triangles with adjacency diagram, the vertices connected with solid lines belong to the

main primitive. The vertices connected by dashed lines are the adjacent vertices that are

accessible in a geometry shader.

19.1.10. Triangle Strips With Adjacency

Triangle strips with adjacency are specified with topology

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY, and are similar to triangle strips except that

each triangle edge has an adjacent vertex that is accessible in a geometry shader. If a geometry

shader is not active, the adjacent vertices are ignored.

438

0

21

5

3 7

4

6

9

8

10

110

21

5

3 7

4

6

8

9

0

21

5

3

4

6

70

21

3

4

5

Figure 8. Triangle strips with adjacency

Caption

In the Triangle strips with adjacency diagram, the vertices connected with solid lines belong

to the main primitive; the vertices connected by dashed lines are the adjacent vertices that

are accessible in a geometry shader.

In triangle strips with adjacency, n triangles are drawn where there are 2 (n + 2) + k vertices. k is

either 0 or 1; if k is 1, the final vertex is ignored. If there are fewer than 6 vertices, the entire

primitive is ignored. Table Triangles generated by triangle strips with adjacency. describes the

vertices and order used to draw each triangle, and which vertices are considered adjacent to each

edge of the triangle, as shown in figure Triangle strips with adjacency.

Table 20. Triangles generated by triangle strips with adjacency.

Primitive Vertices Adjacent Vertices

Primitive 1st 2nd 3rd 1/2 2/3 3/1

only (i = 0, n = 1) 0 2 4 1 5 3

first (i = 0) 0 2 4 1 6 3

middle (i odd) 2 i + 2 2 i 2 i + 4 2 i-2 2 i + 3 2 i + 6

439

Primitive Vertices Adjacent Vertices

middle (i even) 2 i 2 i + 2 2 i + 4 2 i-2 2 i + 6 2 i + 3

last (i=n-1, i odd) 2 i + 2 2 i 2 i + 4 2 i-2 2 i + 3 2 i + 5

last (i=n-1, i even) 2 i 2 i + 2 2 i + 4 2 i-2 2 i + 5 2 i + 3

Caption

In the Triangles generated by triangle strips with adjacency table, each triangle is drawn

using the vertices whose numbers are in the 1st, 2nd, and 3rd columns under Primitive

Vertices, in that order. The vertices in the 1/2, 2/3, and 3/1 columns under Adjacent Vertices

are considered adjacent to the edges from the first to the second, from the second to the third,

and from the third to the first vertex of the triangle, respectively. The six rows correspond to

six cases: the first and only triangle (i = 0, n = 1), the first triangle of several (i = 0, n > 0), odd

middle triangles (i = 1, 3, 5 …), even middle triangles (i = 2, 4, 6, …), and special cases for the

last triangle, when i is either even or odd. For the purposes of this table, both the first vertex

and first triangle are numbered 0.

19.1.11. Separate Patches

Separate patches are specified with topology VK_PRIMITIVE_TOPOLOGY_PATCH_LIST. A patch is an

ordered collection of vertices used for primitive tessellation. The vertices comprising a patch have

no implied geometric ordering, and are used by tessellation shaders and the fixed-function

tessellator to generate new point, line, or triangle primitives.

Each patch in the series has a fixed number of vertices, specified by the patchControlPoints member

of the VkPipelineTessellationStateCreateInfo structure passed to vkCreateGraphicsPipelines. Once

assembled and vertex shaded, these patches are provided as input to the tessellation control shader

stage.

If the number of vertices in a patch is given by v, vertices v × i through v × i + v - 1 (in that order)

determine a patch for each i = 0, 1, …, n-1, where there are v × n + k vertices. k is in the range [0, v -

1]; if k is not zero, the final k vertices are ignored.

19.1.12. General Considerations For Polygon Primitives

Depending on the polygon mode, a polygon primitive generated from a drawing command with

topology VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN, VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY, or

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY is rendered in one of several ways, such as

outlining its border or filling its interior. The order of vertices in such a primitive is significant

during polygon rasterization and fragment shading.

19.2. Primitive Order

Primitives generated by drawing commands progress through the stages of the graphics pipeline in

primitive order. Primitive order is initially determined in the following way:

440

1. Submission order determines the initial ordering

2. For indirect draw commands, the order in which accessed instances of the

VkDrawIndirectCommand are stored in buffer, from lower indirect buffer addresses to higher

addresses.

3. If a draw command includes multiple instances, the order in which instances are executed,

from lower numbered instances to higher.

4. The order in which primitives are specified by a draw command:

◦ For non-indexed draws, from vertices with a lower numbered vertexIndex to a higher

numbered vertexIndex.

◦ For indexed draws, vertices sourced from a lower index buffer addresses to higher

addresses.

Within this order implementations further sort primitives:

5. If tessellation shading is active, by an implementation-dependent order of new primitives

generated by tessellation.

6. If geometry shading is active, by the order new primitives are generated by geometry shading.

7. If the polygon mode is not VK_POLYGON_MODE_FILL, by an implementation-dependent ordering of

the new primitives generated within the original primitive.

Primitive order is later used to define rasterization order, which determines the order in which

fragments output results to a framebuffer.

19.3. Programmable Primitive Shading

Once primitives are assembled, they proceed to the vertex shading stage of the pipeline. If the draw

includes multiple instances, then the set of primitives is sent to the vertex shading stage multiple

times, once for each instance.

It is undefined whether vertex shading occurs on vertices that are discarded as part of incomplete

primitives, but if it does occur then it operates as if they were vertices in complete primitives and

such invocations can have side effects.

Vertex shading receives two per-vertex inputs from the primitive assembly stage - the vertexIndex

and the instanceIndex. How these values are generated is defined below, with each command.

Drawing commands fall roughly into two categories:

• Non-indexed drawing commands present a sequential vertexIndex to the vertex shader. The

sequential index is generated automatically by the device (see Fixed-Function Vertex Processing

for details on both specifying the vertex attributes indexed by vertexIndex, as well as binding

vertex buffers containing those attributes to a command buffer). These commands are:

◦ vkCmdDraw

◦ vkCmdDrawIndirect

• Indexed drawing commands read index values from an index buffer and use this to compute the

441

vertexIndex value for the vertex shader. These commands are:

◦ vkCmdDrawIndexed

◦ vkCmdDrawIndexedIndirect

To bind an index buffer to a command buffer, call:

void vkCmdBindIndexBuffer(

 VkCommandBuffer commandBuffer,

 VkBuffer buffer,

 VkDeviceSize offset,

 VkIndexType indexType);

• commandBuffer is the command buffer into which the command is recorded.

• buffer is the buffer being bound.

• offset is the starting offset in bytes within buffer used in index buffer address calculations.

• indexType is a VkIndexType value specifying whether indices are treated as 16 bits or 32 bits.

Valid Usage

• offset must be less than the size of buffer

• The sum of offset and the address of the range of VkDeviceMemory object that is backing

buffer, must be a multiple of the type indicated by indexType

• buffer must have been created with the VK_BUFFER_USAGE_INDEX_BUFFER_BIT flag

• If buffer is non-sparse then it must be bound completely and contiguously to a single

VkDeviceMemory object

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• buffer must be a valid VkBuffer handle

• indexType must be a valid VkIndexType value

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics

operations

• Both of buffer, and commandBuffer must have been created, allocated, or retrieved from

the same VkDevice

442

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Both Graphics

Possible values of vkCmdBindIndexBuffer::indexType, specifying the size of indices, are:

typedef enum VkIndexType {

 VK_INDEX_TYPE_UINT16 = 0,

 VK_INDEX_TYPE_UINT32 = 1,

} VkIndexType;

• VK_INDEX_TYPE_UINT16 specifies that indices are 16-bit unsigned integer values.

• VK_INDEX_TYPE_UINT32 specifies that indices are 32-bit unsigned integer values.

The parameters for each drawing command are specified directly in the command or read from

buffer memory, depending on the command. Drawing commands that source their parameters

from buffer memory are known as indirect drawing commands.

All drawing commands interact with the Robust Buffer Access feature.

To record a non-indexed draw, call:

void vkCmdDraw(

 VkCommandBuffer commandBuffer,

 uint32_t vertexCount,

 uint32_t instanceCount,

 uint32_t firstVertex,

 uint32_t firstInstance);

• commandBuffer is the command buffer into which the command is recorded.

• vertexCount is the number of vertices to draw.

• instanceCount is the number of instances to draw.

• firstVertex is the index of the first vertex to draw.

443

• firstInstance is the instance ID of the first instance to draw.

When the command is executed, primitives are assembled using the current primitive topology and

vertexCount consecutive vertex indices with the first vertexIndex value equal to firstVertex. The

primitives are drawn instanceCount times with instanceIndex starting with firstInstance and

increasing sequentially for each instance. The assembled primitives execute the currently bound

graphics pipeline.

444

Valid Usage

• The current render pass must be compatible with the renderPass member of the

VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline currently

bound to VK_PIPELINE_BIND_POINT_GRAPHICS.

• The subpass index of the current render pass must be equal to the subpass member of the

VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline currently

bound to VK_PIPELINE_BIND_POINT_GRAPHICS.

• For each set n that is statically used by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_GRAPHICS, a descriptor set must have been bound to n at

VK_PIPELINE_BIND_POINT_GRAPHICS, with a VkPipelineLayout that is compatible for set n, with

the VkPipelineLayout used to create the current VkPipeline, as described in Pipeline Layout

Compatibility

• For each push constant that is statically used by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_GRAPHICS, a push constant value must have been set for

VK_PIPELINE_BIND_POINT_GRAPHICS, with a VkPipelineLayout that is compatible for push

constants, with the VkPipelineLayout used to create the current VkPipeline, as described in

Pipeline Layout Compatibility

• Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be

valid if they are statically used by the currently bound VkPipeline object, specified via
vkCmdBindPipeline

• All vertex input bindings accessed via vertex input variables declared in the vertex

shader entry point’s interface must have valid buffers bound

• For a given vertex buffer binding, any attribute data fetched must be entirely contained

within the corresponding vertex buffer binding, as described in Vertex Input Description

• A valid graphics pipeline must be bound to the current command buffer with
VK_PIPELINE_BIND_POINT_GRAPHICS

• If the VkPipeline object currently bound to VK_PIPELINE_BIND_POINT_GRAPHICS requires any

dynamic state, that state must have been set on the current command buffer

• Every input attachment used by the current subpass must be bound to the pipeline via a

descriptor set

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_GRAPHICS uses unnormalized coordinates, it must not be used to

sample from any VkImage with a VkImageView of the type VK_IMAGE_VIEW_TYPE_3D,

VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY, VK_IMAGE_VIEW_TYPE_2D_ARRAY or

VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_GRAPHICS uses unnormalized coordinates, it must not be used with

any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions with ImplicitLod,

Dref or Proj in their name, in any shader stage

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_GRAPHICS uses unnormalized coordinates, it must not be used with

any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions that includes a LOD

445

bias or any offset values, in any shader stage

• If the robust buffer access feature is not enabled, and any shader stage in the VkPipeline

object currently bound to VK_PIPELINE_BIND_POINT_GRAPHICS accesses a uniform buffer, it

must not access values outside of the range of that buffer specified in the currently bound

descriptor set

• If the robust buffer access feature is not enabled, and any shader stage in the VkPipeline

object currently bound to VK_PIPELINE_BIND_POINT_GRAPHICS accesses a storage buffer, it

must not access values outside of the range of that buffer specified in the currently bound

descriptor set

• Any VkImageView being sampled with VK_FILTER_LINEAR as a result of this command must

be of a format which supports linear filtering, as specified by the

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT flag in VkFormatProperties

::linearTilingFeatures (for a linear image) or VkFormatProperties::

optimalTilingFeatures(for an optimally tiled image) returned by
vkGetPhysicalDeviceFormatProperties

• Image subresources used as attachments in the current render pass must not be accessed

in any way other than as an attachment by this command.

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics

operations

• This command must only be called inside of a render pass instance

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Inside Graphics Graphics

To record an indexed draw, call:

446

void vkCmdDrawIndexed(

 VkCommandBuffer commandBuffer,

 uint32_t indexCount,

 uint32_t instanceCount,

 uint32_t firstIndex,

 int32_t vertexOffset,

 uint32_t firstInstance);

• commandBuffer is the command buffer into which the command is recorded.

• indexCount is the number of vertices to draw.

• instanceCount is the number of instances to draw.

• firstIndex is the base index within the index buffer.

• vertexOffset is the value added to the vertex index before indexing into the vertex buffer.

• firstInstance is the instance ID of the first instance to draw.

When the command is executed, primitives are assembled using the current primitive topology and

indexCount vertices whose indices are retrieved from the index buffer. The index buffer is treated

as an array of tightly packed unsigned integers of size defined by the vkCmdBindIndexBuffer

::indexType parameter with which the buffer was bound.

The first vertex index is at an offset of firstIndex * indexSize + offset within the currently bound

index buffer, where offset is the offset specified by vkCmdBindIndexBuffer and indexSize is the byte

size of the type specified by indexType. Subsequent index values are retrieved from consecutive

locations in the index buffer. Indices are first compared to the primitive restart value, then zero

extended to 32 bits (if the indexType is VK_INDEX_TYPE_UINT16) and have vertexOffset added to them,

before being supplied as the vertexIndex value.

The primitives are drawn instanceCount times with instanceIndex starting with firstInstance and

increasing sequentially for each instance. The assembled primitives execute the currently bound

graphics pipeline.

447

Valid Usage

• The current render pass must be compatible with the renderPass member of the

VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline currently

bound to VK_PIPELINE_BIND_POINT_GRAPHICS.

• The subpass index of the current render pass must be equal to the subpass member of the

VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline currently

bound to VK_PIPELINE_BIND_POINT_GRAPHICS.

• For each set n that is statically used by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_GRAPHICS, a descriptor set must have been bound to n at

VK_PIPELINE_BIND_POINT_GRAPHICS, with a VkPipelineLayout that is compatible for set n, with

the VkPipelineLayout used to create the current VkPipeline, as described in Pipeline Layout

Compatibility

• For each push constant that is statically used by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_GRAPHICS, a push constant value must have been set for

VK_PIPELINE_BIND_POINT_GRAPHICS, with a VkPipelineLayout that is compatible for push

constants, with the VkPipelineLayout used to create the current VkPipeline, as described in

Pipeline Layout Compatibility

• Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be

valid if they are statically used by the currently bound VkPipeline object, specified via
vkCmdBindPipeline

• All vertex input bindings accessed via vertex input variables declared in the vertex

shader entry point’s interface must have valid buffers bound

• For a given vertex buffer binding, any attribute data fetched must be entirely contained

within the corresponding vertex buffer binding, as described in Vertex Input Description

• A valid graphics pipeline must be bound to the current command buffer with
VK_PIPELINE_BIND_POINT_GRAPHICS

• If the VkPipeline object currently bound to VK_PIPELINE_BIND_POINT_GRAPHICS requires any

dynamic state, that state must have been set on the current command buffer

• (indexSize * (firstIndex + indexCount) + offset) must be less than or equal to the size of

the currently bound index buffer, with indexSize being based on the type specified by

indexType, where the index buffer, indexType, and offset are specified via
vkCmdBindIndexBuffer

• Every input attachment used by the current subpass must be bound to the pipeline via a

descriptor set

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_GRAPHICS uses unnormalized coordinates, it must not be used to

sample from any VkImage with a VkImageView of the type VK_IMAGE_VIEW_TYPE_3D,

VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY, VK_IMAGE_VIEW_TYPE_2D_ARRAY or

VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_GRAPHICS uses unnormalized coordinates, it must not be used with

any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions with ImplicitLod,

448

Dref or Proj in their name, in any shader stage

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_GRAPHICS uses unnormalized coordinates, it must not be used with

any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions that includes a LOD

bias or any offset values, in any shader stage

• If the robust buffer access feature is not enabled, and any shader stage in the VkPipeline

object currently bound to VK_PIPELINE_BIND_POINT_GRAPHICS accesses a uniform buffer, it

must not access values outside of the range of that buffer specified in the currently bound

descriptor set

• If the robust buffer access feature is not enabled, and any shader stage in the VkPipeline

object currently bound to VK_PIPELINE_BIND_POINT_GRAPHICS accesses a storage buffer, it

must not access values outside of the range of that buffer specified in the currently bound

descriptor set

• Any VkImageView being sampled with VK_FILTER_LINEAR as a result of this command must

be of a format which supports linear filtering, as specified by the

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT flag in VkFormatProperties

::linearTilingFeatures (for a linear image) or VkFormatProperties::

optimalTilingFeatures(for an optimally tiled image) returned by
vkGetPhysicalDeviceFormatProperties

• Image subresources used as attachments in the current render pass must not be accessed

in any way other than as an attachment by this command.

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics

operations

• This command must only be called inside of a render pass instance

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

449

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Inside Graphics Graphics

To record a non-indexed indirect draw, call:

void vkCmdDrawIndirect(

 VkCommandBuffer commandBuffer,

 VkBuffer buffer,

 VkDeviceSize offset,

 uint32_t drawCount,

 uint32_t stride);

• commandBuffer is the command buffer into which the command is recorded.

• buffer is the buffer containing draw parameters.

• offset is the byte offset into buffer where parameters begin.

• drawCount is the number of draws to execute, and can be zero.

• stride is the byte stride between successive sets of draw parameters.

vkCmdDrawIndirect behaves similarly to vkCmdDraw except that the parameters are read by the

device from a buffer during execution. drawCount draws are executed by the command, with

parameters taken from buffer starting at offset and increasing by stride bytes for each successive

draw. The parameters of each draw are encoded in an array of VkDrawIndirectCommand

structures. If drawCount is less than or equal to one, stride is ignored.

450

Valid Usage

• If buffer is non-sparse then it must be bound completely and contiguously to a single

VkDeviceMemory object

• offset must be a multiple of 4

• If drawCount is greater than 1, stride must be a multiple of 4 and must be greater than or

equal to sizeof(VkDrawIndirectCommand)

• If the multi-draw indirect feature is not enabled, drawCount must be 0 or 1

• If the drawIndirectFirstInstance feature is not enabled, all the firstInstance members of

the VkDrawIndirectCommand structures accessed by this command must be 0

• The current render pass must be compatible with the renderPass member of the

VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline currently

bound to VK_PIPELINE_BIND_POINT_GRAPHICS.

• The subpass index of the current render pass must be equal to the subpass member of the

VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline currently

bound to VK_PIPELINE_BIND_POINT_GRAPHICS.

• For each set n that is statically used by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_GRAPHICS, a descriptor set must have been bound to n at

VK_PIPELINE_BIND_POINT_GRAPHICS, with a VkPipelineLayout that is compatible for set n, with

the VkPipelineLayout used to create the current VkPipeline, as described in Pipeline Layout

Compatibility

• For each push constant that is statically used by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_GRAPHICS, a push constant value must have been set for

VK_PIPELINE_BIND_POINT_GRAPHICS, with a VkPipelineLayout that is compatible for push

constants, with the VkPipelineLayout used to create the current VkPipeline, as described in

Pipeline Layout Compatibility

• Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be

valid if they are statically used by the currently bound VkPipeline object, specified via
vkCmdBindPipeline

• All vertex input bindings accessed via vertex input variables declared in the vertex

shader entry point’s interface must have valid buffers bound

• A valid graphics pipeline must be bound to the current command buffer with
VK_PIPELINE_BIND_POINT_GRAPHICS

• If the VkPipeline object currently bound to VK_PIPELINE_BIND_POINT_GRAPHICS requires any

dynamic state, that state must have been set on the current command buffer

• If drawCount is equal to 1, (offset + sizeof(VkDrawIndirectCommand)) must be less than or

equal to the size of buffer

• If drawCount is greater than 1, (stride × (drawCount - 1) + offset +

sizeof(VkDrawIndirectCommand)) must be less than or equal to the size of buffer

• drawCount must be less than or equal to VkPhysicalDeviceLimits::maxDrawIndirectCount

• Every input attachment used by the current subpass must be bound to the pipeline via a

451

descriptor set

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_GRAPHICS uses unnormalized coordinates, it must not be used to

sample from any VkImage with a VkImageView of the type VK_IMAGE_VIEW_TYPE_3D,

VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY, VK_IMAGE_VIEW_TYPE_2D_ARRAY or

VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_GRAPHICS uses unnormalized coordinates, it must not be used with

any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions with ImplicitLod,

Dref or Proj in their name, in any shader stage

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_GRAPHICS uses unnormalized coordinates, it must not be used with

any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions that includes a LOD

bias or any offset values, in any shader stage

• If the robust buffer access feature is not enabled, and any shader stage in the VkPipeline

object currently bound to VK_PIPELINE_BIND_POINT_GRAPHICS accesses a uniform buffer, it

must not access values outside of the range of that buffer specified in the currently bound

descriptor set

• If the robust buffer access feature is not enabled, and any shader stage in the VkPipeline

object currently bound to VK_PIPELINE_BIND_POINT_GRAPHICS accesses a storage buffer, it

must not access values outside of the range of that buffer specified in the currently bound

descriptor set

• Any VkImageView being sampled with VK_FILTER_LINEAR as a result of this command must

be of a format which supports linear filtering, as specified by the

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT flag in VkFormatProperties

::linearTilingFeatures (for a linear image) or VkFormatProperties::

optimalTilingFeatures(for an optimally tiled image) returned by
vkGetPhysicalDeviceFormatProperties

• Image subresources used as attachments in the current render pass must not be accessed

in any way other than as an attachment by this command.

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• buffer must be a valid VkBuffer handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics

operations

• This command must only be called inside of a render pass instance

• Both of buffer, and commandBuffer must have been created, allocated, or retrieved from

the same VkDevice

452

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Inside Graphics Graphics

The VkDrawIndirectCommand structure is defined as:

typedef struct VkDrawIndirectCommand {

 uint32_t vertexCount;

 uint32_t instanceCount;

 uint32_t firstVertex;

 uint32_t firstInstance;

} VkDrawIndirectCommand;

• vertexCount is the number of vertices to draw.

• instanceCount is the number of instances to draw.

• firstVertex is the index of the first vertex to draw.

• firstInstance is the instance ID of the first instance to draw.

The members of VkDrawIndirectCommand have the same meaning as the similarly named parameters

of vkCmdDraw.

Valid Usage

• For a given vertex buffer binding, any attribute data fetched must be entirely contained

within the corresponding vertex buffer binding, as described in Vertex Input Description

• If the drawIndirectFirstInstance feature is not enabled, firstInstance must be 0

To record an indexed indirect draw, call:

453

void vkCmdDrawIndexedIndirect(

 VkCommandBuffer commandBuffer,

 VkBuffer buffer,

 VkDeviceSize offset,

 uint32_t drawCount,

 uint32_t stride);

• commandBuffer is the command buffer into which the command is recorded.

• buffer is the buffer containing draw parameters.

• offset is the byte offset into buffer where parameters begin.

• drawCount is the number of draws to execute, and can be zero.

• stride is the byte stride between successive sets of draw parameters.

vkCmdDrawIndexedIndirect behaves similarly to vkCmdDrawIndexed except that the parameters are

read by the device from a buffer during execution. drawCount draws are executed by the command,

with parameters taken from buffer starting at offset and increasing by stride bytes for each

successive draw. The parameters of each draw are encoded in an array of

VkDrawIndexedIndirectCommand structures. If drawCount is less than or equal to one, stride is

ignored.

454

Valid Usage

• If buffer is non-sparse then it must be bound completely and contiguously to a single

VkDeviceMemory object

• offset must be a multiple of 4

• If drawCount is greater than 1, stride must be a multiple of 4 and must be greater than or

equal to sizeof(VkDrawIndexedIndirectCommand)

• If the multi-draw indirect feature is not enabled, drawCount must be 0 or 1

• If the drawIndirectFirstInstance feature is not enabled, all the firstInstance members of

the VkDrawIndexedIndirectCommand structures accessed by this command must be 0

• The current render pass must be compatible with the renderPass member of the

VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline currently

bound to VK_PIPELINE_BIND_POINT_GRAPHICS.

• The subpass index of the current render pass must be equal to the subpass member of the

VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline currently

bound to VK_PIPELINE_BIND_POINT_GRAPHICS.

• For each set n that is statically used by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_GRAPHICS, a descriptor set must have been bound to n at

VK_PIPELINE_BIND_POINT_GRAPHICS, with a VkPipelineLayout that is compatible for set n, with

the VkPipelineLayout used to create the current VkPipeline, as described in Pipeline Layout

Compatibility

• For each push constant that is statically used by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_GRAPHICS, a push constant value must have been set for

VK_PIPELINE_BIND_POINT_GRAPHICS, with a VkPipelineLayout that is compatible for push

constants, with the VkPipelineLayout used to create the current VkPipeline, as described in

Pipeline Layout Compatibility

• Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be

valid if they are statically used by the currently bound VkPipeline object, specified via
vkCmdBindPipeline

• All vertex input bindings accessed via vertex input variables declared in the vertex

shader entry point’s interface must have valid buffers bound

• A valid graphics pipeline must be bound to the current command buffer with
VK_PIPELINE_BIND_POINT_GRAPHICS

• If the VkPipeline object currently bound to VK_PIPELINE_BIND_POINT_GRAPHICS requires any

dynamic state, that state must have been set on the current command buffer

• If drawCount is equal to 1, (offset + sizeof(VkDrawIndexedIndirectCommand)) must be less than

or equal to the size of buffer

• If drawCount is greater than 1, (stride × (drawCount - 1) + offset +

sizeof(VkDrawIndexedIndirectCommand)) must be less than or equal to the size of buffer

• drawCount must be less than or equal to VkPhysicalDeviceLimits::maxDrawIndirectCount

• Every input attachment used by the current subpass must be bound to the pipeline via a

455

descriptor set

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_GRAPHICS uses unnormalized coordinates, it must not be used to

sample from any VkImage with a VkImageView of the type VK_IMAGE_VIEW_TYPE_3D,

VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY, VK_IMAGE_VIEW_TYPE_2D_ARRAY or

VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_GRAPHICS uses unnormalized coordinates, it must not be used with

any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions with ImplicitLod,

Dref or Proj in their name, in any shader stage

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_GRAPHICS uses unnormalized coordinates, it must not be used with

any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions that includes a LOD

bias or any offset values, in any shader stage

• If the robust buffer access feature is not enabled, and any shader stage in the VkPipeline

object currently bound to VK_PIPELINE_BIND_POINT_GRAPHICS accesses a uniform buffer, it

must not access values outside of the range of that buffer specified in the currently bound

descriptor set

• If the robust buffer access feature is not enabled, and any shader stage in the VkPipeline

object currently bound to VK_PIPELINE_BIND_POINT_GRAPHICS accesses a storage buffer, it

must not access values outside of the range of that buffer specified in the currently bound

descriptor set

• Any VkImageView being sampled with VK_FILTER_LINEAR as a result of this command must

be of a format which supports linear filtering, as specified by the

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT flag in VkFormatProperties

::linearTilingFeatures (for a linear image) or VkFormatProperties::

optimalTilingFeatures(for an optimally tiled image) returned by
vkGetPhysicalDeviceFormatProperties

• Image subresources used as attachments in the current render pass must not be accessed

in any way other than as an attachment by this command.

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• buffer must be a valid VkBuffer handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics

operations

• This command must only be called inside of a render pass instance

• Both of buffer, and commandBuffer must have been created, allocated, or retrieved from

the same VkDevice

456

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Inside Graphics Graphics

The VkDrawIndexedIndirectCommand structure is defined as:

typedef struct VkDrawIndexedIndirectCommand {

 uint32_t indexCount;

 uint32_t instanceCount;

 uint32_t firstIndex;

 int32_t vertexOffset;

 uint32_t firstInstance;

} VkDrawIndexedIndirectCommand;

• indexCount is the number of vertices to draw.

• instanceCount is the number of instances to draw.

• firstIndex is the base index within the index buffer.

• vertexOffset is the value added to the vertex index before indexing into the vertex buffer.

• firstInstance is the instance ID of the first instance to draw.

The members of VkDrawIndexedIndirectCommand have the same meaning as the similarly named

parameters of vkCmdDrawIndexed.

Valid Usage

• For a given vertex buffer binding, any attribute data fetched must be entirely contained

within the corresponding vertex buffer binding, as described in Vertex Input Description

• (indexSize * (firstIndex + indexCount) + offset) must be less than or equal to the size of

the currently bound index buffer, with indexSize being based on the type specified by

indexType, where the index buffer, indexType, and offset are specified via
vkCmdBindIndexBuffer

• If the drawIndirectFirstInstance feature is not enabled, firstInstance must be 0

457

Chapter 20. Fixed-Function Vertex

Processing

Some implementations have specialized fixed-function hardware for fetching and format-

converting vertex input data from buffers, rather than performing the fetch as part of the vertex

shader. Vulkan includes a vertex attribute fetch stage in the graphics pipeline in order to take

advantage of this.

20.1. Vertex Attributes

Vertex shaders can define input variables, which receive vertex attribute data transferred from one

or more VkBuffer(s) by drawing commands. Vertex shader input variables are bound to buffers via

an indirect binding where the vertex shader associates a vertex input attribute number with each

variable, vertex input attributes are associated to vertex input bindings on a per-pipeline basis, and

vertex input bindings are associated with specific buffers on a per-draw basis via the

vkCmdBindVertexBuffers command. Vertex input attribute and vertex input binding descriptions also

contain format information controlling how data is extracted from buffer memory and converted

to the format expected by the vertex shader.

There are VkPhysicalDeviceLimits::maxVertexInputAttributes number of vertex input attributes and

VkPhysicalDeviceLimits::maxVertexInputBindings number of vertex input bindings (each referred to

by zero-based indices), where there are at least as many vertex input attributes as there are vertex

input bindings. Applications can store multiple vertex input attributes interleaved in a single

buffer, and use a single vertex input binding to access those attributes.

In GLSL, vertex shaders associate input variables with a vertex input attribute number using the

location layout qualifier. The component layout qualifier associates components of a vertex shader

input variable with components of a vertex input attribute.

GLSL example

// Assign location M to variableName

layout (location=M, component=2) in vec2 variableName;

// Assign locations [N,N+L) to the array elements of variableNameArray

layout (location=N) in vec4 variableNameArray[L];

In SPIR-V, vertex shaders associate input variables with a vertex input attribute number using the

Location decoration. The Component decoration associates components of a vertex shader input

variable with components of a vertex input attribute. The Location and Component decorations are

specified via the OpDecorate instruction.

458

SPIR-V example

 ...

 %1 = OpExtInstImport "GLSL.std.450"

 ...

 OpName %9 "variableName"

 OpName %15 "variableNameArray"

 OpDecorate %18 Builtin VertexIndex

 OpDecorate %19 Builtin InstanceIndex

 OpDecorate %9 Location M

 OpDecorate %9 Component 2

 OpDecorate %15 Location N

 ...

 %2 = OpTypeVoid

 %3 = OpTypeFunction %2

 %6 = OpTypeFloat 32

 %7 = OpTypeVector %6 2

 %8 = OpTypePointer Input %7

 %9 = OpVariable %8 Input

 %10 = OpTypeVector %6 4

 %11 = OpTypeInt 32 0

 %12 = OpConstant %11 L

 %13 = OpTypeArray %10 %12

 %14 = OpTypePointer Input %13

 %15 = OpVariable %14 Input

 ...

20.1.1. Attribute Location and Component Assignment

Vertex shaders allow Location and Component decorations on input variable declarations. The

Location decoration specifies which vertex input attribute is used to read and interpret the data

that a variable will consume. The Component decoration allows the location to be more finely

specified for scalars and vectors, down to the individual components within a location that are

consumed. The components within a location are 0, 1, 2, and 3. A variable starting at component N

will consume components N, N+1, N+2, … up through its size. For single precision types, it is invalid

if the sequence of components gets larger than 3.

When a vertex shader input variable declared using a scalar or vector 32-bit data type is assigned a

location, its value(s) are taken from the components of the input attribute specified with the

corresponding VkVertexInputAttributeDescription::location. The components used depend on the

type of variable and the Component decoration specified in the variable declaration, as identified in

Input attribute components accessed by 32-bit input variables. Any 32-bit scalar or vector input will

consume a single location. For 32-bit data types, missing components are filled in with default

values as described below.

Table 21. Input attribute components accessed by 32-bit input variables

459

32-bit data type Component

decoration

Components

consumed

scalar 0 or unspecified (x, o, o, o)

scalar 1 (o, y, o, o)

scalar 2 (o, o, z, o)

scalar 3 (o, o, o, w)

two-component vector 0 or unspecified (x, y, o, o)

two-component vector 1 (o, y, z, o)

two-component vector 2 (o, o, z, w)

three-component vector 0 or unspecified (x, y, z, o)

three-component vector 1 (o, y, z, w)

four-component vector 0 or unspecified (x, y, z, w)

Components indicated by `o' are available for use by other input variables which are sourced from

the same attribute, and if used, are either filled with the corresponding component from the input

format (if present), or the default value.

When a vertex shader input variable declared using a 32-bit floating point matrix type is assigned a

location i, its values are taken from consecutive input attributes starting with the corresponding

VkVertexInputAttributeDescription::location. Such matrices are treated as an array of column

vectors with values taken from the input attributes identified in Input attributes accessed by 32-bit

input matrix variables. The VkVertexInputAttributeDescription::format must be specified with a

VkFormat that corresponds to the appropriate type of column vector. The Component decoration

must not be used with matrix types.

Table 22. Input attributes accessed by 32-bit input matrix variables

Data

type

Column vector type Locations

consumed

Components consumed

mat2 two-component vector i, i+1 (x, y, o, o), (x, y, o, o)

mat2x3 three-component

vector

i, i+1 (x, y, z, o), (x, y, z, o)

mat2x4 four-component

vector

i, i+1 (x, y, z, w), (x, y, z, w)

mat3x2 two-component vector i, i+1, i+2 (x, y, o, o), (x, y, o, o), (x, y, o, o)

mat3 three-component

vector

i, i+1, i+2 (x, y, z, o), (x, y, z, o), (x, y, z, o)

mat3x4 four-component

vector

i, i+1, i+2 (x, y, z, w), (x, y, z, w), (x, y, z, w)

mat4x2 two-component vector i, i+1, i+2, i+3 (x, y, o, o), (x, y, o, o), (x, y, o, o), (x, y, o, o)

mat4x3 three-component

vector

i, i+1, i+2, i+3 (x, y, z, o), (x, y, z, o), (x, y, z, o), (x, y, z, o)

mat4 four-component

vector

i, i+1, i+2, i+3 (x, y, z, w), (x, y, z, w), (x, y, z, w), (x, y, z, w)

460

Components indicated by `o' are available for use by other input variables which are sourced from

the same attribute, and if used, are either filled with the corresponding component from the input

(if present), or the default value.

When a vertex shader input variable declared using a scalar or vector 64-bit data type is assigned a

location i, its values are taken from consecutive input attributes starting with the corresponding

VkVertexInputAttributeDescription::location. The locations and components used depend on the

type of variable and the Component decoration specified in the variable declaration, as identified in

Input attribute locations and components accessed by 64-bit input variables. For 64-bit data types,

no default attribute values are provided. Input variables must not use more components than

provided by the attribute. Input attributes which have one- or two-component 64-bit formats will

consume a single location. Input attributes which have three- or four-component 64-bit formats will

consume two consecutive locations. A 64-bit scalar data type will consume two components, and a

64-bit two-component vector data type will consume all four components available within a

location. A three- or four-component 64-bit data type must not specify a component. A three-

component 64-bit data type will consume all four components of the first location and components

0 and 1 of the second location. This leaves components 2 and 3 available for other component-

qualified declarations. A four-component 64-bit data type will consume all four components of the

first location and all four components of the second location. It is invalid for a scalar or two-

component 64-bit data type to specify a component of 1 or 3.

Table 23. Input attribute locations and components accessed by 64-bit input variables

Input format

Locations

consumed
64-bit data type

Location

decoration

Component

decoration

32-bit

component

s

consumed

R64 i scalar i 0 or unspecified (x, y, -, -)

R64G64 i

scalar i 0 or unspecified (x, y, o, o)

scalar i 2 (o, o, z, w)

two-component vector i 0 or unspecified (x, y, z, w)

R64G64B64 i, i+1

scalar i 0 or unspecified (x, y, o, o),

(o, o, -, -)

scalar i 2 (o, o, z, w),

(o, o, -, -)

scalar i+1 0 or unspecified (o, o, o, o),

(x, y, -, -)

two-component vector i 0 or unspecified (x, y, z, w),

(o, o, -, -)

three-component

vector

i unspecified (x, y, z, w),

(x, y, -, -)

461

Input format

Locations

consumed
64-bit data type

Location

decoration

Component

decoration

32-bit

component

s

consumed

R64G64B64A64 i, i+1

scalar i 0 or unspecified (x, y, o, o),

(o, o, o, o)

scalar i 2 (o, o, z, w),

(o, o, o, o)

scalar i+1 0 or unspecified (o, o, o, o),

(x, y, o, o)

scalar i+1 2 (o, o, o, o),

(o, o, z, w)

two-component vector i 0 or unspecified (x, y, z, w),

(o, o, o, o)

two-component vector i+1 0 or unspecified (o, o, o, o),

(x, y, z, w)

three-component

vector

i unspecified (x, y, z, w),

(x, y, o, o)

four-component vector i unspecified (x, y, z, w),

(x, y, z, w)

Components indicated by `o' are available for use by other input variables which are sourced from

the same attribute. Components indicated by `-' are not available for input variables as there are no

default values provided for 64-bit data types, and there is no data provided by the input format.

When a vertex shader input variable declared using a 64-bit floating-point matrix type is assigned a

location i, its values are taken from consecutive input attribute locations. Such matrices are treated

as an array of column vectors with values taken from the input attributes as shown in Input

attribute locations and components accessed by 64-bit input variables. Each column vector starts at

the location immediately following the last location of the previous column vector. The number of

attributes and components assigned to each matrix is determined by the matrix dimensions and

ranges from two to eight locations.

When a vertex shader input variable declared using an array type is assigned a location, its values

are taken from consecutive input attributes starting with the corresponding

VkVertexInputAttributeDescription::location. The number of attributes and components assigned to

each element are determined according to the data type of the array elements and Component

decoration (if any) specified in the declaration of the array, as described above. Each element of the

array, in order, is assigned to consecutive locations, but all at the same specified component within

each location.

Only input variables declared with the data types and component decorations as specified above

are supported. Location aliasing is causing two variables to have the same location number.

Component aliasing is assigning the same (or overlapping) component number for two location

aliases. Location aliasing is allowed only if it does not cause component aliasing. Further, when

location aliasing, the aliases sharing the location must all have the same SPIR-V floating-point

component type or all have the same width integer-type components.

462

20.2. Vertex Input Description

Applications specify vertex input attribute and vertex input binding descriptions as part of graphics

pipeline creation. The VkGraphicsPipelineCreateInfo::pVertexInputState points to a structure of

type VkPipelineVertexInputStateCreateInfo.

The VkPipelineVertexInputStateCreateInfo structure is defined as:

typedef struct VkPipelineVertexInputStateCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineVertexInputStateCreateFlags flags;

 uint32_t vertexBindingDescriptionCount;

 const VkVertexInputBindingDescription* pVertexBindingDescriptions;

 uint32_t vertexAttributeDescriptionCount;

 const VkVertexInputAttributeDescription* pVertexAttributeDescriptions;

} VkPipelineVertexInputStateCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• vertexBindingDescriptionCount is the number of vertex binding descriptions provided in

pVertexBindingDescriptions.

• pVertexBindingDescriptions is a pointer to an array of VkVertexInputBindingDescription

structures.

• vertexAttributeDescriptionCount is the number of vertex attribute descriptions provided in

pVertexAttributeDescriptions.

• pVertexAttributeDescriptions is a pointer to an array of VkVertexInputAttributeDescription

structures.

Valid Usage

• vertexBindingDescriptionCount must be less than or equal to VkPhysicalDeviceLimits

::maxVertexInputBindings

• vertexAttributeDescriptionCount must be less than or equal to VkPhysicalDeviceLimits

::maxVertexInputAttributes

• For every binding specified by any given element of pVertexAttributeDescriptions, a

VkVertexInputBindingDescription must exist in pVertexBindingDescriptions with the same

value of binding

• All elements of pVertexBindingDescriptions must describe distinct binding numbers

• All elements of pVertexAttributeDescriptions must describe distinct attribute locations

463

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO

• pNext must be NULL

• flags must be 0

• If vertexBindingDescriptionCount is not 0, pVertexBindingDescriptions must be a pointer to

an array of vertexBindingDescriptionCount valid VkVertexInputBindingDescription

structures

• If vertexAttributeDescriptionCount is not 0, pVertexAttributeDescriptions must be a

pointer to an array of vertexAttributeDescriptionCount valid

VkVertexInputAttributeDescription structures

Each vertex input binding is specified by an instance of the VkVertexInputBindingDescription

structure.

The VkVertexInputBindingDescription structure is defined as:

typedef struct VkVertexInputBindingDescription {

 uint32_t binding;

 uint32_t stride;

 VkVertexInputRate inputRate;

} VkVertexInputBindingDescription;

• binding is the binding number that this structure describes.

• stride is the distance in bytes between two consecutive elements within the buffer.

• inputRate is a VkVertexInputRate value specifying whether vertex attribute addressing is a

function of the vertex index or of the instance index.

Valid Usage

• binding must be less than VkPhysicalDeviceLimits::maxVertexInputBindings

• stride must be less than or equal to VkPhysicalDeviceLimits::maxVertexInputBindingStride

Valid Usage (Implicit)

• inputRate must be a valid VkVertexInputRate value

Possible values of VkVertexInputBindingDescription::inputRate, specifying the rate at which vertex

attributes are pulled from buffers, are:

464

typedef enum VkVertexInputRate {

 VK_VERTEX_INPUT_RATE_VERTEX = 0,

 VK_VERTEX_INPUT_RATE_INSTANCE = 1,

} VkVertexInputRate;

• VK_VERTEX_INPUT_RATE_VERTEX specifies that vertex attribute addressing is a function of the vertex

index.

• VK_VERTEX_INPUT_RATE_INSTANCE specifies that vertex attribute addressing is a function of the

instance index.

Each vertex input attribute is specified by an instance of the VkVertexInputAttributeDescription

structure.

The VkVertexInputAttributeDescription structure is defined as:

typedef struct VkVertexInputAttributeDescription {

 uint32_t location;

 uint32_t binding;

 VkFormat format;

 uint32_t offset;

} VkVertexInputAttributeDescription;

• location is the shader binding location number for this attribute.

• binding is the binding number which this attribute takes its data from.

• format is the size and type of the vertex attribute data.

• offset is a byte offset of this attribute relative to the start of an element in the vertex input

binding.

Valid Usage

• location must be less than VkPhysicalDeviceLimits::maxVertexInputAttributes

• binding must be less than VkPhysicalDeviceLimits::maxVertexInputBindings

• offset must be less than or equal to VkPhysicalDeviceLimits

::maxVertexInputAttributeOffset

• format must be allowed as a vertex buffer format, as specified by the

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT flag in VkFormatProperties::bufferFeatures returned

by vkGetPhysicalDeviceFormatProperties

Valid Usage (Implicit)

• format must be a valid VkFormat value

465

To bind vertex buffers to a command buffer for use in subsequent draw commands, call:

void vkCmdBindVertexBuffers(

 VkCommandBuffer commandBuffer,

 uint32_t firstBinding,

 uint32_t bindingCount,

 const VkBuffer* pBuffers,

 const VkDeviceSize* pOffsets);

• commandBuffer is the command buffer into which the command is recorded.

• firstBinding is the index of the first vertex input binding whose state is updated by the

command.

• bindingCount is the number of vertex input bindings whose state is updated by the command.

• pBuffers is a pointer to an array of buffer handles.

• pOffsets is a pointer to an array of buffer offsets.

The values taken from elements i of pBuffers and pOffsets replace the current state for the vertex

input binding firstBinding + i, for i in [0, bindingCount). The vertex input binding is updated to start

at the offset indicated by pOffsets[i] from the start of the buffer pBuffers[i]. All vertex input

attributes that use each of these bindings will use these updated addresses in their address

calculations for subsequent draw commands.

Valid Usage

• firstBinding must be less than VkPhysicalDeviceLimits::maxVertexInputBindings

• The sum of firstBinding and bindingCount must be less than or equal to

VkPhysicalDeviceLimits::maxVertexInputBindings

• All elements of pOffsets must be less than the size of the corresponding element in
pBuffers

• All elements of pBuffers must have been created with the

VK_BUFFER_USAGE_VERTEX_BUFFER_BIT flag

• Each element of pBuffers that is non-sparse must be bound completely and contiguously

to a single VkDeviceMemory object

466

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• pBuffers must be a pointer to an array of bindingCount valid VkBuffer handles

• pOffsets must be a pointer to an array of bindingCount VkDeviceSize values

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics

operations

• bindingCount must be greater than 0

• Both of commandBuffer, and the elements of pBuffers must have been created, allocated, or

retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Both Graphics

The address of each attribute for each vertexIndex and instanceIndex is calculated as follows:

• Let attribDesc be the member of VkPipelineVertexInputStateCreateInfo

::pVertexAttributeDescriptions with VkVertexInputAttributeDescription::location equal to the

vertex input attribute number.

• Let bindingDesc be the member of VkPipelineVertexInputStateCreateInfo

::pVertexBindingDescriptions with VkVertexInputAttributeDescription::binding equal to

attribDesc.binding.

• Let vertexIndex be the index of the vertex within the draw (a value between firstVertex and

firstVertex+vertexCount for vkCmdDraw, or a value taken from the index buffer for

vkCmdDrawIndexed), and let instanceIndex be the instance number of the draw (a value between

firstInstance and firstInstance+instanceCount).

467

bufferBindingAddress = buffer[binding].baseAddress + offset[binding];

if (bindingDesc.inputRate == VK_VERTEX_INPUT_RATE_VERTEX)

 vertexOffset = vertexIndex * bindingDesc.stride;

else

 vertexOffset = instanceIndex * bindingDesc.stride;

attribAddress = bufferBindingAddress + vertexOffset + attribDesc.offset;

For each attribute, raw data is extracted starting at attribAddress and is converted from the

VkVertexInputAttributeDescription’s format to either to floating-point, unsigned integer, or signed

integer based on the base type of the format; the base type of the format must match the base type

of the input variable in the shader. If format is a packed format, attribAddress must be a multiple of

the size in bytes of the whole attribute data type as described in Packed Formats. Otherwise,

attribAddress must be a multiple of the size in bytes of the component type indicated by format (see

Formats). If the format does not include G, B, or A components, then those are filled with (0,0,1) as

needed (using either 1.0f or integer 1 based on the format) for attributes that are not 64-bit data

types. The number of components in the vertex shader input variable need not exactly match the

number of components in the format. If the vertex shader has fewer components, the extra

components are discarded.

20.3. Example

To create a graphics pipeline that uses the following vertex description:

struct Vertex

{

 float x, y, z, w;

 uint8_t u, v;

};

The application could use the following set of structures:

468

const VkVertexInputBindingDescription binding =

{

 0, // binding

 sizeof(Vertex), // stride

 VK_VERTEX_INPUT_RATE_VERTEX // inputRate

};

const VkVertexInputAttributeDescription attributes[] =

{

 {

 0, // location

 binding.binding, // binding

 VK_FORMAT_R32G32B32A32_SFLOAT, // format

 0 // offset

 },

 {

 1, // location

 binding.binding, // binding

 VK_FORMAT_R8G8_UNORM, // format

 4 * sizeof(float) // offset

 }

};

const VkPipelineVertexInputStateCreateInfo viInfo =

{

 VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_CREATE_INFO, // sType

 NULL, // pNext

 0, // flags

 1, // vertexBindingDescriptionCount

 &binding, // pVertexBindingDescriptions

 2, // vertexAttributeDescriptionCount

 &attributes[0] // pVertexAttributeDescriptions

};

469

Chapter 21. Tessellation

Tessellation involves three pipeline stages. First, a tessellation control shader transforms control

points of a patch and can produce per-patch data. Second, a fixed-function tessellator generates

multiple primitives corresponding to a tessellation of the patch in (u,v) or (u,v,w) parameter space.

Third, a tessellation evaluation shader transforms the vertices of the tessellated patch, for example

to compute their positions and attributes as part of the tessellated surface. The tessellator is

enabled when the pipeline contains both a tessellation control shader and a tessellation evaluation

shader.

21.1. Tessellator

If a pipeline includes both tessellation shaders (control and evaluation), the tessellator consumes

each input patch (after vertex shading) and produces a new set of independent primitives (points,

lines, or triangles). These primitives are logically produced by subdividing a geometric primitive

(rectangle or triangle) according to the per-patch outer and inner tessellation levels written by the

tessellation control shader. These levels are specified using the built-in variables TessLevelOuter

and TessLevelInner, respectively. This subdivision is performed in an implementation-dependent

manner. If no tessellation shaders are present in the pipeline, the tessellator is disabled and

incoming primitives are passed through without modification.

The type of subdivision performed by the tessellator is specified by an OpExecutionMode instruction

in the tessellation evaluation or tessellation control shader using one of execution modes Triangles,

Quads, and IsoLines. Other tessellation-related execution modes can also be specified in either the

tessellation control or tessellation evaluation shaders, and if they are specified in both then the

modes must be the same.

Tessellation execution modes include:

• Triangles, Quads, and IsoLines. These control the type of subdivision and topology of the output

primitives. One mode must be set in at least one of the tessellation shader stages.

• VertexOrderCw and VertexOrderCcw. These control the orientation of triangles generated by the

tessellator. One mode must be set in at least one of the tessellation shader stages.

• PointMode. Controls generation of points rather than triangles or lines. This functionality

defaults to disabled, and is enabled if either shader stage includes the execution mode.

• SpacingEqual, SpacingFractionalEven, and SpacingFractionalOdd. Controls the spacing of segments

on the edges of tessellated primitives. One mode must be set in at least one of the tessellation

shader stages.

• OutputVertices. Controls the size of the output patch of the tessellation control shader. One

value must be set in at least one of the tessellation shader stages.

For triangles, the tessellator subdivides a triangle primitive into smaller triangles. For quads, the

tessellator subdivides a rectangle primitive into smaller triangles. For isolines, the tessellator

subdivides a rectangle primitive into a collection of line segments arranged in strips stretching

across the rectangle in the u dimension (i.e. the coordinates in TessCoord are of the form (0,x)

through (1,x) for all tessellation evaluation shader invocations that share a line).

470

Each vertex produced by the tessellator has an associated (u,v,w) or (u,v) position in a normalized

parameter space, with parameter values in the range [0,1], as illustrated in figure Domain

parameterization for tessellation primitive modes (upper-left origin). The domain space has an

upper-left origin.

IL1

IL0

OL0 OL2

OL1

OL3

Quads

IL0

OL0

OL1

OL2

Triangles

Isolines

OL1

(no edge)

OL0

(0,1) (1,1)

(0,0) (1,0)

(0,1) (1,1)

(0,0) (1,0)

(0,0,1)

(0,1,0)

(1,0,0)

Figure 9. Domain parameterization for tessellation primitive modes (upper-left origin)

Caption

In the Domain parameterization diagram, the coordinates illustrate the value of TessCoord at

the corners of the domain. The labels on the edges indicate the inner (IL0 and IL1) and outer

(OL0 through OL3) tessellation level values used to control the number of subdivisions along

each edge of the domain.

For triangles, the vertex’s position is a barycentric coordinate (u,v,w), where u + v + w = 1.0, and

indicates the relative influence of the three vertices of the triangle on the position of the vertex. For

quads and isolines, the position is a (u,v) coordinate indicating the relative horizontal and vertical

position of the vertex relative to the subdivided rectangle. The subdivision process is explained in

471

more detail in subsequent sections.

21.2. Tessellator Patch Discard

A patch is discarded by the tessellator if any relevant outer tessellation level is less than or equal to

zero.

Patches will also be discarded if any relevant outer tessellation level corresponds to a floating-point

NaN (not a number) in implementations supporting NaN.

No new primitives are generated and the tessellation evaluation shader is not executed for patches

that are discarded. For Quads, all four outer levels are relevant. For Triangles and IsoLines, only the

first three or two outer levels, respectively, are relevant. Negative inner levels will not cause a

patch to be discarded; they will be clamped as described below.

21.3. Tessellator Spacing

Each of the tessellation levels is used to determine the number and spacing of segments used to

subdivide a corresponding edge. The method used to derive the number and spacing of segments is

specified by an OpExecutionMode in the tessellation control or tessellation evaluation shader using

one of the identifiers SpacingEqual, SpacingFractionalEven, or SpacingFractionalOdd.

If SpacingEqual is used, the floating-point tessellation level is first clamped to [1, maxLevel], where

maxLevel is the implementation-dependent maximum tessellation level (VkPhysicalDeviceLimits

::maxTessellationGenerationLevel). The result is rounded up to the nearest integer n, and the

corresponding edge is divided into n segments of equal length in (u,v) space.

If SpacingFractionalEven is used, the tessellation level is first clamped to [2, maxLevel] and then

rounded up to the nearest even integer n. If SpacingFractionalOdd is used, the tessellation level is

clamped to [1, maxLevel - 1] and then rounded up to the nearest odd integer n. If n is one, the edge

will not be subdivided. Otherwise, the corresponding edge will be divided into n - 2 segments of

equal length, and two additional segments of equal length that are typically shorter than the other

segments. The length of the two additional segments relative to the others will decrease

monotonically with n - f, where f is the clamped floating-point tessellation level. When n - f is zero,

the additional segments will have equal length to the other segments. As n - f approaches 2.0, the

relative length of the additional segments approaches zero. The two additional segments must be

placed symmetrically on opposite sides of the subdivided edge. The relative location of these two

segments is implementation-dependent, but must be identical for any pair of subdivided edges

with identical values of f.

When the tessellator produces triangles (in the Triangles or Quads modes), the orientation of all

triangles is specified with an OpExecutionMode of VertexOrderCw or VertexOrderCcw in the tessellation

control or tessellation evaluation shaders. If the order is VertexOrderCw, the vertices of all generated

triangles will have clockwise ordering in (u,v) or (u,v,w) space. If the order is VertexOrderCcw, the

vertices will have counter-clockwise ordering.

The vertices of a triangle have counter-clockwise ordering if

472

a = u0 v1 - u1 v0 + u1 v2 - u2 v1 + u2 v0 - u0 v2

is negative, and clockwise ordering if a is positive. ui and vi are the u and v coordinates in

normalized parameter space of the ith vertex of the triangle.



Note

The value a is proportional (with a positive factor) to the signed area of the

triangle.

In Triangles mode, even though the vertex coordinates have a w value, it does not

participate directly in the computation of a, being an affine combination of u and

v.

For all primitive modes, the tessellator is capable of generating points instead of lines or triangles.

If the tessellation control or tessellation evaluation shader specifies the OpExecutionMode PointMode,

the primitive generator will generate one point for each distinct vertex produced by tessellation.

Otherwise, the tessellator will produce a collection of line segments or triangles according to the

primitive mode. When tessellating triangles or quads in point mode with fractional odd spacing, the

tessellator may produce interior vertices that are positioned on the edge of the patch if an inner

tessellation level is less than or equal to one. Such vertices are considered distinct from vertices

produced by subdividing the outer edge of the patch, even if there are pairs of vertices with

identical coordinates.

21.4. Tessellation Primitive Ordering

Few guarantees are provided for the relative ordering of primitives produced by tessellation, as

they pertain to primitive order.

• The output primitives generated from each input primitive are passed to subsequent pipeline

stages in an implementation-dependent order.

• All output primitives generated from a given input primitive are passed to subsequent pipeline

stages before any output primitives generated from subsequent input primitives.

21.5. Triangle Tessellation

If the tessellation primitive mode is Triangles, an equilateral triangle is subdivided into a collection

of triangles covering the area of the original triangle. First, the original triangle is subdivided into a

collection of concentric equilateral triangles. The edges of each of these triangles are subdivided,

and the area between each triangle pair is filled by triangles produced by joining the vertices on the

subdivided edges. The number of concentric triangles and the number of subdivisions along each

triangle except the outermost is derived from the first inner tessellation level. The edges of the

outermost triangle are subdivided independently, using the first, second, and third outer

tessellation levels to control the number of subdivisions of the u = 0 (left), v = 0 (bottom), and w = 0

(right) edges, respectively. The second inner tessellation level and the fourth outer tessellation level

have no effect in this mode.

If the first inner tessellation level and all three outer tessellation levels are exactly one after

473

clamping and rounding, only a single triangle with (u,v,w) coordinates of (0,0,1), (1,0,0), and (0,1,0)

is generated. If the inner tessellation level is one and any of the outer tessellation levels is greater

than one, the inner tessellation level is treated as though it were originally specified as 1 + ε and

will result in a two- or three-segment subdivision depending on the tessellation spacing. When used

with fractional odd spacing, the three-segment subdivision may produce inner vertices positioned

on the edge of the triangle.

If any tessellation level is greater than one, tessellation begins by producing a set of concentric

inner triangles and subdividing their edges. First, the three outer edges are temporarily subdivided

using the clamped and rounded first inner tessellation level and the specified tessellation spacing,

generating n segments. For the outermost inner triangle, the inner triangle is degenerate — a single

point at the center of the triangle — if n is two. Otherwise, for each corner of the outer triangle, an

inner triangle corner is produced at the intersection of two lines extended perpendicular to the

corner’s two adjacent edges running through the vertex of the subdivided outer edge nearest that

corner. If n is three, the edges of the inner triangle are not subdivided and is the final triangle in

the set of concentric triangles. Otherwise, each edge of the inner triangle is divided into n - 2

segments, with the n - 1 vertices of this subdivision produced by intersecting the inner edge with

lines perpendicular to the edge running through the n - 1 innermost vertices of the subdivision of

the outer edge. Once the outermost inner triangle is subdivided, the previous subdivision process

repeats itself, using the generated triangle as an outer triangle. This subdivision process is

illustrated in Inner Triangle Tessellation.

474

(a)

(b)

(0,0,1)

(0,1,0)

(1,0,0)

(0,0,1)

(0,1,0)

(1,0,0)

Figure 10. Inner Triangle Tessellation

475

Caption

In the Inner Triangle Tessellation diagram, inner tessellation levels of (a) five and (b) four are

shown (not to scale). Solid black circles depict vertices along the edges of the concentric

triangles. The edges of inner triangles are subdivided by intersecting the edge with segments

perpendicular to the edge passing through each inner vertex of the subdivided outer edge.

Dotted lines depict edges connecting corresponding vertices on the inner and outer triangle

edges.

Once all the concentric triangles are produced and their edges are subdivided, the area between

each pair of adjacent inner triangles is filled completely with a set of non-overlapping triangles. In

this subdivision, two of the three vertices of each triangle are taken from adjacent vertices on a

subdivided edge of one triangle; the third is one of the vertices on the corresponding edge of the

other triangle. If the innermost triangle is degenerate (i.e., a point), the triangle containing it is

subdivided into six triangles by connecting each of the six vertices on that triangle with the center

point. If the innermost triangle is not degenerate, that triangle is added to the set of generated

triangles as-is.

After the area corresponding to any inner triangles is filled, the tessellator generates triangles to

cover the area between the outermost triangle and the outermost inner triangle. To do this, the

temporary subdivision of the outer triangle edge above is discarded. Instead, the u = 0, v = 0, and w

= 0 edges are subdivided according to the first, second, and third outer tessellation levels,

respectively, and the tessellation spacing. The original subdivision of the first inner triangle is

retained. The area between the outer and first inner triangles is completely filled by non-

overlapping triangles as described above. If the first (and only) inner triangle is degenerate, a set of

triangles is produced by connecting each vertex on the outer triangle edges with the center point.

After all triangles are generated, each vertex in the subdivided triangle is assigned a barycentric

(u,v,w) coordinate based on its location relative to the three vertices of the outer triangle.

The algorithm used to subdivide the triangular domain in (u,v,w) space into individual triangles is

implementation-dependent. However, the set of triangles produced will completely cover the

domain, and no portion of the domain will be covered by multiple triangles.

The order in which the vertices for a given output triangle is generated is implementation-

dependent. However, when depicted in a manner similar to Inner Triangle Tessellation, the order

of the vertices in each generated triangle will be either all clockwise or all counter-clockwise,

according to the vertex order layout declaration.

21.6. Quad Tessellation

If the tessellation primitive mode is Quads, a rectangle is subdivided into a collection of triangles

covering the area of the original rectangle. First, the original rectangle is subdivided into a regular

mesh of rectangles, where the number of rectangles along the u = 0 and u = 1 (vertical) and v = 0

and v = 1 (horizontal) edges are derived from the first and second inner tessellation levels,

respectively. All rectangles, except those adjacent to one of the outer rectangle edges, are

decomposed into triangle pairs. The outermost rectangle edges are subdivided independently, using

476

the first, second, third, and fourth outer tessellation levels to control the number of subdivisions of

the u = 0 (left), v = 0 (bottom), u = 1 (right), and v = 1 (top) edges, respectively. The area between the

inner rectangles of the mesh and the outer rectangle edges are filled by triangles produced by

joining the vertices on the subdivided outer edges to the vertices on the edge of the inner rectangle

mesh.

If both clamped inner tessellation levels and all four clamped outer tessellation levels are exactly

one, only a single triangle pair covering the outer rectangle is generated. Otherwise, if either

clamped inner tessellation level is one, that tessellation level is treated as though it were originally

specified as 1 + ε and will result in a two- or three-segment subdivision depending on the

tessellation spacing. When used with fractional odd spacing, the three-segment subdivision may

produce inner vertices positioned on the edge of the rectangle.

If any tessellation level is greater than one, tessellation begins by subdividing the u = 0 and u = 1

edges of the outer rectangle into m segments using the clamped and rounded first inner tessellation

level and the tessellation spacing. The v = 0 and v = 1 edges are subdivided into n segments using

the second inner tessellation level. Each vertex on the u = 0 and v = 0 edges are joined with the

corresponding vertex on the u = 1 and v = 1 edges to produce a set of vertical and horizontal lines

that divide the rectangle into a grid of smaller rectangles. The primitive generator emits a pair of

non-overlapping triangles covering each such rectangle not adjacent to an edge of the outer

rectangle. The boundary of the region covered by these triangles forms an inner rectangle, the

edges of which are subdivided by the grid vertices that lie on the edge. If either m or n is two, the

inner rectangle is degenerate, and one or both of the rectangle’s edges consist of a single point. This

subdivision is illustrated in Figure Inner Quad Tessellation.

477

(0,1)

(0,0)

(1,1)

(1,0)

(0,1)

(0,0)

(1,1)

(1,0)
(a)

(b)

Figure 11. Inner Quad Tessellation

Caption

In the Inner Quad Tessellation diagram, inner quad tessellation levels of (a) (4,2) and (b) (7,4)

are shown. Gray regions in figure (b) depict the 10 inner rectangles, each of which will be

subdivided into two triangles. Solid black circles depict vertices on the boundary of the outer

and inner rectangles, where the inner rectangle on the top figure is degenerate (a single line

segment). Dotted lines depict the horizontal and vertical edges connecting corresponding

vertices on the inner and outer rectangle edges.

After the area corresponding to the inner rectangle is filled, the tessellator must produce triangles

478

to cover the area between the inner and outer rectangles. To do this, the subdivision of the outer

rectangle edge above is discarded. Instead, the u = 0, v = 0, u = 1, and v = 1 edges are subdivided

according to the first, second, third, and fourth outer tessellation levels, respectively, and the

tessellation spacing. The original subdivision of the inner rectangle is retained. The area between

the outer and inner rectangles is completely filled by non-overlapping triangles. Two of the three

vertices of each triangle are adjacent vertices on a subdivided edge of one rectangle; the third is

one of the vertices on the corresponding edge of the other triangle. If either edge of the innermost

rectangle is degenerate, the area near the corresponding outer edges is filled by connecting each

vertex on the outer edge with the single vertex making up the inner edge.

The algorithm used to subdivide the rectangular domain in (u,v) space into individual triangles is

implementation-dependent. However, the set of triangles produced will completely cover the

domain, and no portion of the domain will be covered by multiple triangles.

The order in which the vertices for a given output triangle is generated is implementation-

dependent. However, when depicted in a manner similar to Inner Quad Tessellation, the order of

the vertices in each generated triangle will be either all clockwise or all counter-clockwise,

according to the vertex order layout declaration.

21.7. Isoline Tessellation

If the tessellation primitive mode is IsoLines, a set of independent horizontal line segments is

drawn. The segments are arranged into connected strips called isolines, where the vertices of each

isoline have a constant v coordinate and u coordinates covering the full range [0,1]. The number of

isolines generated is derived from the first outer tessellation level; the number of segments in each

isoline is derived from the second outer tessellation level. Both inner tessellation levels and the

third and fourth outer tessellation levels have no effect in this mode.

As with quad tessellation above, isoline tessellation begins with a rectangle. The u = 0 and u = 1

edges of the rectangle are subdivided according to the first outer tessellation level. For the purposes

of this subdivision, the tessellation spacing mode is ignored and treated as equal_spacing. An

isoline is drawn connecting each vertex on the u = 0 rectangle edge to the corresponding vertex on

the u = 1 rectangle edge, except that no line is drawn between (0,1) and (1,1). If the number of

isolines on the subdivided u = 0 and u = 1 edges is n, this process will result in n equally spaced

lines with constant v coordinates of 0, .

Each of the n isolines is then subdivided according to the second outer tessellation level and the

tessellation spacing, resulting in m line segments. Each segment of each line is emitted by the

tessellator.

The order in which the vertices for a given output line is generated is implementation-dependent.

21.8. Tessellation Pipeline State

The pTessellationState member of VkGraphicsPipelineCreateInfo points to a structure of type

VkPipelineTessellationStateCreateInfo.

The VkPipelineTessellationStateCreateInfo structure is defined as:

479

typedef struct VkPipelineTessellationStateCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineTessellationStateCreateFlags flags;

 uint32_t patchControlPoints;

} VkPipelineTessellationStateCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• patchControlPoints number of control points per patch.

Valid Usage

• patchControlPoints must be greater than zero and less than or equal to

VkPhysicalDeviceLimits::maxTessellationPatchSize

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO

• pNext must be NULL

• flags must be 0

480

Chapter 22. Geometry Shading

The geometry shader operates on a group of vertices and their associated data assembled from a

single input primitive, and emits zero or more output primitives and the group of vertices and their

associated data required for each output primitive. Geometry shading is enabled when a geometry

shader is included in the pipeline.

22.1. Geometry Shader Input Primitives

Each geometry shader invocation has access to all vertices in the primitive (and their associated

data), which are presented to the shader as an array of inputs. The input primitive type expected by

the geometry shader is specified with an OpExecutionMode instruction in the geometry shader, and

must be compatible with the primitive topology used by primitive assembly (if tessellation is not in

use) or must match the type of primitive generated by the tessellation primitive generator (if

tessellation is in use). Compatibility is defined below, with each input primitive type. The input

primitive types accepted by a geometry shader are:

Points

Geometry shaders that operate on points use an OpExecutionMode instruction specifying the

InputPoints input mode. Such a shader is valid only when the pipeline primitive topology is

VK_PRIMITIVE_TOPOLOGY_POINT_LIST (if tessellation is not in use) or if tessellation is in use and the

tessellation evaluation shader uses PointMode. There is only a single input vertex available for

each geometry shader invocation. However, inputs to the geometry shader are still presented as

an array, but this array has a length of one.

Lines

Geometry shaders that operate on line segments are generated by including an OpExecutionMode

instruction with the InputLines mode. Such a shader is valid only for the

VK_PRIMITIVE_TOPOLOGY_LINE_LIST, and VK_PRIMITIVE_TOPOLOGY_LINE_STRIP primitive topologies (if

tessellation is not in use) or if tessellation is in use and the tessellation mode is Isolines. There

are two input vertices available for each geometry shader invocation. The first vertex refers to

the vertex at the beginning of the line segment and the second vertex refers to the vertex at the

end of the line segment.

Lines with Adjacency

Geometry shaders that operate on line segments with adjacent vertices are generated by

including an OpExecutionMode instruction with the InputLinesAdjacency mode. Such a shader is

valid only for the VK_PRIMITIVE_TOPOLOGY_LINES_WITH_ADJACENCY and

VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY primitive topologies and must not be used

when tessellation is in use.

In this mode, there are four vertices available for each geometry shader invocation. The second

vertex refers to attributes of the vertex at the beginning of the line segment and the third vertex

refers to the vertex at the end of the line segment. The first and fourth vertices refer to the

vertices adjacent to the beginning and end of the line segment, respectively.

Triangles

481

Geometry shaders that operate on triangles are created by including an OpExecutionMode

instruction with the Triangles mode. Such a shader is valid when the pipeline topology is

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, or

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN (if tessellation is not in use) or when tessellation is in use

and the tessellation mode is Triangles or Quads.

In this mode, there are three vertices available for each geometry shader invocation. The first,

second, and third vertices refer to attributes of the first, second, and third vertex of the triangle,

respectively.

Triangles with Adjacency

Geometry shaders that operate on triangles with adjacent vertices are created by including an

OpExecutionMode instruction with the InputTrianglesAdjacency mode. Such a shader is valid when

the pipeline topology is VK_PRIMITIVE_TOPOLOGY_TRIANGLES_WITH_ADJACENCY or

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY, and must not be used when tessellation is

in use.

In this mode, there are six vertices available for each geometry shader invocation. The first,

third and fifth vertices refer to attributes of the first, second and third vertex of the triangle,

respectively. The second, fourth and sixth vertices refer to attributes of the vertices adjacent to

the edges from the first to the second vertex, from the second to the third vertex, and from the

third to the first vertex, respectively.

22.2. Geometry Shader Output Primitives

A geometry shader generates primitives in one of three output modes: points, line strips, or triangle

strips. The primitive mode is specified in the shader using an OpExecutionMode instruction with the

OutputPoints, OutputLineStrip or OutputTriangleStrip modes, respectively. Each geometry shader

must include exactly one output primitive mode.

The vertices output by the geometry shader are assembled into points, lines, or triangles based on

the output primitive type and the resulting primitives are then further processed as described in

Rasterization. If the number of vertices emitted by the geometry shader is not sufficient to produce

a single primitive, vertices corresponding to incomplete primitives are not processed by subsequent

pipeline stages. The number of vertices output by the geometry shader is limited to a maximum

count specified in the shader.

The maximum output vertex count is specified in the shader using an OpExecutionMode instruction

with the mode set to OutputVertices and the maximum number of vertices that will be produced by

the geometry shader specified as a literal. Each geometry shader must specify a maximum output

vertex count.

22.3. Multiple Invocations of Geometry Shaders

Geometry shaders can be invoked more than one time for each input primitive. This is known as

geometry shader instancing and is requested by including an OpExecutionMode instruction with mode

specified as Invocations and the number of invocations specified as an integer literal.

482

In this mode, the geometry shader will execute n times for each input primitive, where n is the

number of invocations specified in the OpExecutionMode instruction. The instance number is

available to each invocation as a built-in input using InvocationId.

22.4. Geometry Shader Primitive Ordering

Limited guarantees are provided for the relative ordering of primitives produced by a geometry

shader, as they pertain to primitive order.

• For instanced geometry shaders, the output primitives generated from each input primitive are

passed to subsequent pipeline stages using the invocation number to order the primitives, from

least to greatest.

• All output primitives generated from a given input primitive are passed to subsequent pipeline

stages before any output primitives generated from subsequent input primitives.

483

Chapter 23. Fixed-Function Vertex Post-

Processing

After programmable vertex processing, the following fixed-function operations are applied to

vertices of the resulting primitives:

• Flatshading (see Flatshading).

• Primitive clipping, including client-defined half-spaces (see Primitive Clipping).

• Shader output attribute clipping (see Clipping Shader Outputs).

• Perspective division on clip coordinates (see Coordinate Transformations).

• Viewport mapping, including depth range scaling (see Controlling the Viewport).

• Front face determination for polygon primitives (see Basic Polygon Rasterization).

Next, rasterization is performed on primitives as described in chapter Rasterization.

23.1. Flat Shading

Flat shading a vertex output attribute means to assign all vertices of the primitive the same value

for that output.

The output values assigned are those of the provoking vertex of the primitive. The provoking vertex

depends on the primitive topology, and is generally the “first” vertex of the primitive. For primitives

not processed by tessellation or geometry shaders, the provoking vertex is selected from the input

vertices according to the following table.

484

Table 24. Provoking vertex selection

Primitive type of primitive i Provoking vertex

number

VK_PRIMITIVE_TOPOLOGY_POINT_LIST i

VK_PRIMITIVE_TOPOLOGY_LINE_LIST 2 i

VK_PRIMITIVE_TOPOLOGY_LINE_STRIP i

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST 3 i

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP i

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN i + 1

VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY 4 i + 1

VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY i + 1

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY 6 i

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY 2 i

Caption

The Provoking vertex selection table defines the output values used for flat shading the i
th

primitive generated by drawing commands with the indicated primitive type, derived from

the corresponding values of the vertex whose index is shown in the table. Primitives and

vertices are numbered starting from zero.

Flat shading is applied to those vertex attributes that match fragment input attributes which are

decorated as Flat.

If a geometry shader is active, the output primitive topology is either points, line strips, or triangle

strips, and the selection of the provoking vertex behaves according to the corresponding row of the

table. If a tessellation evaluation shader is active and a geometry shader is not active, the provoking

vertex is undefined but must be one of the vertices of the primitive.

23.2. Primitive Clipping

Primitives are culled against the cull volume and then clipped to the clip volume. In clip coordinates,

the view volume is defined by:

This view volume can be further restricted by as many as VkPhysicalDeviceLimits::maxClipDistances

client-defined half-spaces.

The cull volume is the intersection of up to VkPhysicalDeviceLimits::maxCullDistances client-defined

half-spaces (if no client-defined cull half-spaces are enabled, culling against the cull volume is

skipped).

485

A shader must write a single cull distance for each enabled cull half-space to elements of the

CullDistance array. If the cull distance for any enabled cull half-space is negative for all of the

vertices of the primitive under consideration, the primitive is discarded. Otherwise the primitive is

clipped against the clip volume as defined below.

The clip volume is the intersection of up to VkPhysicalDeviceLimits::maxClipDistances client-defined

half-spaces with the view volume (if no client-defined clip half-spaces are enabled, the clip volume

is the view volume).

A shader must write a single clip distance for each enabled clip half-space to elements of the

ClipDistance array. Clip half-space i is then given by the set of points satisfying the inequality

ci(P) ≥ 0

where ci(P) is the clip distance i at point P. For point primitives, ci(P) is simply the clip distance for

the vertex in question. For line and triangle primitives, per-vertex clip distances are interpolated

using a weighted mean, with weights derived according to the algorithms described in sections

Basic Line Segment Rasterization and Basic Polygon Rasterization, using the perspective

interpolation equations.

The number of client-defined clip and cull half-spaces that are enabled is determined by the explicit

size of the built-in arrays ClipDistance and CullDistance, respectively, declared as an output in the

interface of the entry point of the final shader stage before clipping.

Depth clamping is enabled or disabled via the depthClampEnable enable of the

VkPipelineRasterizationStateCreateInfo structure. If depth clamping is enabled, the plane equation

0 ≤ zc ≤ wc

(see the clip volume definition above) is ignored by view volume clipping (effectively, there is no

near or far plane clipping).

If the primitive under consideration is a point or line segment, then clipping passes it unchanged if

its vertices lie entirely within the clip volume.

If a point’s vertex lies outside of the clip volume, the entire primitive may be discarded.

If either of a line segment’s vertices lie outside of the clip volume, the line segment may be clipped,

with new vertex coordinates computed for each vertex that lies outside the clip volume. A clipped

line segment endpoint lies on both the original line segment and the boundary of the clip volume.

This clipping produces a value, 0 ≤ t ≤ 1, for each clipped vertex. If the coordinates of a clipped

vertex are P and the original vertices' coordinates are P1 and P2, then t is given by

P = t P1 + (1-t) P2.

t is used to clip vertex output attributes as described in Clipping Shader Outputs.

If the primitive is a polygon, it passes unchanged if every one of its edges lie entirely inside the clip

volume, and it is discarded if every one of its edges lie entirely outside the clip volume. If the edges

486

of the polygon intersect the boundary of the clip volume, the intersecting edges are reconnected by

new edges that lie along the boundary of the clip volume - in some cases requiring the introduction

of new vertices into a polygon.

If a polygon intersects an edge of the clip volume’s boundary, the clipped polygon must include a

point on this boundary edge.

Primitives rendered with user-defined half-spaces must satisfy a complementarity criterion.

Suppose a series of primitives is drawn where each vertex i has a single specified clip distance di (or

a number of similarly specified clip distances, if multiple half-spaces are enabled). Next, suppose

that the same series of primitives are drawn again with each such clip distance replaced by -di (and

the graphics pipeline is otherwise the same). In this case, primitives must not be missing any pixels,

and pixels must not be drawn twice in regions where those primitives are cut by the clip planes.

23.3. Clipping Shader Outputs

Next, vertex output attributes are clipped. The output values associated with a vertex that lies

within the clip volume are unaffected by clipping. If a primitive is clipped, however, the output

values assigned to vertices produced by clipping are clipped.

Let the output values assigned to the two vertices P1 and P2 of an unclipped edge be c1 and c2. The

value of t (see Primitive Clipping) for a clipped point P is used to obtain the output value associated

with P as

c = t c1 + (1-t) c2.

(Multiplying an output value by a scalar means multiplying each of x, y, z, and w by the scalar.)

Since this computation is performed in clip space before division by wc, clipped output values are

perspective-correct.

Polygon clipping creates a clipped vertex along an edge of the clip volume’s boundary. This

situation is handled by noting that polygon clipping proceeds by clipping against one half-space at a

time. Output value clipping is done in the same way, so that clipped points always occur at the

intersection of polygon edges (possibly already clipped) with the clip volume’s boundary.

For vertex output attributes whose matching fragment input attributes are decorated with

NoPerspective, the value of t used to obtain the output value associated with P will be adjusted to

produce results that vary linearly in framebuffer space.

Output attributes of integer or unsigned integer type must always be flat shaded. Flat shaded

attributes are constant over the primitive being rasterized (see Basic Line Segment Rasterization

and Basic Polygon Rasterization), and no interpolation is performed. The output value c is taken

from either c1 or c2, since flat shading has already occurred and the two values are identical.

23.4. Coordinate Transformations

Clip coordinates for a vertex result from shader execution, which yields a vertex coordinate

Position.

487

Perspective division on clip coordinates yields normalized device coordinates, followed by a

viewport transformation (see Controlling the Viewport) to convert these coordinates into

framebuffer coordinates.

If a vertex in clip coordinates has a position given by

then the vertex’s normalized device coordinates are

23.5. Controlling the Viewport

The viewport transformation is determined by the selected viewport’s width and height in pixels, px

and py, respectively, and its center (ox, oy) (also in pixels), as well as its depth range min and max

determining a depth range scale value pz and a depth range bias value oz (defined below). The

vertex’s framebuffer coordinates (xf, yf, zf) are given by

xf = (px / 2) xd + ox

yf = (py / 2) yd + oy

zf = pz × zd + oz

Multiple viewports are available, numbered zero up to VkPhysicalDeviceLimits::maxViewports minus

one. The number of viewports used by a pipeline is controlled by the viewportCount member of the

VkPipelineViewportStateCreateInfo structure used in pipeline creation.

The VkPipelineViewportStateCreateInfo structure is defined as:

typedef struct VkPipelineViewportStateCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineViewportStateCreateFlags flags;

 uint32_t viewportCount;

 const VkViewport* pViewports;

 uint32_t scissorCount;

 const VkRect2D* pScissors;

} VkPipelineViewportStateCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

488

• flags is reserved for future use.

• viewportCount is the number of viewports used by the pipeline.

• pViewports is a pointer to an array of VkViewport structures, defining the viewport transforms.

If the viewport state is dynamic, this member is ignored.

• scissorCount is the number of scissors and must match the number of viewports.

• pScissors is a pointer to an array of VkRect2D structures which define the rectangular bounds of

the scissor for the corresponding viewport. If the scissor state is dynamic, this member is

ignored.

Valid Usage

• If the multiple viewports feature is not enabled, viewportCount must be 1

• If the multiple viewports feature is not enabled, scissorCount must be 1

• viewportCount must be between 1 and VkPhysicalDeviceLimits::maxViewports, inclusive

• scissorCount must be between 1 and VkPhysicalDeviceLimits::maxViewports, inclusive

• scissorCount and viewportCount must be identical

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO

• pNext must be NULL

• flags must be 0

• viewportCount must be greater than 0

• scissorCount must be greater than 0

If a geometry shader is active and has an output variable decorated with ViewportIndex, the

viewport transformation uses the viewport corresponding to the value assigned to ViewportIndex

taken from an implementation-dependent vertex of each primitive. If ViewportIndex is outside the

range zero to viewportCount minus one for a primitive, or if the geometry shader did not assign a

value to ViewportIndex for all vertices of a primitive due to flow control, the results of the viewport

transformation of the vertices of such primitives are undefined. If no geometry shader is active, or

if the geometry shader does not have an output decorated with ViewportIndex, the viewport

numbered zero is used by the viewport transformation.

A single vertex can be used in more than one individual primitive, in primitives such as

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP. In this case, the viewport transformation is applied

separately for each primitive.

If the bound pipeline state object was not created with the VK_DYNAMIC_STATE_VIEWPORT dynamic state

enabled, viewport transformation parameters are specified using the pViewports member of

VkPipelineViewportStateCreateInfo in the pipeline state object. If the pipeline state object was

created with the VK_DYNAMIC_STATE_VIEWPORT dynamic state enabled, the viewport transformation

489

parameters are dynamically set and changed with the command:

void vkCmdSetViewport(

 VkCommandBuffer commandBuffer,

 uint32_t firstViewport,

 uint32_t viewportCount,

 const VkViewport* pViewports);

• commandBuffer is the command buffer into which the command will be recorded.

• firstViewport is the index of the first viewport whose parameters are updated by the command.

• viewportCount is the number of viewports whose parameters are updated by the command.

• pViewports is a pointer to an array of VkViewport structures specifying viewport parameters.

The viewport parameters taken from element i of pViewports replace the current state for the

viewport index firstViewport + i, for i in [0, viewportCount).

Valid Usage

• The currently bound graphics pipeline must have been created with the

VK_DYNAMIC_STATE_VIEWPORT dynamic state enabled

• firstViewport must be less than VkPhysicalDeviceLimits::maxViewports

• The sum of firstViewport and viewportCount must be between 1 and

VkPhysicalDeviceLimits::maxViewports, inclusive

• If the multiple viewports feature is not enabled, firstViewport must be 0

• If the multiple viewports feature is not enabled, viewportCount must be 1

• pViewports must be a pointer to an array of viewportCount valid VkViewport structures

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics

operations

• viewportCount must be greater than 0

490

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Both Graphics

Both VkPipelineViewportStateCreateInfo and vkCmdSetViewport use VkViewport to set the viewport

transformation parameters.

The VkViewport structure is defined as:

typedef struct VkViewport {

 float x;

 float y;

 float width;

 float height;

 float minDepth;

 float maxDepth;

} VkViewport;

• x and y are the viewport’s upper left corner (x,y).

• width and height are the viewport’s width and height, respectively.

• minDepth and maxDepth are the depth range for the viewport. It is valid for minDepth to be greater

than or equal to maxDepth.

The framebuffer depth coordinate zf may be represented using either a fixed-point or floating-point

representation. However, a floating-point representation must be used if the depth/stencil

attachment has a floating-point depth component. If an m-bit fixed-point representation is used, we

assume that it represents each value , where k ∈ { 0, 1, …, 2
m

-1 }, as k (e.g. 1.0 is represented in

binary as a string of all ones).

The viewport parameters shown in the above equations are found from these values as

ox = x + width / 2

oy = y + height / 2

491

oz = minDepth

px = width

py = height

pz = maxDepth - minDepth.

The width and height of the implementation-dependent maximum viewport dimensions must be

greater than or equal to the width and height of the largest image which can be created and

attached to a framebuffer.

The floating-point viewport bounds are represented with an implementation-dependent precision.

Valid Usage

• width must be greater than 0.0 and less than or equal to VkPhysicalDeviceLimits

::maxViewportDimensions[0]

• height must be greater than 0.0 and less than or equal to VkPhysicalDeviceLimits

::maxViewportDimensions[1]

• x and y must each be between viewportBoundsRange[0] and viewportBoundsRange[1],

inclusive

• (x + width) must be less than or equal to viewportBoundsRange[1]

• (y + height) must be less than or equal to viewportBoundsRange[1]

• minDepth must be between 0.0 and 1.0, inclusive

• maxDepth must be between 0.0 and 1.0, inclusive

492

Chapter 24. Rasterization

Rasterization is the process by which a primitive is converted to a two-dimensional image. Each

point of this image contains associated data such as depth, color, or other attributes.

Rasterizing a primitive begins by determining which squares of an integer grid in framebuffer

coordinates are occupied by the primitive, and assigning one or more depth values to each such

square. This process is described below for points, lines, and polygons.

A grid square, including its (x,y) framebuffer coordinates, z (depth), and associated data added by

fragment shaders, is called a fragment. A fragment is located by its upper left corner, which lies on

integer grid coordinates.

Rasterization operations also refer to a fragment’s sample locations, which are offset by subpixel

fractional values from its upper left corner. The rasterization rules for points, lines, and triangles

involve testing whether each sample location is inside the primitive. Fragments need not actually

be square, and rasterization rules are not affected by the aspect ratio of fragments. Display of non-

square grids, however, will cause rasterized points and line segments to appear fatter in one

direction than the other.

We assume that fragments are square, since it simplifies antialiasing and texturing. After

rasterization, fragments are processed by the early per-fragment tests, if enabled.

Several factors affect rasterization, including the members of

VkPipelineRasterizationStateCreateInfo and VkPipelineMultisampleStateCreateInfo.

The VkPipelineRasterizationStateCreateInfo structure is defined as:

typedef struct VkPipelineRasterizationStateCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineRasterizationStateCreateFlags flags;

 VkBool32 depthClampEnable;

 VkBool32 rasterizerDiscardEnable;

 VkPolygonMode polygonMode;

 VkCullModeFlags cullMode;

 VkFrontFace frontFace;

 VkBool32 depthBiasEnable;

 float depthBiasConstantFactor;

 float depthBiasClamp;

 float depthBiasSlopeFactor;

 float lineWidth;

} VkPipelineRasterizationStateCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

493

• depthClampEnable controls whether to clamp the fragment’s depth values instead of clipping

primitives to the z planes of the frustum, as described in Primitive Clipping.

• rasterizerDiscardEnable controls whether primitives are discarded immediately before the

rasterization stage.

• polygonMode is the triangle rendering mode. See VkPolygonMode.

• cullMode is the triangle facing direction used for primitive culling. See VkCullModeFlagBits.

• frontFace is a VkFrontFace value specifying the front-facing triangle orientation to be used for

culling.

• depthBiasEnable controls whether to bias fragment depth values.

• depthBiasConstantFactor is a scalar factor controlling the constant depth value added to each

fragment.

• depthBiasClamp is the maximum (or minimum) depth bias of a fragment.

• depthBiasSlopeFactor is a scalar factor applied to a fragment’s slope in depth bias calculations.

• lineWidth is the width of rasterized line segments.

Valid Usage

• If the depth clamping feature is not enabled, depthClampEnable must be VK_FALSE

• If the non-solid fill modes feature is not enabled, polygonMode must be
VK_POLYGON_MODE_FILL

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO

• pNext must be NULL

• flags must be 0

• polygonMode must be a valid VkPolygonMode value

• cullMode must be a valid combination of VkCullModeFlagBits values

• frontFace must be a valid VkFrontFace value

The VkPipelineMultisampleStateCreateInfo structure is defined as:

494

typedef struct VkPipelineMultisampleStateCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineMultisampleStateCreateFlags flags;

 VkSampleCountFlagBits rasterizationSamples;

 VkBool32 sampleShadingEnable;

 float minSampleShading;

 const VkSampleMask* pSampleMask;

 VkBool32 alphaToCoverageEnable;

 VkBool32 alphaToOneEnable;

} VkPipelineMultisampleStateCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• rasterizationSamples is a VkSampleCountFlagBits specifying the number of samples per pixel

used in rasterization.

• sampleShadingEnable specifies that fragment shading executes per-sample if VK_TRUE, or per-

fragment if VK_FALSE, as described in Sample Shading.

• minSampleShading is the minimum fraction of sample shading, as described in Sample Shading.

• pSampleMask is a bitmask of static coverage information that is ANDed with the coverage

information generated during rasterization, as described in Sample Mask.

• alphaToCoverageEnable controls whether a temporary coverage value is generated based on the

alpha component of the fragment’s first color output as specified in the Multisample Coverage

section.

• alphaToOneEnable controls whether the alpha component of the fragment’s first color output is

replaced with one as described in Multisample Coverage.

Valid Usage

• If the sample rate shading feature is not enabled, sampleShadingEnable must be VK_FALSE

• If the alpha to one feature is not enabled, alphaToOneEnable must be VK_FALSE

• minSampleShading must be in the range [0,1]

495

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO

• pNext must be NULL

• flags must be 0

• rasterizationSamples must be a valid VkSampleCountFlagBits value

• If pSampleMask is not NULL, pSampleMask must be a pointer to an array of

VkSampleMask values

Rasterization only produces fragments corresponding to pixels in the framebuffer. Fragments

which would be produced by application of any of the primitive rasterization rules described below

but which lie outside the framebuffer are not produced, nor are they processed by any later stage

of the pipeline, including any of the early per-fragment tests described in Early Per-Fragment Tests.

Surviving fragments are processed by fragment shaders. Fragment shaders determine associated

data for fragments, and can also modify or replace their assigned depth values.

If the subpass for which this pipeline is being created uses color and/or depth/stencil attachments,

then rasterizationSamples must be the same as the sample count for those subpass attachments.

If the subpass for which this pipeline is being created does not use color or depth/stencil

attachments, rasterizationSamples must follow the rules for a zero-attachment subpass.

24.1. Discarding Primitives Before Rasterization

Primitives are discarded before rasterization if the rasterizerDiscardEnable member of

VkPipelineRasterizationStateCreateInfo is enabled. When enabled, primitives are discarded after

they are processed by the last active shader stage in the pipeline before rasterization.

24.2. Rasterization Order

Within a subpass of a render pass instance, for a given (x,y,layer,sample) sample location, the

following operations are guaranteed to execute in rasterization order, for each separate primitive

that includes that sample location:

1. Scissor test

2. Sample mask generation)

3. Depth bounds test

4. Stencil test, stencil op and stencil write

5. Depth test and depth write

6. Sample counting for occlusion queries

7. coverage reduction

8. Blending, logic operations, and color writes

496

Each of these operations is atomically executed for each primitive and sample location.

Execution of these operations for each primitive in a subpass occurs in primitive order.

24.3. Multisampling

Multisampling is a mechanism to antialias all Vulkan primitives: points, lines, and polygons. The

technique is to sample all primitives multiple times at each pixel. Each sample in each framebuffer

attachment has storage for a color, depth, and/or stencil value, such that per-fragment operations

apply to each sample independently. The color sample values can be later resolved to a single color

(see Resolving Multisample Images and the Render Pass chapter for more details on how to resolve

multisample images to non-multisample images).

Vulkan defines rasterization rules for single-sample modes in a way that is equivalent to a

multisample mode with a single sample in the center of each pixel.

Each fragment includes a coverage value with rasterizationSamples bits (see Sample Mask). Each

fragment includes rasterizationSamples depth values and sets of associated data. An

implementation may choose to assign the same associated data to more than one sample. The

location for evaluating such associated data may be anywhere within the pixel including the pixel

center or any of the sample locations. When rasterizationSamples is VK_SAMPLE_COUNT_1_BIT, the

pixel center must be used. The different associated data values need not all be evaluated at the

same location. Each pixel fragment thus consists of integer x and y grid coordinates,

rasterizationSamples depth values and sets of associated data, and a coverage value with

rasterizationSamples bits.

It is understood that each pixel has rasterizationSamples locations associated with it. These

locations are exact positions, rather than regions or areas, and each is referred to as a sample point.

The sample points associated with a pixel must be located inside or on the boundary of the unit

square that is considered to bound the pixel. Furthermore, the relative locations of sample points

may be identical for each pixel in the framebuffer, or they may differ. If the current pipeline

includes a fragment shader with one or more variables in its interface decorated with Sample and

Input, the data associated with those variables will be assigned independently for each sample. The

values for each sample must be evaluated at the location of the sample. The data associated with

any other variables not decorated with Sample and Input need not be evaluated independently for

each sample.

If the standardSampleLocations member of VkPhysicalDeviceLimits is VK_TRUE, then the sample

counts VK_SAMPLE_COUNT_1_BIT, VK_SAMPLE_COUNT_2_BIT, VK_SAMPLE_COUNT_4_BIT, VK_SAMPLE_COUNT_8_BIT,

and VK_SAMPLE_COUNT_16_BIT have sample locations as listed in the following table, with the ith entry

in the table corresponding to bit i in the sample masks. VK_SAMPLE_COUNT_32_BIT and

VK_SAMPLE_COUNT_64_BIT do not have standard sample locations. Locations are defined relative to an

origin in the upper left corner of the pixel.

497

Table 25. Standard sample locations

VK_SAMPLE_COUNT_1_
BIT

VK_SAMPLE_COUNT_2_
BIT

VK_SAMPLE_COUNT_4_
BIT

VK_SAMPLE_COUNT_8_
BIT

VK_SAMPLE_COUNT_16
_BIT

(0.5,0.5) (0.25,0.25)

(0.75,0.75)

(0.375, 0.125)

(0.875, 0.375)

(0.125, 0.625)

(0.625, 0.875)

(0.5625, 0.3125)

(0.4375, 0.6875)

(0.8125, 0.5625)

(0.3125, 0.1875)

(0.1875, 0.8125)

(0.0625, 0.4375)

(0.6875, 0.9375)

(0.9375, 0.0625)

(0.5625, 0.5625)

(0.4375, 0.3125)

(0.3125, 0.625)

(0.75, 0.4375)

(0.1875, 0.375)

(0.625, 0.8125)

(0.8125, 0.6875)

(0.6875, 0.1875)

(0.375, 0.875)

(0.5, 0.0625)

(0.25, 0.125)

(0.125, 0.75)

(0.0, 0.5)

(0.9375, 0.25)

(0.875, 0.9375)

(0.0625, 0.0)

24.4. Sample Shading

Sample shading can be used to specify a minimum number of unique samples to process for each

fragment. Sample shading is controlled by the sampleShadingEnable member of

VkPipelineMultisampleStateCreateInfo. If sampleShadingEnable is VK_FALSE, sample shading is

considered disabled and has no effect. Otherwise, an implementation must provide a minimum of

max(⌈ minSampleShading × rasterizationSamples ⌉, 1) unique associated data for each fragment,

where minSampleShading is the minimum fraction of sample shading and rasterizationSamples is the

number of samples requested in VkPipelineMultisampleStateCreateInfo. These are associated with

the samples in an implementation-dependent manner. When the sample shading fraction is 1.0, a

separate set of associated data are evaluated for each sample, and each set of values is evaluated at

the sample location.

24.5. Points

A point is drawn by generating a set of fragments in the shape of a square centered around the

vertex of the point. Each vertex has an associated point size that controls the width/height of that

square. The point size is taken from the (potentially clipped) shader built-in PointSize written by:

• the geometry shader, if active;

• the tessellation evaluation shader, if active and no geometry shader is active;

• the tessellation control shader, if active and no geometry or tessellation evaluation shader is

active; or

• the vertex shader, otherwise

and clamped to the implementation-dependent point size range [pointSizeRange[0],

pointSizeRange[1]]. If the value written to PointSize is less than or equal to zero, or if no value was

498

written to PointSize, results are undefined.

Not all point sizes need be supported, but the size 1.0 must be supported. The range of supported

sizes and the size of evenly-spaced gradations within that range are implementation-dependent.

The range and gradations are obtained from the pointSizeRange and pointSizeGranularity members

of VkPhysicalDeviceLimits. If, for instance, the size range is from 0.1 to 2.0 and the gradation size is

0.1, then the size 0.1, 0.2, …, 1.9, 2.0 are supported. Additional point sizes may also be supported.

There is no requirement that these sizes be equally spaced. If an unsupported size is requested, the

nearest supported size is used instead.

24.5.1. Basic Point Rasterization

Point rasterization produces a fragment for each framebuffer pixel with one or more sample points

that intersect a region centered at the point’s (xf,yf). This region is a square with side equal to the

current point size. Coverage bits that correspond to sample points that intersect the region are 1,

other coverage bits are 0.

All fragments produced in rasterizing a point are assigned the same associated data, which are

those of the vertex corresponding to the point. However, the fragment shader built-in PointCoord

contains point sprite texture coordinates. The s and t point sprite texture coordinates vary from

zero to one across the point horizontally left-to-right and top-to-bottom, respectively. The following

formulas are used to evaluate s and t:

where size is the point’s size, (xp,yp) is the location at which the point sprite coordinates are

evaluated - this may be the framebuffer coordinates of the pixel center (i.e. at the half-integer) or

the location of a sample, and (xf,yf) is the exact, unrounded framebuffer coordinate of the vertex for

the point. When rasterizationSamples is VK_SAMPLE_COUNT_1_BIT, the pixel center must be used.

24.6. Line Segments

A line is drawn by generating a set of fragments overlapping a rectangle centered on the line

segment. Each line segment has an associated width that controls the width of that rectangle.

The line width is specified by the VkPipelineRasterizationStateCreateInfo::lineWidth property of the

currently active pipeline, if the pipeline was not created with VK_DYNAMIC_STATE_LINE_WIDTH enabled.

Otherwise, the line width is set by calling vkCmdSetLineWidth:

void vkCmdSetLineWidth(

 VkCommandBuffer commandBuffer,

 float lineWidth);

• commandBuffer is the command buffer into which the command will be recorded.

499

• lineWidth is the width of rasterized line segments.

Valid Usage

• The currently bound graphics pipeline must have been created with the

VK_DYNAMIC_STATE_LINE_WIDTH dynamic state enabled

• If the wide lines feature is not enabled, lineWidth must be 1.0

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics

operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Both Graphics

Not all line widths need be supported for line segment rasterization, but width 1.0 antialiased

segments must be provided. The range and gradations are obtained from the lineWidthRange and

lineWidthGranularity members of VkPhysicalDeviceLimits. If, for instance, the size range is from 0.1

to 2.0 and the gradation size is 0.1, then the size 0.1, 0.2, …, 1.9, 2.0 are supported. Additional line

widths may also be supported. There is no requirement that these widths be equally spaced. If an

unsupported width is requested, the nearest supported width is used instead.

24.6.1. Basic Line Segment Rasterization

Rasterized line segments produce fragments which intersect a rectangle centered on the line

segment. Two of the edges are parallel to the specified line segment; each is at a distance of one-half

the current width from that segment in directions perpendicular to the direction of the line. The

other two edges pass through the line endpoints and are perpendicular to the direction of the

specified line segment. Coverage bits that correspond to sample points that intersect the rectangle

500

are 1, other coverage bits are 0.

Next we specify how the data associated with each rasterized fragment are obtained. Let pr = (xd, yd)

be the framebuffer coordinates at which associated data are evaluated. This may be the pixel

center of a fragment or the location of a sample within the fragment. When rasterizationSamples is

VK_SAMPLE_COUNT_1_BIT, the pixel center must be used. Let pa = (xa, ya) and pb = (xb,yb) be initial and

final endpoints of the line segment, respectively. Set

(Note that t = 0 at p_a and t = 1 at pb. Also note that this calculation projects the vector from pa to pr

onto the line, and thus computes the normalized distance of the fragment along the line.)

The value of an associated datum f for the fragment, whether it be a shader output or the clip w

coordinate, must be determined using perspective interpolation:

where fa and fb are the data associated with the starting and ending endpoints of the segment,

respectively; wa and wb are the clip w coordinates of the starting and ending endpoints of the

segments, respectively.

Depth values for lines must be determined using linear interpolation:

z = (1 - t) za + t zb

where za and zb are the depth values of the starting and ending endpoints of the segment,

respectively.

The NoPerspective and Flat interpolation decorations can be used with fragment shader inputs to

declare how they are interpolated. When neither decoration is applied, perspective interpolation is

performed as described above. When the NoPerspective decoration is used, linear interpolation is

performed in the same fashion as for depth values, as described above. When the Flat decoration is

used, no interpolation is performed, and outputs are taken from the corresponding input value of

the provoking vertex corresponding to that primitive.

The above description documents the preferred method of line rasterization, and must be used

when the implementation advertises the strictLines limit in VkPhysicalDeviceLimits as VK_TRUE.

When strictLines is VK_FALSE, the edges of the lines are generated as a parallelogram surrounding

the original line. The major axis is chosen by noting the axis in which there is the greatest distance

between the line start and end points. If the difference is equal in both directions then the X axis is

chosen as the major axis. Edges 2 and 3 are aligned to the minor axis and are centered on the

endpoints of the line as in Non strict lines, and each is lineWidth long. Edges 0 and 1 are parallel to

the line and connect the endpoints of edges 2 and 3. Coverage bits that correspond to sample points

that intersect the parallelogram are 1, other coverage bits are 0.

Samples that fall exactly on the edge of the parallelogram follow the polygon rasterization rules.

Interpolation occurs as if the parallelogram was decomposed into two triangles where each pair of

501

vertices at each end of the line has identical attributes.

Xa, Ya, Za

Xb, Yb, Zb

Minor axis

Major axis

Edge 0

Edge 1

Edge 3

Edge 2

Line width

Orig
inal lin

e

Figure 12. Non strict lines

24.7. Polygons

A polygon results from the decomposition of a triangle strip, triangle fan or a series of independent

triangles. Like points and line segments, polygon rasterization is controlled by several variables in

the VkPipelineRasterizationStateCreateInfo structure.

24.7.1. Basic Polygon Rasterization

The first step of polygon rasterization is to determine whether the triangle is back-facing or front-

facing. This determination is made based on the sign of the (clipped or unclipped) polygon’s area

computed in framebuffer coordinates. One way to compute this area is:

where and are the x and y framebuffer coordinates of the ith vertex of the n-vertex polygon

(vertices are numbered starting at zero for the purposes of this computation) and i ⊕ 1 is (i + 1) mod

n.

The interpretation of the sign of a is determined by the VkPipelineRasterizationStateCreateInfo

::frontFace property of the currently active pipeline. Possible values are:

typedef enum VkFrontFace {

 VK_FRONT_FACE_COUNTER_CLOCKWISE = 0,

 VK_FRONT_FACE_CLOCKWISE = 1,

} VkFrontFace;

502

• VK_FRONT_FACE_COUNTER_CLOCKWISE specifies that a triangle with positive area is considered front-

facing.

• VK_FRONT_FACE_CLOCKWISE specifies that a triangle with negative area is considered front-facing.

Any triangle which is not front-facing is back-facing, including zero-area triangles.

Once the orientation of triangles is determined, they are culled according to the

VkPipelineRasterizationStateCreateInfo::cullMode property of the currently active pipeline. Possible

values are:

typedef enum VkCullModeFlagBits {

 VK_CULL_MODE_NONE = 0,

 VK_CULL_MODE_FRONT_BIT = 0x00000001,

 VK_CULL_MODE_BACK_BIT = 0x00000002,

 VK_CULL_MODE_FRONT_AND_BACK = 0x00000003,

} VkCullModeFlagBits;

• VK_CULL_MODE_NONE specifies that no triangles are discarded

• VK_CULL_MODE_FRONT_BIT specifies that front-facing triangles are discarded

• VK_CULL_MODE_BACK_BIT specifies that back-facing triangles are discarded

• VK_CULL_MODE_FRONT_AND_BACK specifies that all triangles are discarded.

Following culling, fragments are produced for any triangles which have not been discarded.

The rule for determining which fragments are produced by polygon rasterization is called point

sampling. The two-dimensional projection obtained by taking the x and y framebuffer coordinates

of the polygon’s vertices is formed. Fragments are produced for any pixels for which any sample

points lie inside of this polygon. Coverage bits that correspond to sample points that satisfy the

point sampling criteria are 1, other coverage bits are 0. Special treatment is given to a sample

whose sample location lies on a polygon edge. In such a case, if two polygons lie on either side of a

common edge (with identical endpoints) on which a sample point lies, then exactly one of the

polygons must result in a covered sample for that fragment during rasterization. As for the data

associated with each fragment produced by rasterizing a polygon, we begin by specifying how these

values are produced for fragments in a triangle. Define barycentric coordinates for a triangle.

Barycentric coordinates are a set of three numbers, a, b, and c, each in the range [0,1], with a + b + c

= 1. These coordinates uniquely specify any point p within the triangle or on the triangle’s

boundary as

p = a pa + b pb + c pc

where pa, pb, and pc are the vertices of the triangle. a, b, and c are determined by:

where A(lmn) denotes the area in framebuffer coordinates of the triangle with vertices l, m, and n.

Denote an associated datum at pa, pb, or pc as fa, fb, or fc, respectively.

503

The value of an associated datum f for a fragment produced by rasterizing a triangle, whether it be

a shader output or the clip w coordinate, must be determined using perspective interpolation:

where wa, wb, and wc are the clip w coordinates of pa, pb, and pc, respectively. a, b, and c are the

barycentric coordinates of the location at which the data are produced - this must be a pixel center

or the location of a sample. When rasterizationSamples is VK_SAMPLE_COUNT_1_BIT, the pixel center

must be used.

Depth values for triangles must be determined using linear interpolation:

z = a za + b zb + c zc

where za, zb, and zc are the depth values of pa, pb, and pc, respectively.

The NoPerspective and Flat interpolation decorations can be used with fragment shader inputs to

declare how they are interpolated. When neither decoration is applied, perspective interpolation is

performed as described above. When the NoPerspective decoration is used, linear interpolation is

performed in the same fashion as for depth values, as described above. When the Flat decoration is

used, no interpolation is performed, and outputs are taken from the corresponding input value of

the provoking vertex corresponding to that primitive.

For a polygon with more than three edges, such as are produced by clipping a triangle, a convex

combination of the values of the datum at the polygon’s vertices must be used to obtain the value

assigned to each fragment produced by the rasterization algorithm. That is, it must be the case that

at every fragment

where n is the number of vertices in the polygon and fi is the value of f at vertex i. For each i, 0 ≤ ai ≤

1 and . The values of ai may differ from fragment to fragment, but at vertex i, ai = 1 and aj

= 0 for j ≠ i.



Note

One algorithm that achieves the required behavior is to triangulate a polygon

(without adding any vertices) and then treat each triangle individually as already

discussed. A scan-line rasterizer that linearly interpolates data along each edge

and then linearly interpolates data across each horizontal span from edge to edge

also satisfies the restrictions (in this case, the numerator and denominator of

equation [triangle_perspective_interpolation] are iterated independently and a

division performed for each fragment).

24.7.2. Polygon Mode

Possible values of the VkPipelineRasterizationStateCreateInfo::polygonMode property of the currently

active pipeline, specifying the method of rasterization for polygons, are:

504

typedef enum VkPolygonMode {

 VK_POLYGON_MODE_FILL = 0,

 VK_POLYGON_MODE_LINE = 1,

 VK_POLYGON_MODE_POINT = 2,

} VkPolygonMode;

• VK_POLYGON_MODE_POINT specifies that polygon vertices are drawn as points.

• VK_POLYGON_MODE_LINE specifies that polygon edges are drawn as line segments.

• VK_POLYGON_MODE_FILL specifies that polygons are rendered using the polygon rasterization rules

in this section.

These modes affect only the final rasterization of polygons: in particular, a polygon’s vertices are

shaded and the polygon is clipped and possibly culled before these modes are applied.

24.7.3. Depth Bias

The depth values of all fragments generated by the rasterization of a polygon can be offset by a

single value that is computed for that polygon. This behavior is controlled by the depthBiasEnable,

depthBiasConstantFactor, depthBiasClamp, and depthBiasSlopeFactor members of

VkPipelineRasterizationStateCreateInfo, or by the corresponding parameters to the

vkCmdSetDepthBias command if depth bias state is dynamic.

void vkCmdSetDepthBias(

 VkCommandBuffer commandBuffer,

 float depthBiasConstantFactor,

 float depthBiasClamp,

 float depthBiasSlopeFactor);

• commandBuffer is the command buffer into which the command will be recorded.

• depthBiasConstantFactor is a scalar factor controlling the constant depth value added to each

fragment.

• depthBiasClamp is the maximum (or minimum) depth bias of a fragment.

• depthBiasSlopeFactor is a scalar factor applied to a fragment’s slope in depth bias calculations.

If depthBiasEnable is VK_FALSE, no depth bias is applied and the fragment’s depth values are

unchanged.

depthBiasSlopeFactor scales the maximum depth slope of the polygon, and depthBiasConstantFactor

scales an implementation-dependent constant that relates to the usable resolution of the depth

buffer. The resulting values are summed to produce the depth bias value which is then clamped to

a minimum or maximum value specified by depthBiasClamp. depthBiasSlopeFactor,

depthBiasConstantFactor, and depthBiasClamp can each be positive, negative, or zero.

The maximum depth slope m of a triangle is

505

where (xf, yf, zf) is a point on the triangle. m may be approximated as

The minimum resolvable difference r is an implementation-dependent parameter that depends on

the depth buffer representation. It is the smallest difference in framebuffer coordinate z values that

is guaranteed to remain distinct throughout polygon rasterization and in the depth buffer. All pairs

of fragments generated by the rasterization of two polygons with otherwise identical vertices, but zf

values that differ by r, will have distinct depth values.

For fixed-point depth buffer representations, r is constant throughout the range of the entire depth

buffer. For floating-point depth buffers, there is no single minimum resolvable difference. In this

case, the minimum resolvable difference for a given polygon is dependent on the maximum

exponent, e, in the range of z values spanned by the primitive. If n is the number of bits in the

floating-point mantissa, the minimum resolvable difference, r, for the given primitive is defined as

r = 2
e-n

If no depth buffer is present, r is undefined.

The bias value o for a polygon is

m is computed as described above. If the depth buffer uses a fixed-point representation, m is a

function of depth values in the range [0,1], and o is applied to depth values in the same range.

For fixed-point depth buffers, fragment depth values are always limited to the range [0,1] by

clamping after depth bias addition is performed. Fragment depth values are clamped even when

the depth buffer uses a floating-point representation.

Valid Usage

• The currently bound graphics pipeline must have been created with the

VK_DYNAMIC_STATE_DEPTH_BIAS dynamic state enabled

• If the depth bias clamping feature is not enabled, depthBiasClamp must be 0.0

506

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics

operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Both Graphics

507

Chapter 25. Fragment Operations

Fragment operations execute on a per-fragment or per-sample basis, affecting whether or how a

fragment or sample is written to the framebuffer. Some operations execute before fragment

shading, and others after. Fragment operations always adhere to rasterization order.

25.1. Early Per-Fragment Tests

Once fragments are produced by rasterization, a number of per-fragment operations are performed

prior to fragment shader execution. If a fragment is discarded during any of these operations, it will

not be processed by any subsequent stage, including fragment shader execution.

The scissor test and sample mask generation are both always performed during early fragment

tests.

Fragment operations are performed in the following order:

• the scissor test (see Scissor Test)

• multisample fragment operations (see Sample Mask)

If early per-fragment operations are enabled by the fragment shader, these operations are also

performed:

• Depth bounds test

• Stencil test

• Depth test

• Sample counting for occlusion queries

25.2. Scissor Test

The scissor test determines if a fragment’s framebuffer coordinates (xf,yf) lie within the scissor

rectangle corresponding to the viewport index (see Controlling the Viewport) used by the primitive

that generated the fragment. If the pipeline state object is created without VK_DYNAMIC_STATE_SCISSOR

enabled then the scissor rectangles are set by the VkPipelineViewportStateCreateInfo state of the

pipeline state object. Otherwise, to dynamically set the scissor rectangles call:

void vkCmdSetScissor(

 VkCommandBuffer commandBuffer,

 uint32_t firstScissor,

 uint32_t scissorCount,

 const VkRect2D* pScissors);

• commandBuffer is the command buffer into which the command will be recorded.

• firstScissor is the index of the first scissor whose state is updated by the command.

• scissorCount is the number of scissors whose rectangles are updated by the command.

508

• pScissors is a pointer to an array of VkRect2D structures defining scissor rectangles.

The scissor rectangles taken from element i of pScissors replace the current state for the scissor

index firstScissor + i, for i in [0, scissorCount).

Each scissor rectangle is described by a VkRect2D structure, with the offset.x and offset.y values

determining the upper left corner of the scissor rectangle, and the extent.width and extent.height

values determining the size in pixels.

Valid Usage

• The currently bound graphics pipeline must have been created with the

VK_DYNAMIC_STATE_SCISSOR dynamic state enabled

• firstScissor must be less than VkPhysicalDeviceLimits::maxViewports

• The sum of firstScissor and scissorCount must be between 1 and

VkPhysicalDeviceLimits::maxViewports, inclusive

• If the multiple viewports feature is not enabled, firstScissor must be 0

• If the multiple viewports feature is not enabled, scissorCount must be 1

• The x and y members of offset must be greater than or equal to 0

• Evaluation of (offset.x + extent.width) must not cause a signed integer addition overflow

• Evaluation of (offset.y + extent.height) must not cause a signed integer addition

overflow

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• pScissors must be a pointer to an array of scissorCount VkRect2D structures

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics

operations

• scissorCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

509

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Both Graphics

If offset.x ≤ xf < offset.x + extent.width and offset.y ≤ yf < offset.y + extent.height for the selected

scissor rectangle, then the scissor test passes. Otherwise, the test fails and the fragment is discarded.

For points, lines, and polygons, the scissor rectangle for a primitive is selected in the same manner

as the viewport (see Controlling the Viewport). The scissor rectangles only apply to drawing

commands, not to other commands like clears or copies.

It is legal for offset.x + extent.width or offset.y + extent.height to exceed the dimensions of the

framebuffer - the scissor test still applies as defined above. Rasterization does not produce

fragments outside of the framebuffer, so such fragments never have the scissor test performed on

them.

The scissor test is always performed. Applications can effectively disable the scissor test by

specifying a scissor rectangle that encompasses the entire framebuffer.

25.3. Sample Mask

This step modifies fragment coverage values based on the values in the pSampleMask array member

of VkPipelineMultisampleStateCreateInfo, as described previously in section Graphics Pipelines.

pSampleMask contains an array of static coverage information that is ANDed with the coverage

information generated during rasterization. Bits that are zero disable coverage for the

corresponding sample. Bit B of mask word M corresponds to sample 32 × M + B. The array is sized

to a length of ⌈ rasterizationSamples / 32 ⌉ words. If pSampleMask is NULL, it is treated as if the mask

has all bits enabled, i.e. no coverage is removed from fragments.

The elements of the sample mask array are of type VkSampleMask, each representing 32 bits of

coverage information:

typedef uint32_t VkSampleMask;

25.4. Early Fragment Test Mode

The depth bounds test, stencil test, depth test, and occlusion query sample counting are performed

before fragment shading if and only if early fragment tests are enabled by the fragment shader (see

Early Fragment Tests). When early per-fragment operations are enabled, these operations are

performed prior to fragment shader execution, and the stencil buffer, depth buffer, and occlusion

query sample counts will be updated accordingly; these operations will not be performed again

after fragment shader execution.

510

If a pipeline’s fragment shader has early fragment tests disabled, these operations are performed

only after fragment program execution, in the order described below. If a pipeline does not contain

a fragment shader, these operations are performed only once.

If early fragment tests are enabled, any depth value computed by the fragment shader has no effect.

Additionally, the depth test (including depth writes), stencil test (including stencil writes) and

sample counting operations are performed even for fragments or samples that would be discarded

after fragment shader execution due to per-fragment operations such as alpha-to-coverage tests, or

due to the fragment being discarded by the shader itself.

25.5. Late Per-Fragment Tests

After programmable fragment processing, per-fragment operations are performed before blending

and color output to the framebuffer.

A fragment is produced by rasterization with framebuffer coordinates of (xf,yf) and depth z, as

described in Rasterization. The fragment is then modified by programmable fragment processing,

which adds associated data as described in Shaders. The fragment is then further modified, and

possibly discarded by the late per-fragment operations described in this chapter. Finally, if the

fragment was not discarded, it is used to update the framebuffer at the fragment’s framebuffer

coordinates for any samples that remain covered.

The depth bounds test, stencil test, and depth test are performed for each pixel sample, rather than

just once for each fragment. Stencil and depth operations are performed for a pixel sample only if

that sample’s fragment coverage bit is a value of 1 when the fragment executes the corresponding

stage of the graphics pipeline. If the corresponding coverage bit is 0, no operations are performed

for that sample. Failure of the depth bounds, stencil, or depth test results in termination of the

processing of that sample by means of disabling coverage for that sample, rather than discarding of

the fragment. If, at any point, a fragment’s coverage becomes zero for all samples, then the

fragment is discarded. All operations are performed on the depth and stencil values stored in the

depth/stencil attachment of the framebuffer. The contents of the color attachments are not

modified at this point.

The depth bounds test, stencil test, depth test, and occlusion query operations described in Depth

Bounds Test, Stencil Test, Depth Test, Sample Counting are instead performed prior to fragment

processing, as described in Early Fragment Test Mode, if requested by the fragment shader.

25.6. Multisample Coverage

If a fragment shader is active and its entry point’s interface includes a built-in output variable

decorated with SampleMask, the fragment coverage is ANDed with the bits of the sample mask to

generate a new fragment coverage value. If such a fragment shader did not assign a value to

SampleMask due to flow of control, the value ANDed with the fragment coverage is undefined. If no

fragment shader is active, or if the active fragment shader does not include SampleMask in its

interface, the fragment coverage is not modified.

Next, the fragment alpha and coverage values are modified based on the alphaToCoverageEnable and

alphaToOneEnable members of the VkPipelineMultisampleStateCreateInfo structure.

511

All alpha values in this section refer only to the alpha component of the fragment shader output

that has a Location and Index decoration of zero (see the Fragment Output Interface section). If that

shader output has an integer or unsigned integer type, then these operations are skipped.

If alphaToCoverageEnable is enabled, a temporary coverage value with rasterizationSamples bits is

generated where each bit is determined by the fragment’s alpha value. The temporary coverage

value is then ANDed with the fragment coverage value to generate a new fragment coverage value.

No specific algorithm is specified for converting the alpha value to a temporary coverage mask. It is

intended that the number of 1’s in this value be proportional to the alpha value (clamped to [0,1]),

with all 1’s corresponding to a value of 1.0 and all 0’s corresponding to 0.0. The algorithm may be

different at different pixel locations.


Note

Using different algorithms at different pixel location may help to avoid artifacts

caused by regular coverage sample locations.

Next, if alphaToOneEnable is enabled, each alpha value is replaced by the maximum representable

alpha value for fixed-point color buffers, or by 1.0 for floating-point buffers. Otherwise, the alpha

values are not changed.

25.7. Depth and Stencil Operations

Pipeline state controlling the depth bounds tests, stencil test, and depth test is specified through the

members of the VkPipelineDepthStencilStateCreateInfo structure.

The VkPipelineDepthStencilStateCreateInfo structure is defined as:

typedef struct VkPipelineDepthStencilStateCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineDepthStencilStateCreateFlags flags;

 VkBool32 depthTestEnable;

 VkBool32 depthWriteEnable;

 VkCompareOp depthCompareOp;

 VkBool32 depthBoundsTestEnable;

 VkBool32 stencilTestEnable;

 VkStencilOpState front;

 VkStencilOpState back;

 float minDepthBounds;

 float maxDepthBounds;

} VkPipelineDepthStencilStateCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• depthTestEnable controls whether depth testing is enabled.

512

• depthWriteEnable controls whether depth writes are enabled when depthTestEnable is VK_TRUE.

Depth writes are always disabled when depthTestEnable is VK_FALSE.

• depthCompareOp is the comparison operator used in the depth test.

• depthBoundsTestEnable controls whether depth bounds testing is enabled.

• stencilTestEnable controls whether stencil testing is enabled.

• front and back control the parameters of the stencil test.

• minDepthBounds and maxDepthBounds define the range of values used in the depth bounds test.

Valid Usage

• If the depth bounds testing feature is not enabled, depthBoundsTestEnable must be VK_FALSE

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO

• pNext must be NULL

• flags must be 0

• depthCompareOp must be a valid VkCompareOp value

• front must be a valid VkStencilOpState structure

• back must be a valid VkStencilOpState structure

25.8. Depth Bounds Test

The depth bounds test conditionally disables coverage of a sample based on the outcome of a

comparison between the value za in the depth attachment at location (xf,yf) (for the appropriate

sample) and a range of values. The test is enabled or disabled by the depthBoundsTestEnable member

of VkPipelineDepthStencilStateCreateInfo: If the pipeline state object is created without the

VK_DYNAMIC_STATE_DEPTH_BOUNDS dynamic state enabled then the range of values used in the depth

bounds test are defined by the minDepthBounds and maxDepthBounds members of the

VkPipelineDepthStencilStateCreateInfo structure. Otherwise, to dynamically set the depth bounds

range values call:

void vkCmdSetDepthBounds(

 VkCommandBuffer commandBuffer,

 float minDepthBounds,

 float maxDepthBounds);

• commandBuffer is the command buffer into which the command will be recorded.

• minDepthBounds is the lower bound of the range of depth values used in the depth bounds test.

• maxDepthBounds is the upper bound of the range.

513

Valid Usage

• The currently bound graphics pipeline must have been created with the

VK_DYNAMIC_STATE_DEPTH_BOUNDS dynamic state enabled

• minDepthBounds must be between 0.0 and 1.0, inclusive

• maxDepthBounds must be between 0.0 and 1.0, inclusive

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics

operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Both Graphics

If minDepthBounds ≤ za ≤ maxDepthBounds}, then the depth bounds test passes. Otherwise, the test fails

and the sample’s coverage bit is cleared in the fragment. If there is no depth framebuffer

attachment or if the depth bounds test is disabled, it is as if the depth bounds test always passes.

25.9. Stencil Test

The stencil test conditionally disables coverage of a sample based on the outcome of a comparison

between the stencil value in the depth/stencil attachment at location (xf,yf) (for the appropriate

sample) and a reference value. The stencil test also updates the value in the stencil attachment,

depending on the test state, the stencil value and the stencil write masks. The test is enabled or

disabled by the stencilTestEnable member of VkPipelineDepthStencilStateCreateInfo.

When disabled, the stencil test and associated modifications are not made, and the sample’s

coverage is not modified.

514

The stencil test is controlled with the front and back members of

VkPipelineDepthStencilStateCreateInfo which are of type VkStencilOpState.

The VkStencilOpState structure is defined as:

typedef struct VkStencilOpState {

 VkStencilOp failOp;

 VkStencilOp passOp;

 VkStencilOp depthFailOp;

 VkCompareOp compareOp;

 uint32_t compareMask;

 uint32_t writeMask;

 uint32_t reference;

} VkStencilOpState;

• failOp is a VkStencilOp value specifying the action performed on samples that fail the stencil

test.

• passOp is a VkStencilOp value specifying the action performed on samples that pass both the

depth and stencil tests.

• depthFailOp is a VkStencilOp value specifying the action performed on samples that pass the

stencil test and fail the depth test.

• compareOp is a VkCompareOp value specifying the comparison operator used in the stencil test.

• compareMask selects the bits of the unsigned integer stencil values participating in the stencil test.

• writeMask selects the bits of the unsigned integer stencil values updated by the stencil test in the

stencil framebuffer attachment.

• reference is an integer reference value that is used in the unsigned stencil comparison.

Valid Usage (Implicit)

• failOp must be a valid VkStencilOp value

• passOp must be a valid VkStencilOp value

• depthFailOp must be a valid VkStencilOp value

• compareOp must be a valid VkCompareOp value

There are two sets of stencil-related state, the front stencil state set and the back stencil state set.

Stencil tests and writes use the front set of stencil state when processing front-facing fragments and

use the back set of stencil state when processing back-facing fragments. Fragments rasterized from

non-polygon primitives (points and lines) are always considered front-facing. Fragments rasterized

from polygon primitives inherit their facingness from the polygon, even if the polygon is rasterized

as points or lines due to the current VkPolygonMode. Whether a polygon is front- or back-facing is

determined in the same manner used for face culling (see Basic Polygon Rasterization).

The operation of the stencil test is also affected by the compareMask, writeMask, and reference

515

members of VkStencilOpState set in the pipeline state object if the pipeline state object is created

without the VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, and

VK_DYNAMIC_STATE_STENCIL_REFERENCE dynamic states enabled, respectively.

If the pipeline state object is created with the VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK dynamic state

enabled, then to dynamically set the stencil compare mask call:

void vkCmdSetStencilCompareMask(

 VkCommandBuffer commandBuffer,

 VkStencilFaceFlags faceMask,

 uint32_t compareMask);

• commandBuffer is the command buffer into which the command will be recorded.

• faceMask is a bitmask of VkStencilFaceFlagBits specifying the set of stencil state for which to

update the compare mask.

• compareMask is the new value to use as the stencil compare mask.

Valid Usage

• The currently bound graphics pipeline must have been created with the

VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK dynamic state enabled

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• faceMask must be a valid combination of VkStencilFaceFlagBits values

• faceMask must not be 0

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics

operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

516

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Both Graphics

Bits which can be set in the vkCmdSetStencilCompareMask::faceMask parameter, and similar

parameters of other commands specifying which stencil state to update stencil masks for, are:

typedef enum VkStencilFaceFlagBits {

 VK_STENCIL_FACE_FRONT_BIT = 0x00000001,

 VK_STENCIL_FACE_BACK_BIT = 0x00000002,

 VK_STENCIL_FRONT_AND_BACK = 0x00000003,

} VkStencilFaceFlagBits;

• VK_STENCIL_FACE_FRONT_BIT specifies that only the front set of stencil state is updated.

• VK_STENCIL_FACE_BACK_BIT specifies that only the back set of stencil state is updated.

• VK_STENCIL_FRONT_AND_BACK is the combination of VK_STENCIL_FACE_FRONT_BIT and

VK_STENCIL_FACE_BACK_BIT, and specifies that both sets of stencil state are updated.

If the pipeline state object is created with the VK_DYNAMIC_STATE_STENCIL_WRITE_MASK dynamic state

enabled, then to dynamically set the stencil write mask call:

void vkCmdSetStencilWriteMask(

 VkCommandBuffer commandBuffer,

 VkStencilFaceFlags faceMask,

 uint32_t writeMask);

• commandBuffer is the command buffer into which the command will be recorded.

• faceMask is a bitmask of VkStencilFaceFlagBits specifying the set of stencil state for which to

update the write mask, as described above for vkCmdSetStencilCompareMask.

• writeMask is the new value to use as the stencil write mask.

Valid Usage

• The currently bound graphics pipeline must have been created with the

VK_DYNAMIC_STATE_STENCIL_WRITE_MASK dynamic state enabled

517

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• faceMask must be a valid combination of VkStencilFaceFlagBits values

• faceMask must not be 0

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics

operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Both Graphics

If the pipeline state object is created with the VK_DYNAMIC_STATE_STENCIL_REFERENCE dynamic state

enabled, then to dynamically set the stencil reference value call:

void vkCmdSetStencilReference(

 VkCommandBuffer commandBuffer,

 VkStencilFaceFlags faceMask,

 uint32_t reference);

• commandBuffer is the command buffer into which the command will be recorded.

• faceMask is a bitmask of VkStencilFaceFlagBits specifying the set of stencil state for which to

update the reference value, as described above for vkCmdSetStencilCompareMask.

• reference is the new value to use as the stencil reference value.

Valid Usage

• The currently bound graphics pipeline must have been created with the

VK_DYNAMIC_STATE_STENCIL_REFERENCE dynamic state enabled

518

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• faceMask must be a valid combination of VkStencilFaceFlagBits values

• faceMask must not be 0

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics

operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Both Graphics

reference is an integer reference value that is used in the unsigned stencil comparison. Stencil

comparison clamps the reference value to [0,2
s
-1], where s is the number of bits in the stencil

framebuffer attachment. The s least significant bits of compareMask are bitwise ANDed with both the

reference and the stored stencil value, and the resulting masked values are those that participate in

the comparison controlled by compareOp. Let R be the masked reference value and S be the masked

stored stencil value.

Possible values of VkStencilOpState::compareOp, specifying the stencil comparison function, are:

typedef enum VkCompareOp {

 VK_COMPARE_OP_NEVER = 0,

 VK_COMPARE_OP_LESS = 1,

 VK_COMPARE_OP_EQUAL = 2,

 VK_COMPARE_OP_LESS_OR_EQUAL = 3,

 VK_COMPARE_OP_GREATER = 4,

 VK_COMPARE_OP_NOT_EQUAL = 5,

 VK_COMPARE_OP_GREATER_OR_EQUAL = 6,

 VK_COMPARE_OP_ALWAYS = 7,

} VkCompareOp;

519

• VK_COMPARE_OP_NEVER specifies that the test never passes.

• VK_COMPARE_OP_LESS specifies that the test passes when R < S.

• VK_COMPARE_OP_EQUAL specifies that the test passes when R = S.

• VK_COMPARE_OP_LESS_OR_EQUAL specifies that the test passes when R ≤ S.

• VK_COMPARE_OP_GREATER specifies that the test passes when R > S.

• VK_COMPARE_OP_NOT_EQUAL specifies that the test passes when R ≠ S.

• VK_COMPARE_OP_GREATER_OR_EQUAL specifies that the test passes when R ≥ S.

• VK_COMPARE_OP_ALWAYS specifies that the test always passes.

Possible values of the failOp, passOp, and depthFailOp members of VkStencilOpState, specifying what

happens to the stored stencil value if this or certain subsequent tests fail or pass, are:

typedef enum VkStencilOp {

 VK_STENCIL_OP_KEEP = 0,

 VK_STENCIL_OP_ZERO = 1,

 VK_STENCIL_OP_REPLACE = 2,

 VK_STENCIL_OP_INCREMENT_AND_CLAMP = 3,

 VK_STENCIL_OP_DECREMENT_AND_CLAMP = 4,

 VK_STENCIL_OP_INVERT = 5,

 VK_STENCIL_OP_INCREMENT_AND_WRAP = 6,

 VK_STENCIL_OP_DECREMENT_AND_WRAP = 7,

} VkStencilOp;

• VK_STENCIL_OP_KEEP keeps the current value.

• VK_STENCIL_OP_ZERO sets the value to 0.

• VK_STENCIL_OP_REPLACE sets the value to reference.

• VK_STENCIL_OP_INCREMENT_AND_CLAMP increments the current value and clamps to the maximum

representable unsigned value.

• VK_STENCIL_OP_DECREMENT_AND_CLAMP decrements the current value and clamps to 0.

• VK_STENCIL_OP_INVERT bitwise-inverts the current value.

• VK_STENCIL_OP_INCREMENT_AND_WRAP increments the current value and wraps to 0 when the

maximum value would have been exceeded.

• VK_STENCIL_OP_DECREMENT_AND_WRAP decrements the current value and wraps to the maximum

possible value when the value would go below 0.

For purposes of increment and decrement, the stencil bits are considered as an unsigned integer.

If the stencil test fails, the sample’s coverage bit is cleared in the fragment. If there is no stencil

framebuffer attachment, stencil modification cannot occur, and it is as if the stencil tests always

pass.

If the stencil test passes, the writeMask member of the VkStencilOpState structures controls how the

updated stencil value is written to the stencil framebuffer attachment.

520

The least significant s bits of writeMask, where s is the number of bits in the stencil framebuffer

attachment, specify an integer mask. Where a 1 appears in this mask, the corresponding bit in the

stencil value in the depth/stencil attachment is written; where a 0 appears, the bit is not written.

The writeMask value uses either the front-facing or back-facing state based on the facingness of the

fragment. Fragments generated by front-facing primitives use the front mask and fragments

generated by back-facing primitives use the back mask.

25.10. Depth Test

The depth test conditionally disables coverage of a sample based on the outcome of a comparison

between the fragment’s depth value at the sample location and the sample’s depth value in the

depth/stencil attachment at location (xf,yf). The comparison is enabled or disabled with the

depthTestEnable member of the VkPipelineDepthStencilStateCreateInfo structure. When disabled,

the depth comparison and subsequent possible updates to the value of the depth component of the

depth/stencil attachment are bypassed and the fragment is passed to the next operation. The stencil

value, however, can be modified as indicated above as if the depth test passed. If enabled, the

comparison takes place and the depth/stencil attachment value can subsequently be modified.

The comparison is specified with the depthCompareOp member of

VkPipelineDepthStencilStateCreateInfo. Let zf be the incoming fragment’s depth value for a sample,

and let za be the depth/stencil attachment value in memory for that sample. The depth test passes

under the following conditions:

• VK_COMPARE_OP_NEVER: the test never passes.

• VK_COMPARE_OP_LESS: the test passes when zf < za.

• VK_COMPARE_OP_EQUAL: the test passes when zf = za.

• VK_COMPARE_OP_LESS_OR_EQUAL: the test passes when zf ≤ za.

• VK_COMPARE_OP_GREATER: the test passes when zf > za.

• VK_COMPARE_OP_NOT_EQUAL: the test passes when zf ≠ za.

• VK_COMPARE_OP_GREATER_OR_EQUAL: the test passes when zf ≥ za.

• VK_COMPARE_OP_ALWAYS: the test always passes.

If depth clamping (see Primitive Clipping) is enabled, before the incoming fragment’s zf is compared

to za, zf is clamped to [min(n,f),max(n,f)], where n and f are the minDepth and maxDepth depth range

values of the viewport used by this fragment, respectively.

If the depth test fails, the sample’s coverage bit is cleared in the fragment. The stencil value at the

sample’s location is updated according to the function currently in effect for depth test failure.

If the depth test passes, the sample’s (possibly clamped) zf value is conditionally written to the

depth framebuffer attachment based on the depthWriteEnable member of

VkPipelineDepthStencilStateCreateInfo. If depthWriteEnable is VK_TRUE the value is written, and if it

is VK_FALSE the value is not written. The stencil value at the sample’s location is updated according

to the function currently in effect for depth test success.

If there is no depth framebuffer attachment, it is as if the depth test always passes.

521

25.11. Sample Counting

Occlusion queries use query pool entries to track the number of samples that pass all the per-

fragment tests. The mechanism of collecting an occlusion query value is described in Occlusion

Queries.

The occlusion query sample counter increments by one for each sample with a coverage value of 1

in each fragment that survives all the per-fragment tests, including scissor, sample mask, alpha to

coverage, stencil, and depth tests.

25.12. Coverage Reduction

Coverage reduction generates a color sample mask from the coverage mask, with one bit for each

sample in the color attachment(s) for the subpass. If a bit in the color sample mask is 0, then

blending and writing to the framebuffer are not performed for that sample.

Each color sample is associated with a unique rasterization sample, and the value of the coverage

mask is assigned to the color sample mask.

522

Chapter 26. The Framebuffer

26.1. Blending

Blending combines the incoming source fragment’s R, G, B, and A values with the destination R, G, B,

and A values of each sample stored in the framebuffer at the fragment’s (xf,yf) location. Blending is

performed for each pixel sample, rather than just once for each fragment.

Source and destination values are combined according to the blend operation, quadruplets of

source and destination weighting factors determined by the blend factors, and a blend constant, to

obtain a new set of R, G, B, and A values, as described below.

Blending is computed and applied separately to each color attachment used by the subpass, with

separate controls for each attachment.

Prior to performing the blend operation, signed and unsigned normalized fixed-point color

components undergo an implied conversion to floating-point as specified by Conversion from

Normalized Fixed-Point to Floating-Point. Blending computations are treated as if carried out in

floating-point, and basic blend operations are performed with a precision and dynamic range no

lower than that used to represent destination components.

Blending applies only to fixed-point and floating-point color attachments. If the color attachment

has an integer format, blending is not applied.

The pipeline blend state is included in the VkPipelineColorBlendStateCreateInfo structure during

graphics pipeline creation:

The VkPipelineColorBlendStateCreateInfo structure is defined as:

typedef struct VkPipelineColorBlendStateCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineColorBlendStateCreateFlags flags;

 VkBool32 logicOpEnable;

 VkLogicOp logicOp;

 uint32_t attachmentCount;

 const VkPipelineColorBlendAttachmentState* pAttachments;

 float blendConstants[4];

} VkPipelineColorBlendStateCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• logicOpEnable controls whether to apply Logical Operations.

• logicOp selects which logical operation to apply.

• attachmentCount is the number of VkPipelineColorBlendAttachmentState elements in pAttachments.

523

This value must equal the colorAttachmentCount for the subpass in which this pipeline is used.

• pAttachments: is a pointer to array of per target attachment states.

• blendConstants is an array of four values used as the R, G, B, and A components of the blend

constant that are used in blending, depending on the blend factor.

Each element of the pAttachments array is a VkPipelineColorBlendAttachmentState structure

specifying per-target blending state for each individual color attachment. If the independent

blending feature is not enabled on the device, all VkPipelineColorBlendAttachmentState elements

in the pAttachments array must be identical.

Valid Usage

• If the independent blending feature is not enabled, all elements of pAttachments must be

identical

• If the logic operations feature is not enabled, logicOpEnable must be VK_FALSE

• If logicOpEnable is VK_TRUE, logicOp must be a valid VkLogicOp value

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO

• pNext must be NULL

• flags must be 0

• If attachmentCount is not 0, pAttachments must be a pointer to an array of attachmentCount

valid VkPipelineColorBlendAttachmentState structures

The VkPipelineColorBlendAttachmentState structure is defined as:

typedef struct VkPipelineColorBlendAttachmentState {

 VkBool32 blendEnable;

 VkBlendFactor srcColorBlendFactor;

 VkBlendFactor dstColorBlendFactor;

 VkBlendOp colorBlendOp;

 VkBlendFactor srcAlphaBlendFactor;

 VkBlendFactor dstAlphaBlendFactor;

 VkBlendOp alphaBlendOp;

 VkColorComponentFlags colorWriteMask;

} VkPipelineColorBlendAttachmentState;

• blendEnable controls whether blending is enabled for the corresponding color attachment. If

blending is not enabled, the source fragment’s color for that attachment is passed through

unmodified.

• srcColorBlendFactor selects which blend factor is used to determine the source factors (Sr,Sg,Sb).

524

• dstColorBlendFactor selects which blend factor is used to determine the destination factors (Dr

,Dg,Db).

• colorBlendOp selects which blend operation is used to calculate the RGB values to write to the

color attachment.

• srcAlphaBlendFactor selects which blend factor is used to determine the source factor Sa.

• dstAlphaBlendFactor selects which blend factor is used to determine the destination factor Da.

• alphaBlendOp selects which blend operation is use to calculate the alpha values to write to the

color attachment.

• colorWriteMask is a bitmask of VkColorComponentFlagBits specifying which of the R, G, B, and/or

A components are enabled for writing, as described for the Color Write Mask.

Valid Usage

• If the dual source blending feature is not enabled, srcColorBlendFactor must not be

VK_BLEND_FACTOR_SRC1_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR,

VK_BLEND_FACTOR_SRC1_ALPHA, or VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA

• If the dual source blending feature is not enabled, dstColorBlendFactor must not be

VK_BLEND_FACTOR_SRC1_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR,

VK_BLEND_FACTOR_SRC1_ALPHA, or VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA

• If the dual source blending feature is not enabled, srcAlphaBlendFactor must not be

VK_BLEND_FACTOR_SRC1_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR,

VK_BLEND_FACTOR_SRC1_ALPHA, or VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA

• If the dual source blending feature is not enabled, dstAlphaBlendFactor must not be

VK_BLEND_FACTOR_SRC1_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR,

VK_BLEND_FACTOR_SRC1_ALPHA, or VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA

Valid Usage (Implicit)

• srcColorBlendFactor must be a valid VkBlendFactor value

• dstColorBlendFactor must be a valid VkBlendFactor value

• colorBlendOp must be a valid VkBlendOp value

• srcAlphaBlendFactor must be a valid VkBlendFactor value

• dstAlphaBlendFactor must be a valid VkBlendFactor value

• alphaBlendOp must be a valid VkBlendOp value

• colorWriteMask must be a valid combination of VkColorComponentFlagBits values

26.1.1. Blend Factors

The source and destination color and alpha blending factors are selected from the enum:

525

typedef enum VkBlendFactor {

 VK_BLEND_FACTOR_ZERO = 0,

 VK_BLEND_FACTOR_ONE = 1,

 VK_BLEND_FACTOR_SRC_COLOR = 2,

 VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR = 3,

 VK_BLEND_FACTOR_DST_COLOR = 4,

 VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR = 5,

 VK_BLEND_FACTOR_SRC_ALPHA = 6,

 VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA = 7,

 VK_BLEND_FACTOR_DST_ALPHA = 8,

 VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA = 9,

 VK_BLEND_FACTOR_CONSTANT_COLOR = 10,

 VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR = 11,

 VK_BLEND_FACTOR_CONSTANT_ALPHA = 12,

 VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA = 13,

 VK_BLEND_FACTOR_SRC_ALPHA_SATURATE = 14,

 VK_BLEND_FACTOR_SRC1_COLOR = 15,

 VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR = 16,

 VK_BLEND_FACTOR_SRC1_ALPHA = 17,

 VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA = 18,

} VkBlendFactor;

The semantics of each enum value is described in the table below:

Table 26. Blend Factors

VkBlendFactor RGB Blend Factors (Sr,S

g,Sb) or (Dr,Dg,Db)

Alpha

Blend

Factor (Sa

or Da)

VK_BLEND_FACTOR_ZERO (0,0,0) 0

VK_BLEND_FACTOR_ONE (1,1,1) 1

VK_BLEND_FACTOR_SRC_COLOR (Rs0,Gs0,Bs0) As0

VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR (1-Rs0,1-Gs0,1-Bs0) 1-As0

VK_BLEND_FACTOR_DST_COLOR (Rd,Gd,Bd) Ad

VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR (1-Rd,1-Gd,1-Bd) 1-Ad

VK_BLEND_FACTOR_SRC_ALPHA (As0,As0,As0) As0

VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA (1-As0,1-As0,1-As0) 1-As0

VK_BLEND_FACTOR_DST_ALPHA (Ad,Ad,Ad) Ad

VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA (1-Ad,1-Ad,1-Ad) 1-Ad

VK_BLEND_FACTOR_CONSTANT_COLOR (Rc,Gc,Bc) Ac

VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR (1-Rc,1-Gc,1-Bc) 1-Ac

VK_BLEND_FACTOR_CONSTANT_ALPHA (Ac,Ac,Ac) Ac

VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA (1-Ac,1-Ac,1-Ac) 1-Ac

VK_BLEND_FACTOR_SRC_ALPHA_SATURATE (f,f,f); f = min(As0,1-Ad) 1

526

VkBlendFactor RGB Blend Factors (Sr,S

g,Sb) or (Dr,Dg,Db)

Alpha

Blend

Factor (Sa

or Da)

VK_BLEND_FACTOR_SRC1_COLOR (Rs1,Gs1,Bs1) As1

VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR (1-Rs1,1-Gs1,1-Bs1) 1-As1

VK_BLEND_FACTOR_SRC1_ALPHA (As1,As1,As1) As1

VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA (1-As1,1-As1,1-As1) 1-As1

In this table, the following conventions are used:

• Rs0,Gs0,Bs0 and As0 represent the first source color R, G, B, and A components, respectively, for the

fragment output location corresponding to the color attachment being blended.

• Rs1,Gs1,Bs1 and As1 represent the second source color R, G, B, and A components, respectively,

used in dual source blending modes, for the fragment output location corresponding to the

color attachment being blended.

• Rd,Gd,Bd and Ad represent the R, G, B, and A components of the destination color. That is, the

color currently in the corresponding color attachment for this fragment/sample.

• Rc,Gc,Bc and Ac represent the blend constant R, G, B, and A components, respectively.

If the pipeline state object is created without the VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic state

enabled then the blend constant (Rc,Gc,Bc,Ac) is specified via the blendConstants member of

VkPipelineColorBlendStateCreateInfo.

Otherwise, to dynamically set and change the blend constant, call:

void vkCmdSetBlendConstants(

 VkCommandBuffer commandBuffer,

 const float blendConstants[4]);

• commandBuffer is the command buffer into which the command will be recorded.

• blendConstants is an array of four values specifying the R, G, B, and A components of the blend

constant color used in blending, depending on the blend factor.

Valid Usage

• The currently bound graphics pipeline must have been created with the

VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic state enabled

527

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics

operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Both Graphics

26.1.2. Dual-Source Blending

Blend factors that use the secondary color input (Rs1,Gs1,Bs1,As1) (VK_BLEND_FACTOR_SRC1_COLOR,

VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR, VK_BLEND_FACTOR_SRC1_ALPHA, and

VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA) may consume hardware resources that could otherwise be

used for rendering to multiple color attachments. Therefore, the number of color attachments that

can be used in a framebuffer may be lower when using dual-source blending.

Dual-source blending is only supported if the dualSrcBlend feature is enabled.

The maximum number of color attachments that can be used in a subpass when using dual-source

blending functions is implementation-dependent and is reported as the

maxFragmentDualSrcAttachments member of VkPhysicalDeviceLimits.

When using a fragment shader with dual-source blending functions, the color outputs are bound to

the first and second inputs of the blender using the Index decoration, as described in Fragment

Output Interface. If the second color input to the blender is not written in the shader, or if no

output is bound to the second input of a blender, the result of the blending operation is not defined.

26.1.3. Blend Operations

Once the source and destination blend factors have been selected, they along with the source and

destination components are passed to the blending operations. RGB and alpha components can use

different operations. Possible values of VkBlendOp, specifying the operations, are:

528

typedef enum VkBlendOp {

 VK_BLEND_OP_ADD = 0,

 VK_BLEND_OP_SUBTRACT = 1,

 VK_BLEND_OP_REVERSE_SUBTRACT = 2,

 VK_BLEND_OP_MIN = 3,

 VK_BLEND_OP_MAX = 4,

} VkBlendOp;

529

The semantics of each basic blend operations is described in the table below:

Table 27. Basic Blend Operations

VkBlendOp RGB Components Alpha Component

VK_BLEND_OP_ADD R = Rs0 × Sr + Rd × Dr

G = Gs0 × Sg + Gd × Dg

B = Bs0 × Sb + Bd × Db

A = As0 × Sa + Ad × Da

VK_BLEND_OP_SUBTRACT R = Rs0 × Sr - Rd × Dr

G = Gs0 × Sg - Gd × Dg

B = Bs0 × Sb - Bd × Db

A = As0 × Sa - Ad × Da

VK_BLEND_OP_REVERSE_SUBTRACT R = Rd × Dr - Rs0 × Sr

G = Gd × Dg - Gs0 × Sg

B = Bd × Db - Bs0 × Sb

A = Ad × Da - As0 × Sa

VK_BLEND_OP_MIN R = min(Rs0,Rd)

G = min(Gs0,Gd)

B = min(Bs0,Bd)

A = min(As0,Ad)

VK_BLEND_OP_MAX R = max(Rs0,Rd)

G = max(Gs0,Gd)

B = max(Bs0,Bd)

A = max(As0,Ad)

In this table, the following conventions are used:

• Rs0, Gs0, Bs0 and As0 represent the first source color R, G, B, and A components, respectively.

• Rd, Gd, Bd and Ad represent the R, G, B, and A components of the destination color. That is, the

color currently in the corresponding color attachment for this fragment/sample.

• Sr, Sg, Sb and Sa represent the source blend factor R, G, B, and A components, respectively.

• Dr, Dg, Db and Da represent the destination blend factor R, G, B, and A components, respectively.

The blending operation produces a new set of values R, G, B and A, which are written to the

framebuffer attachment. If blending is not enabled for this attachment, then R, G, B and A are

assigned Rs0, Gs0, Bs0 and As0, respectively.

If the color attachment is fixed-point, the components of the source and destination values and

blend factors are each clamped to [0,1] or [-1,1] respectively for an unsigned normalized or signed

normalized color attachment prior to evaluating the blend operations. If the color attachment is

floating-point, no clamping occurs.

If the numeric format of a framebuffer attachment uses sRGB encoding, the R, G, and B destination

color values (after conversion from fixed-point to floating-point) are considered to be encoded for

the sRGB color space and hence are linearized prior to their use in blending. Each R, G, and B

component is converted from nonlinear to linear as described in the “KHR_DF_TRANSFER_SRGB”

section of the Khronos Data Format Specification. If the format is not sRGB, no linearization is

performed.

If the numeric format of a framebuffer attachment uses sRGB encoding, then the final R, G and B

values are converted into the nonlinear sRGB representation before being written to the

framebuffer attachment as described in the “KHR_DF_TRANSFER_SRGB” section of the Khronos

530

Data Format Specification.

If the framebuffer color attachment numeric format is not sRGB encoded then the resulting cs

values for R, G and B are unmodified. The value of A is never sRGB encoded. That is, the alpha

component is always stored in memory as linear.

If the framebuffer color attachment is VK_ATTACHMENT_UNUSED, no writes are performed through that

attachment. Framebuffer color attachments greater than or equal to VkSubpassDescription

::colorAttachmentCount perform no writes.

26.2. Logical Operations

The application can enable a logical operation between the fragment’s color values and the existing

value in the framebuffer attachment. This logical operation is applied prior to updating the

framebuffer attachment. Logical operations are applied only for signed and unsigned integer and

normalized integer framebuffers. Logical operations are not applied to floating-point or sRGB

format color attachments.

Logical operations are controlled by the logicOpEnable and logicOp members of

VkPipelineColorBlendStateCreateInfo. If logicOpEnable is VK_TRUE, then a logical operation selected

by logicOp is applied between each color attachment and the fragment’s corresponding output

value, and blending of all attachments is treated as if it were disabled. Any attachments using color

formats for which logical operations are not supported simply pass through the color values

unmodified. The logical operation is applied independently for each of the red, green, blue, and

alpha components. The logicOp is selected from the following operations:

typedef enum VkLogicOp {

 VK_LOGIC_OP_CLEAR = 0,

 VK_LOGIC_OP_AND = 1,

 VK_LOGIC_OP_AND_REVERSE = 2,

 VK_LOGIC_OP_COPY = 3,

 VK_LOGIC_OP_AND_INVERTED = 4,

 VK_LOGIC_OP_NO_OP = 5,

 VK_LOGIC_OP_XOR = 6,

 VK_LOGIC_OP_OR = 7,

 VK_LOGIC_OP_NOR = 8,

 VK_LOGIC_OP_EQUIVALENT = 9,

 VK_LOGIC_OP_INVERT = 10,

 VK_LOGIC_OP_OR_REVERSE = 11,

 VK_LOGIC_OP_COPY_INVERTED = 12,

 VK_LOGIC_OP_OR_INVERTED = 13,

 VK_LOGIC_OP_NAND = 14,

 VK_LOGIC_OP_SET = 15,

} VkLogicOp;

531

The logical operations supported by Vulkan are summarized in the following table in which

• ¬ is bitwise invert,

• ∧ is bitwise and,

• ∨ is bitwise or,

• ⊕ is bitwise exclusive or,

• s is the fragment’s Rs0, Gs0, Bs0 or As0 component value for the fragment output corresponding to

the color attachment being updated, and

• d is the color attachment’s R, G, B or A component value:

Table 28. Logical Operations

Mode Operation

VK_LOGIC_OP_CLEAR 0

VK_LOGIC_OP_AND s ∧ d

VK_LOGIC_OP_AND_REVERSE s ∧ ¬ d

VK_LOGIC_OP_COPY s

VK_LOGIC_OP_AND_INVERTED ¬ s ∧ d

VK_LOGIC_OP_NO_OP d

VK_LOGIC_OP_XOR s ⊕ d

VK_LOGIC_OP_OR s ∨ d

VK_LOGIC_OP_NOR ¬ (s ∨ d)

VK_LOGIC_OP_EQUIVALENT ¬ (s ⊕ d)

VK_LOGIC_OP_INVERT ¬ d

VK_LOGIC_OP_OR_REVERSE s ∨ ¬ d

VK_LOGIC_OP_COPY_INVERTED ¬ s

VK_LOGIC_OP_OR_INVERTED ¬ s ∨ d

VK_LOGIC_OP_NAND ¬ (s ∧ d)

VK_LOGIC_OP_SET all 1s

The result of the logical operation is then written to the color attachment as controlled by the

component write mask, described in Blend Operations.

26.3. Color Write Mask

Bits which can be set in VkPipelineColorBlendAttachmentState::colorWriteMask to determine

whether the final color values R, G, B and A are written to the framebuffer attachment are:

532

typedef enum VkColorComponentFlagBits {

 VK_COLOR_COMPONENT_R_BIT = 0x00000001,

 VK_COLOR_COMPONENT_G_BIT = 0x00000002,

 VK_COLOR_COMPONENT_B_BIT = 0x00000004,

 VK_COLOR_COMPONENT_A_BIT = 0x00000008,

} VkColorComponentFlagBits;

• VK_COLOR_COMPONENT_R_BIT specifies that the R value is written to the color attachment for the

appropriate sample. Otherwise, the value in memory is unmodified.

• VK_COLOR_COMPONENT_G_BIT specifies that the G value is written to the color attachment for the

appropriate sample. Otherwise, the value in memory is unmodified.

• VK_COLOR_COMPONENT_B_BIT specifies that the B value is written to the color attachment for the

appropriate sample. Otherwise, the value in memory is unmodified.

• VK_COLOR_COMPONENT_A_BIT specifies that the A value is written to the color attachment for the

appropriate sample. Otherwise, the value in memory is unmodified.

The color write mask operation is applied regardless of whether blending is enabled.

533

Chapter 27. Dispatching Commands

Dispatching commands (commands with Dispatch in the name) provoke work in a compute pipeline.

Dispatching commands are recorded into a command buffer and when executed by a queue, will

produce work which executes according to the currently bound compute pipeline. A compute

pipeline must be bound to a command buffer before any dispatch commands are recorded in that

command buffer.

To record a dispatch, call:

void vkCmdDispatch(

 VkCommandBuffer commandBuffer,

 uint32_t groupCountX,

 uint32_t groupCountY,

 uint32_t groupCountZ);

• commandBuffer is the command buffer into which the command will be recorded.

• groupCountX is the number of local workgroups to dispatch in the X dimension.

• groupCountY is the number of local workgroups to dispatch in the Y dimension.

• groupCountZ is the number of local workgroups to dispatch in the Z dimension.

When the command is executed, a global workgroup consisting of groupCountX × groupCountY ×

groupCountZ local workgroups is assembled.

534

Valid Usage

• groupCountX must be less than or equal to VkPhysicalDeviceLimits

::maxComputeWorkGroupCount[0]

• groupCountY must be less than or equal to VkPhysicalDeviceLimits

::maxComputeWorkGroupCount[1]

• groupCountZ must be less than or equal to VkPhysicalDeviceLimits

::maxComputeWorkGroupCount[2]

• For each set n that is statically used by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_COMPUTE, a descriptor set must have been bound to n at

VK_PIPELINE_BIND_POINT_COMPUTE, with a VkPipelineLayout that is compatible for set n, with

the VkPipelineLayout used to create the current VkPipeline, as described in Pipeline Layout

Compatibility

• Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be

valid if they are statically used by the currently bound VkPipeline object, specified via
vkCmdBindPipeline

• A valid compute pipeline must be bound to the current command buffer with
VK_PIPELINE_BIND_POINT_COMPUTE

• For each push constant that is statically used by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_COMPUTE, a push constant value must have been set for

VK_PIPELINE_BIND_POINT_COMPUTE, with a VkPipelineLayout that is compatible for push

constants with the one used to create the current VkPipeline, as described in Pipeline

Layout Compatibility

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_COMPUTE uses unnormalized coordinates, it must not be used to

sample from any VkImage with a VkImageView of the type VK_IMAGE_VIEW_TYPE_3D,

VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY, VK_IMAGE_VIEW_TYPE_2D_ARRAY or

VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_COMPUTE uses unnormalized coordinates, it must not be used with

any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions with ImplicitLod,

Dref or Proj in their name, in any shader stage

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_COMPUTE uses unnormalized coordinates, it must not be used with

any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions that includes a LOD

bias or any offset values, in any shader stage

• If the robust buffer access feature is not enabled, and any shader stage in the VkPipeline

object currently bound to VK_PIPELINE_BIND_POINT_COMPUTE accesses a uniform buffer, it

must not access values outside of the range of that buffer specified in the currently bound

descriptor set

• If the robust buffer access feature is not enabled, and any shader stage in the VkPipeline

object currently bound to VK_PIPELINE_BIND_POINT_COMPUTE accesses a storage buffer, it

must not access values outside of the range of that buffer specified in the currently bound

535

descriptor set

• Any VkImageView being sampled with VK_FILTER_LINEAR as a result of this command must

be of a format which supports linear filtering, as specified by the

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT flag in VkFormatProperties

::linearTilingFeatures (for a linear image) or VkFormatProperties::

optimalTilingFeatures(for an optimally tiled image) returned by
vkGetPhysicalDeviceFormatProperties

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support compute

operations

• This command must only be called outside of a render pass instance

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Outside Compute Compute

To record an indirect command dispatch, call:

void vkCmdDispatchIndirect(

 VkCommandBuffer commandBuffer,

 VkBuffer buffer,

 VkDeviceSize offset);

• commandBuffer is the command buffer into which the command will be recorded.

• buffer is the buffer containing dispatch parameters.

• offset is the byte offset into buffer where parameters begin.

vkCmdDispatchIndirect behaves similarly to vkCmdDispatch except that the parameters are read by

536

the device from a buffer during execution. The parameters of the dispatch are encoded in a

VkDispatchIndirectCommand structure taken from buffer starting at offset.

537

Valid Usage

• If buffer is non-sparse then it must be bound completely and contiguously to a single

VkDeviceMemory object

• For each set n that is statically used by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_COMPUTE, a descriptor set must have been bound to n at

VK_PIPELINE_BIND_POINT_COMPUTE, with a VkPipelineLayout that is compatible for set n, with

the VkPipelineLayout used to create the current VkPipeline, as described in Pipeline Layout

Compatibility

• Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be

valid if they are statically used by the currently bound VkPipeline object, specified via
vkCmdBindPipeline

• A valid compute pipeline must be bound to the current command buffer with
VK_PIPELINE_BIND_POINT_COMPUTE

• buffer must have been created with the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• offset must be a multiple of 4

• The sum of offset and the size of VkDispatchIndirectCommand must be less than or equal to

the size of buffer

• For each push constant that is statically used by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_COMPUTE, a push constant value must have been set for

VK_PIPELINE_BIND_POINT_COMPUTE, with a VkPipelineLayout that is compatible for push

constants with the one used to create the current VkPipeline, as described in Pipeline

Layout Compatibility

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_COMPUTE uses unnormalized coordinates, it must not be used to

sample from any VkImage with a VkImageView of the type VK_IMAGE_VIEW_TYPE_3D,

VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY, VK_IMAGE_VIEW_TYPE_2D_ARRAY or

VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_COMPUTE uses unnormalized coordinates, it must not be used with

any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions with ImplicitLod,

Dref or Proj in their name, in any shader stage

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to

VK_PIPELINE_BIND_POINT_COMPUTE uses unnormalized coordinates, it must not be used with

any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions that includes a LOD

bias or any offset values, in any shader stage

• If the robust buffer access feature is not enabled, and any shader stage in the VkPipeline

object currently bound to VK_PIPELINE_BIND_POINT_COMPUTE accesses a uniform buffer, it

must not access values outside of the range of that buffer specified in the currently bound

descriptor set

• If the robust buffer access feature is not enabled, and any shader stage in the VkPipeline

object currently bound to VK_PIPELINE_BIND_POINT_COMPUTE accesses a storage buffer, it

must not access values outside of the range of that buffer specified in the currently bound

538

descriptor set

• Any VkImageView being sampled with VK_FILTER_LINEAR as a result of this command must

be of a format which supports linear filtering, as specified by the

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT flag in VkFormatProperties

::linearTilingFeatures (for a linear image) or VkFormatProperties::

optimalTilingFeatures(for an optimally tiled image) returned by
vkGetPhysicalDeviceFormatProperties

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• buffer must be a valid VkBuffer handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support compute

operations

• This command must only be called outside of a render pass instance

• Both of buffer, and commandBuffer must have been created, allocated, or retrieved from

the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally

synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

Primary

Secondary

Outside Compute Compute

The VkDispatchIndirectCommand structure is defined as:

typedef struct VkDispatchIndirectCommand {

 uint32_t x;

 uint32_t y;

 uint32_t z;

} VkDispatchIndirectCommand;

539

• x is the number of local workgroups to dispatch in the X dimension.

• y is the number of local workgroups to dispatch in the Y dimension.

• z is the number of local workgroups to dispatch in the Z dimension.

The members of VkDispatchIndirectCommand have the same meaning as the corresponding

parameters of vkCmdDispatch.

Valid Usage

• x must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[0]

• y must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[1]

• z must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[2]

540

Chapter 28. Sparse Resources

As documented in Resource Memory Association, VkBuffer and VkImage resources in Vulkan must

be bound completely and contiguously to a single VkDeviceMemory object. This binding must be done

before the resource is used, and the binding is immutable for the lifetime of the resource.

Sparse resources relax these restrictions and provide these additional features:

• Sparse resources can be bound non-contiguously to one or more VkDeviceMemory allocations.

• Sparse resources can be re-bound to different memory allocations over the lifetime of the

resource.

• Sparse resources can have descriptors generated and used orthogonally with memory binding

commands.

28.1. Sparse Resource Features

Sparse resources have several features that must be enabled explicitly at resource creation time.

The features are enabled by including bits in the flags parameter of VkImageCreateInfo or

VkBufferCreateInfo. Each feature also has one or more corresponding feature enables specified in

VkPhysicalDeviceFeatures.

• Sparse binding is the base feature, and provides the following capabilities:

◦ Resources can be bound at some defined (sparse block) granularity.

◦ The entire resource must be bound to memory before use regardless of regions actually

accessed.

◦ No specific mapping of image region to memory offset is defined, i.e. the location that each

texel corresponds to in memory is implementation-dependent.

◦ Sparse buffers have a well-defined mapping of buffer range to memory range, where an

offset into a range of the buffer that is bound to a single contiguous range of memory

corresponds to an identical offset within that range of memory.

◦ Requested via the VK_IMAGE_CREATE_SPARSE_BINDING_BIT and

VK_BUFFER_CREATE_SPARSE_BINDING_BIT bits.

◦ A sparse image created using VK_IMAGE_CREATE_SPARSE_BINDING_BIT (but not

VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT) supports all formats that non-sparse usage supports,

and supports both VK_IMAGE_TILING_OPTIMAL and VK_IMAGE_TILING_LINEAR tiling.

• Sparse Residency builds on (and requires) the sparseBinding feature. It includes the following

capabilities:

◦ Resources do not have to be completely bound to memory before use on the device.

◦ Images have a prescribed sparse image block layout, allowing specific rectangular regions of

the image to be bound to specific offsets in memory allocations.

◦ Consistency of access to unbound regions of the resource is defined by the absence or

presence of VkPhysicalDeviceSparseProperties::residencyNonResidentStrict. If this property is

present, accesses to unbound regions of the resource are well defined and behave as if the

541

data bound is populated with all zeros; writes are discarded. When this property is absent,

accesses are considered safe, but reads will return undefined values.

◦ Requested via the VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT and

VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT bits.

◦ Sparse residency support is advertised on a finer grain via the following features:

▪ sparseResidencyBuffer: Support for creating VkBuffer objects with the

VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT.

▪ sparseResidencyImage2D: Support for creating 2D single-sampled VkImage objects with

VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

▪ sparseResidencyImage3D: Support for creating 3D VkImage objects with

VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

▪ sparseResidency2Samples: Support for creating 2D VkImage objects with 2 samples and

VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

▪ sparseResidency4Samples: Support for creating 2D VkImage objects with 4 samples and

VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

▪ sparseResidency8Samples: Support for creating 2D VkImage objects with 8 samples and

VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

▪ sparseResidency16Samples: Support for creating 2D VkImage objects with 16 samples and

VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

Implementations supporting sparseResidencyImage2D are only required to support sparse

2D, single-sampled images. Support is not required for sparse 3D and MSAA images and is

enabled via sparseResidencyImage3D, sparseResidency2Samples, sparseResidency4Samples,

sparseResidency8Samples, and sparseResidency16Samples.

◦ A sparse image created using VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT supports all non-

compressed color formats with power-of-two element size that non-sparse usage supports.

Additional formats may also be supported and can be queried via

vkGetPhysicalDeviceSparseImageFormatProperties. VK_IMAGE_TILING_LINEAR tiling is not

supported.

• Sparse aliasing provides the following capability that can be enabled per resource:

Allows physical memory ranges to be shared between multiple locations in the same sparse

resource or between multiple sparse resources, with each binding of a memory location

observing a consistent interpretation of the memory contents.

See Sparse Memory Aliasing for more information.

28.2. Sparse Buffers and Fully-Resident Images

Both VkBuffer and VkImage objects created with the VK_IMAGE_CREATE_SPARSE_BINDING_BIT or

VK_BUFFER_CREATE_SPARSE_BINDING_BIT bits can be thought of as a linear region of address space. In

the VkImage case if VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT is not used, this linear region is entirely

opaque, meaning that there is no application-visible mapping between pixel location and memory

542

offset.

Unless VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT or VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT are also

used, the entire resource must be bound to one or more VkDeviceMemory objects before use.

28.2.1. Sparse Buffer and Fully-Resident Image Block Size

The sparse block size in bytes for sparse buffers and fully-resident images is reported as

VkMemoryRequirements::alignment. alignment represents both the memory alignment requirement and

the binding granularity (in bytes) for sparse resources.

28.3. Sparse Partially-Resident Buffers

VkBuffer objects created with the VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT bit allow the buffer to be

made only partially resident. Partially resident VkBuffer objects are allocated and bound identically

to VkBuffer objects using only the VK_BUFFER_CREATE_SPARSE_BINDING_BIT feature. The only difference

is the ability for some regions of the buffer to be unbound during device use.

28.4. Sparse Partially-Resident Images

VkImage objects created with the VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT bit allow specific rectangular

regions of the image called sparse image blocks to be bound to specific ranges of memory. This

allows the application to manage residency at either image subresource or sparse image block

granularity. Each image subresource (outside of the mip tail) starts on a sparse block boundary and

has dimensions that are integer multiples of the corresponding dimensions of the sparse image

block.



Note

Applications can use these types of images to control level-of-detail based on total

memory consumption. If memory pressure becomes an issue the application can

unbind and disable specific mipmap levels of images without having to recreate

resources or modify pixel data of unaffected levels.

The application can also use this functionality to access subregions of the image in

a “megatexture” fashion. The application can create a large image and only

populate the region of the image that is currently being used in the scene.

28.4.1. Accessing Unbound Regions

The following member of VkPhysicalDeviceSparseProperties affects how data in unbound regions of

sparse resources are handled by the implementation:

• residencyNonResidentStrict

If this property is not present, reads of unbound regions of the image will return undefined values.

Both reads and writes are still considered safe and will not affect other resources or populated

regions of the image.

543

If this property is present, all reads of unbound regions of the image will behave as if the region

was bound to memory populated with all zeros; writes will be discarded.

Formatted accesses to unbound memory may still alter some component values in the natural way

for those accesses, e.g. substituting a value of one for alpha in formats that do not have an alpha

component.

Example: Reading the alpha component of an unbacked VK_FORMAT_R8_UNORM image will return a

value of 1.0f.

See Physical Device Enumeration for instructions for retrieving physical device properties.

Implementor’s Note

For hardware that cannot natively handle access to unbound regions of a resource, the

implementation may allocate and bind memory to the unbound regions. Reads and writes to

unbound regions will access the implementation-managed memory instead of causing a

hardware fault.

Given that reads of unbound regions are undefined in this scenario, implementations may

use the same physical memory for unbound regions of multiple resources within the same

process.

28.4.2. Mip Tail Regions

Sparse images created using VK_IMAGE_CREATE_SPARSE_BINDING_BIT (without also using

VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT) have no specific mapping of image region or image

subresource to memory offset defined, so the entire image can be thought of as a linear opaque

address region. However, images created with VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT do have a

prescribed sparse image block layout, and hence each image subresource must start on a sparse

block boundary. Within each array layer, the set of mip levels that have a smaller size than the

sparse block size in bytes are grouped together into a mip tail region.

If the VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT flag is present in the flags member of

VkSparseImageFormatProperties, for the image’s format, then any mip level which has dimensions

that are not integer multiples of the corresponding dimensions of the sparse image block, and all

subsequent mip levels, are also included in the mip tail region.

The following member of VkPhysicalDeviceSparseProperties may affect how the implementation

places mip levels in the mip tail region:

• residencyAlignedMipSize

Each mip tail region is bound to memory as an opaque region (i.e. must be bound using a

VkSparseImageOpaqueMemoryBindInfo structure) and may be of a size greater than or equal to

the sparse block size in bytes. This size is guaranteed to be an integer multiple of the sparse block

size in bytes.

544

An implementation may choose to allow each array-layer’s mip tail region to be bound to memory

independently or require that all array-layer’s mip tail regions be treated as one. This is dictated by

VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT in VkSparseImageMemoryRequirements::flags.

The following diagrams depict how VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT and

VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT alter memory usage and requirements.

Arrayed Sparse Image

Mip Level 0

Mip Level 1

Mip Level 2

Mip Level 3

Mip Tail

Array Layer 0 Array Layer 1 Array Layer 2 Array Layer 3

Mip Tail Data

Image Pixel Data

Sparse Memory Block

Figure 13. Sparse Image

In the absence of VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT and

VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT, each array layer contains a mip tail region containing

pixel data for all mip levels smaller than the sparse image block in any dimension.

Mip levels that are as large or larger than a sparse image block in all dimensions can be bound

individually. Right-edges and bottom-edges of each level are allowed to have partially used sparse

blocks. Any bound partially-used-sparse-blocks must still have their full sparse block size in bytes

allocated in memory.

545

Array Layer 0 Array Layer 1 Array Layer 2 Array Layer 3

Mip Level 0

Mip Level 1

Mip Level 2

Mip Level 3

Mip Tail

VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT

Arrayed Sparse Image

Mip Tail Data

Image Pixel Data

Sparse Memory Block

Figure 14. Sparse Image with Single Mip Tail

When VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT is present all array layers will share a single mip

tail region.

Array Layer 0 Array Layer 1 Array Layer 2 Array Layer 3

Mip Level 0

Mip Level 1

Mip Tail

VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT

Arrayed Sparse Image

Mip Tail Data

Image Pixel Data

Sparse Memory Block

Figure 15. Sparse Image with Aligned Mip Size



Note

The mip tail regions are presented here in 2D arrays simply for figure size reasons.

Each mip tail is logically a single array of sparse blocks with an implementation-

dependent mapping of pixels to sparse blocks.

When VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT is present the first mip level that would contain

partially used sparse blocks begins the mip tail region. This level and all subsequent levels are

placed in the mip tail. Only the first N mip levels whose dimensions are an exact multiple of the

546

sparse image block dimensions can be bound and unbound on a sparse block basis.

Array Layer 0 Array Layer 1 Array Layer 2 Array Layer 3

Mip Level 0

Mip Level 1

Mip Tail

VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT

Arrayed Sparse Image

VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT

Mip Tail Data

Image Pixel Data

Sparse Memory Block

Figure 16. Sparse Image with Aligned Mip Size and Single Mip Tail



Note

The mip tail region is presented here in a 2D array simply for figure size reasons. It

is logically a single array of sparse blocks with an implementation-dependent

mapping of pixels to sparse blocks.

When both VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT and

VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT are present the constraints from each of these flags are

in effect.

28.4.3. Standard Sparse Image Block Shapes

Standard sparse image block shapes define a standard set of dimensions for sparse image blocks

that depend on the format of the image. Layout of pixels within a sparse image block is

implementation dependent. All currently defined standard sparse image block shapes are 64 KB in

size.

For block-compressed formats (e.g. VK_FORMAT_BC5_UNORM_BLOCK), the pixel size is the size of the

compressed texel block (128-bit for BC5) thus the dimensions of the standard sparse image block

shapes apply in terms of compressed texel blocks.



Note

For block-compressed formats, the dimensions of a sparse image block in terms of

texels can be calculated by multiplying the sparse image block dimensions by the

compressed texel block dimensions.

547

Table 29. Standard Sparse Image Block Shapes (Single Sample)

PIXEL SIZE (bits) Block Shape (2D) Block Shape (3D)

8-Bit 256 × 256 × 1 64 × 32 × 32

16-Bit 256 × 128 × 1 32 × 32 × 32

32-Bit 128 × 128 × 1 32 × 32 × 16

64-Bit 128 × 64 × 1 32 × 16 × 16

128-Bit 64 × 64 × 1 16 × 16 × 16

Table 30. Standard Sparse Image Block Shapes (MSAA)

PIXEL SIZE (bits) Block Shape (2X) Block Shape (4X) Block Shape (8X) Block Shape

(16X)

8-Bit 128 × 256 × 1 128 × 128 × 1 64 × 128 × 1 64 × 64 × 1

16-Bit 128 × 128 × 1 128 × 64 × 1 64 × 64 × 1 64 × 32 × 1

32-Bit 64 × 128 × 1 64 × 64 × 1 32 × 64 × 1 32 × 32 × 1

64-Bit 64 × 64 × 1 64 × 32 × 1 32 × 32 × 1 32 × 16 × 1

128-Bit 32 × 64 × 1 32 × 32 × 1 16 × 32 × 1 16 × 16 × 1

Implementations that support the standard sparse image block shape for all applicable formats

may advertise the following VkPhysicalDeviceSparseProperties:

• residencyStandard2DBlockShape

• residencyStandard2DMultisampleBlockShape

• residencyStandard3DBlockShape

Reporting each of these features does not imply that all possible image types are supported as

sparse. Instead, this indicates that no supported sparse image of the corresponding type will use

custom sparse image block dimensions for any formats that have a corresponding standard sparse

image block shape.

28.4.4. Custom Sparse Image Block Shapes

An implementation that does not support a standard image block shape for a particular sparse

partially-resident image may choose to support a custom sparse image block shape for it instead.

The dimensions of such a custom sparse image block shape are reported in

VkSparseImageFormatProperties::imageGranularity. As with standard sparse image block shapes, the

size in bytes of the custom sparse image block shape will be reported in VkMemoryRequirements

::alignment.

Custom sparse image block dimensions are reported through

vkGetPhysicalDeviceSparseImageFormatProperties and vkGetImageSparseMemoryRequirements.

An implementation must not support both the standard sparse image block shape and a custom

sparse image block shape for the same image. The standard sparse image block shape must be used

if it is supported.

548

28.4.5. Multiple Aspects

Partially resident images are allowed to report separate sparse properties for different aspects of

the image. One example is for depth/stencil images where the implementation separates the depth

and stencil data into separate planes. Another reason for multiple aspects is to allow the application

to manage memory allocation for implementation-private metadata associated with the image. See

the figure below:

Multiple Aspect Sparse Image

Mip Level 0

Mip Level 1

Depth Aspect Stencil Aspect Metadata Aspect

Mip Level 2

Mip Tail

Mip TailMip Level 3

Mip Tail

Mip Tail Data

Image Pixel Data

Sparse Memory Block

Figure 17. Multiple Aspect Sparse Image



Note

The mip tail regions are presented here in 2D arrays simply for figure size reasons.

Each mip tail is logically a single array of sparse blocks with an implementation-

dependent mapping of pixels to sparse blocks.

In the figure above the depth, stencil, and metadata aspects all have unique sparse properties. The

per-pixel stencil data is ¼ the size of the depth data, hence the stencil sparse blocks include 4 × the

number of pixels. The sparse block size in bytes for all of the aspects is identical and defined by

VkMemoryRequirements::alignment.

Metadata

The metadata aspect of an image has the following constraints:

• All metadata is reported in the mip tail region of the metadata aspect.

• All metadata must be bound prior to device use of the sparse image.

28.5. Sparse Memory Aliasing

By default sparse resources have the same aliasing rules as non-sparse resources. See Memory

Aliasing for more information.

VkDevice objects that have the sparseResidencyAliased feature enabled are able to use the

549

VK_BUFFER_CREATE_SPARSE_ALIASED_BIT and VK_IMAGE_CREATE_SPARSE_ALIASED_BIT flags for resource

creation. These flags allow resources to access physical memory bound into multiple locations

within one or more sparse resources in a data consistent fashion. This means that reading physical

memory from multiple aliased locations will return the same value.

Care must be taken when performing a write operation to aliased physical memory. Memory

dependencies must be used to separate writes to one alias from reads or writes to another alias.

Writes to aliased memory that are not properly guarded against accesses to different aliases will

have undefined results for all accesses to the aliased memory.

Applications that wish to make use of data consistent sparse memory aliasing must abide by the

following guidelines:

• All sparse resources that are bound to aliased physical memory must be created with the

VK_BUFFER_CREATE_SPARSE_ALIASED_BIT / VK_IMAGE_CREATE_SPARSE_ALIASED_BIT flag.

• All resources that access aliased physical memory must interpret the memory in the same way.

This implies the following:

◦ Buffers and images cannot alias the same physical memory in a data consistent fashion. The

physical memory ranges must be used exclusively by buffers or used exclusively by images

for data consistency to be guaranteed.

◦ Memory in sparse image mip tail regions cannot access aliased memory in a data consistent

fashion.

◦ Sparse images that alias the same physical memory must have compatible formats and be

using the same sparse image block shape in order to access aliased memory in a data

consistent fashion.

Failure to follow any of the above guidelines will require the application to abide by the normal,

non-sparse resource aliasing rules. In this case memory cannot be accessed in a data consistent

fashion.



Note

Enabling sparse resource memory aliasing can be a way to lower physical memory

use, but it may reduce performance on some implementations. An application

developer can test on their target HW and balance the memory / performance

trade-offs measured.

28.6. Sparse Resource Implementation Guidelines

550

This section is Informative. It is included to aid in implementors' understanding of sparse

resources.

The basic sparseBinding feature allows the resource to reserve its own device virtual address

range at resource creation time rather than relying on a bind operation to set this. Without

any other creation flags, no other constraints are relaxed compared to normal resources. All

pages must be bound to physical memory before the device accesses the resource.

The sparse residency features allow sparse resources to be used even when not all pages are

bound to memory. Hardware that supports access to unbound pages without causing a fault

may support residencyNonResidentStrict.

Not faulting on access to unbound pages is not enough to support residencyNonResidentStrict.

An implementation must also guarantee that reads after writes to unbound regions of the

resource always return data for the read as if the memory contains zeros. Depending on the

cache implementation of the hardware this may not always be possible.

Hardware that does not fault, but does not guarantee correct read values will not require

dummy pages, but also must not support residencyNonResidentStrict.

Hardware that cannot access unbound pages without causing a fault will require the

implementation to bind the entire device virtual address range to physical memory. Any

pages that the application does not bind to memory may be bound to one (or more) “dummy”

physical page(s) allocated by the implementation. Given the following properties:

• A process must not access memory from another process

• Reads return undefined values

It is sufficient for each host process to allocate these dummy pages and use them for all

resources in that process. Implementations may allocate more often (per instance, per device,

or per resource).

The byte size reported in VkMemoryRequirements::size must be greater than or equal to the

amount of physical memory required to fully populate the resource. Some hardware

requires “holes” in the device virtual address range that are never accessed. These holes may

be included in the size reported for the resource.

Including or not including the device virtual address holes in the resource size will alter how

the implementation provides support for VkSparseImageOpaqueMemoryBindInfo. This operation

must be supported for all sparse images, even ones created with

VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

• If the holes are included in the size, this bind function becomes very easy. In most cases

the resourceOffset is simply a device virtual address offset and the implementation does

not require any sophisticated logic to determine what device virtual address to bind. The

cost is that the application can allocate more physical memory for the resource than it

needs.

• If the holes are not included in the size, the application can allocate less physical memory

551

than otherwise for the resource. However, in this case the implementation must account

for the holes when mapping resourceOffset to the actual device virtual address intended

to be mapped.



Note

If the application always uses VkSparseImageMemoryBindInfo to bind memory

for the non-tail mip levels, any holes that are present in the resource size

may never be bound.

Since VkSparseImageMemoryBindInfo uses pixel locations to determine which

device virtual addresses to bind, it is impossible to bind device virtual

address holes with this operation.

All metadata for sparse images have their own sparse properties and are embedded in the

mip tail region for said properties. See the Multiaspect section for details.

Given that metadata is in a mip tail region, and the mip tail region must be reported as

contiguous (either globally or per-array-layer), some implementations will have to resort to

complicated offset → device virtual address mapping for handling

VkSparseImageOpaqueMemoryBindInfo.

To make this easier on the implementation, the VK_SPARSE_MEMORY_BIND_METADATA_BIT explicitly

denotes when metadata is bound with VkSparseImageOpaqueMemoryBindInfo. When this flag is

not present, the resourceOffset may be treated as a strict device virtual address offset.

When VK_SPARSE_MEMORY_BIND_METADATA_BIT is present, the resourceOffset must have been

derived explicitly from the imageMipTailOffset in the sparse resource properties returned for

the metadata aspect. By manipulating the value returned for imageMipTailOffset, the

resourceOffset does not have to correlate directly to a device virtual address offset, and may

instead be whatever values makes it easiest for the implementation to derive the correct

device virtual address.

28.7. Sparse Resource API

The APIs related to sparse resources are grouped into the following categories:

• Physical Device Features

• Physical Device Sparse Properties

• Sparse Image Format Properties

• Sparse Resource Creation

• Sparse Resource Memory Requirements

• Binding Resource Memory

28.7.1. Physical Device Features

Some sparse-resource related features are reported and enabled in VkPhysicalDeviceFeatures. These

552

features must be supported and enabled on the VkDevice object before applications can use them.

See Physical Device Features for information on how to get and set enabled device features, and for

more detailed explanations of these features.

Sparse Physical Device Features

• sparseBinding: Support for creating VkBuffer and VkImage objects with the

VK_BUFFER_CREATE_SPARSE_BINDING_BIT and VK_IMAGE_CREATE_SPARSE_BINDING_BIT flags, respectively.

• sparseResidencyBuffer: Support for creating VkBuffer objects with the

VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag.

• sparseResidencyImage2D: Support for creating 2D single-sampled VkImage objects with

VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

• sparseResidencyImage3D: Support for creating 3D VkImage objects with

VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

• sparseResidency2Samples: Support for creating 2D VkImage objects with 2 samples and

VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

• sparseResidency4Samples: Support for creating 2D VkImage objects with 4 samples and

VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

• sparseResidency8Samples: Support for creating 2D VkImage objects with 8 samples and

VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

• sparseResidency16Samples: Support for creating 2D VkImage objects with 16 samples and

VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

• sparseResidencyAliased: Support for creating VkBuffer and VkImage objects with the

VK_BUFFER_CREATE_SPARSE_ALIASED_BIT and VK_IMAGE_CREATE_SPARSE_ALIASED_BIT flags, respectively.

28.7.2. Physical Device Sparse Properties

Some features of the implementation are not possible to disable, and are reported to allow

applications to alter their sparse resource usage accordingly. These read-only capabilities are

reported in the VkPhysicalDeviceProperties::sparseProperties member, which is a structure of type

VkPhysicalDeviceSparseProperties.

The VkPhysicalDeviceSparseProperties structure is defined as:

typedef struct VkPhysicalDeviceSparseProperties {

 VkBool32 residencyStandard2DBlockShape;

 VkBool32 residencyStandard2DMultisampleBlockShape;

 VkBool32 residencyStandard3DBlockShape;

 VkBool32 residencyAlignedMipSize;

 VkBool32 residencyNonResidentStrict;

} VkPhysicalDeviceSparseProperties;

• residencyStandard2DBlockShape is VK_TRUE if the physical device will access all single-sample 2D

sparse resources using the standard sparse image block shapes (based on image format), as

described in the Standard Sparse Image Block Shapes (Single Sample) table. If this property is

553

not supported the value returned in the imageGranularity member of the

VkSparseImageFormatProperties structure for single-sample 2D images is not required to match

the standard sparse image block dimensions listed in the table.

• residencyStandard2DMultisampleBlockShape is VK_TRUE if the physical device will access all

multisample 2D sparse resources using the standard sparse image block shapes (based on image

format), as described in the Standard Sparse Image Block Shapes (MSAA) table. If this property

is not supported, the value returned in the imageGranularity member of the

VkSparseImageFormatProperties structure for multisample 2D images is not required to match

the standard sparse image block dimensions listed in the table.

• residencyStandard3DBlockShape is VK_TRUE if the physical device will access all 3D sparse

resources using the standard sparse image block shapes (based on image format), as described

in the Standard Sparse Image Block Shapes (Single Sample) table. If this property is not

supported, the value returned in the imageGranularity member of the

VkSparseImageFormatProperties structure for 3D images is not required to match the standard

sparse image block dimensions listed in the table.

• residencyAlignedMipSize is VK_TRUE if images with mip level dimensions that are not integer

multiples of the corresponding dimensions of the sparse image block may be placed in the mip

tail. If this property is not reported, only mip levels with dimensions smaller than the

imageGranularity member of the VkSparseImageFormatProperties structure will be placed in the

mip tail. If this property is reported the implementation is allowed to return

VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT in the flags member of

VkSparseImageFormatProperties, indicating that mip level dimensions that are not integer

multiples of the corresponding dimensions of the sparse image block will be placed in the mip

tail.

• residencyNonResidentStrict specifies whether the physical device can consistently access non-

resident regions of a resource. If this property is VK_TRUE, access to non-resident regions of

resources will be guaranteed to return values as if the resource were populated with 0; writes to

non-resident regions will be discarded.

28.7.3. Sparse Image Format Properties

Given that certain aspects of sparse image support, including the sparse image block dimensions,

may be implementation-dependent, vkGetPhysicalDeviceSparseImageFormatProperties can be

used to query for sparse image format properties prior to resource creation. This command is used

to check whether a given set of sparse image parameters is supported and what the sparse image

block shape will be.

Sparse Image Format Properties API

The VkSparseImageFormatProperties structure is defined as:

typedef struct VkSparseImageFormatProperties {

 VkImageAspectFlags aspectMask;

 VkExtent3D imageGranularity;

 VkSparseImageFormatFlags flags;

} VkSparseImageFormatProperties;

554

• aspectMask is a bitmask VkImageAspectFlagBits specifying which aspects of the image the

properties apply to.

• imageGranularity is the width, height, and depth of the sparse image block in texels or

compressed texel blocks.

• flags is a bitmask of VkSparseImageFormatFlagBits specifying additional information about the

sparse resource.

Bits which can be set in VkSparseImageFormatProperties::flags, specifying additional information

about the sparse resource, are:

typedef enum VkSparseImageFormatFlagBits {

 VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT = 0x00000001,

 VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT = 0x00000002,

 VK_SPARSE_IMAGE_FORMAT_NONSTANDARD_BLOCK_SIZE_BIT = 0x00000004,

} VkSparseImageFormatFlagBits;

• VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT specifies that the image uses a single mip tail region

for all array layers.

• VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT specifies that the first mip level whose dimensions

are not integer multiples of the corresponding dimensions of the sparse image block begins the

mip tail region.

• VK_SPARSE_IMAGE_FORMAT_NONSTANDARD_BLOCK_SIZE_BIT specifies that the image uses non-standard

sparse image block dimensions, and the imageGranularity values do not match the standard

sparse image block dimensions for the given pixel format.

vkGetPhysicalDeviceSparseImageFormatProperties returns an array of

VkSparseImageFormatProperties. Each element will describe properties for one set of image

aspects that are bound simultaneously in the image. This is usually one element for each aspect in

the image, but for interleaved depth/stencil images there is only one element describing the

combined aspects.

void vkGetPhysicalDeviceSparseImageFormatProperties(

 VkPhysicalDevice physicalDevice,

 VkFormat format,

 VkImageType type,

 VkSampleCountFlagBits samples,

 VkImageUsageFlags usage,

 VkImageTiling tiling,

 uint32_t* pPropertyCount,

 VkSparseImageFormatProperties* pProperties);

• physicalDevice is the physical device from which to query the sparse image capabilities.

• format is the image format.

• type is the dimensionality of image.

555

• samples is the number of samples per pixel as defined in VkSampleCountFlagBits.

• usage is a bitmask describing the intended usage of the image.

• tiling is the tiling arrangement of the data elements in memory.

• pPropertyCount is a pointer to an integer related to the number of sparse format properties

available or queried, as described below.

• pProperties is either NULL or a pointer to an array of VkSparseImageFormatProperties

structures.

If pProperties is NULL, then the number of sparse format properties available is returned in

pPropertyCount. Otherwise, pPropertyCount must point to a variable set by the user to the number of

elements in the pProperties array, and on return the variable is overwritten with the number of

structures actually written to pProperties. If pPropertyCount is less than the number of sparse

format properties available, at most pPropertyCount structures will be written.

If VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT is not supported for the given arguments, pPropertyCount

will be set to zero upon return, and no data will be written to pProperties.

Multiple aspects are returned for depth/stencil images that are implemented as separate planes by

the implementation. The depth and stencil data planes each have unique

VkSparseImageFormatProperties data.

Depth/stencil images with depth and stencil data interleaved into a single plane will return a single

VkSparseImageFormatProperties structure with the aspectMask set to VK_IMAGE_ASPECT_DEPTH_BIT |

VK_IMAGE_ASPECT_STENCIL_BIT.

Valid Usage

• samples must be a bit value that is set in VkImageFormatProperties::sampleCounts returned

by vkGetPhysicalDeviceImageFormatProperties with format, type, tiling, and usage equal to

those in this command and flags equal to the value that is set in VkImageCreateInfo::flags

when the image is created

556

Valid Usage (Implicit)

• physicalDevice must be a valid VkPhysicalDevice handle

• format must be a valid VkFormat value

• type must be a valid VkImageType value

• samples must be a valid VkSampleCountFlagBits value

• usage must be a valid combination of VkImageUsageFlagBits values

• usage must not be 0

• tiling must be a valid VkImageTiling value

• pPropertyCount must be a pointer to a uint32_t value

• If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties

must be a pointer to an array of pPropertyCount VkSparseImageFormatProperties structures

28.7.4. Sparse Resource Creation

Sparse resources require that one or more sparse feature flags be specified (as part of the

VkPhysicalDeviceFeatures structure described previously in the Physical Device Features section) at

CreateDevice time. When the appropriate device features are enabled, the

VK_BUFFER_CREATE_SPARSE_* and VK_IMAGE_CREATE_SPARSE_* flags can be used. See vkCreateBuffer and

vkCreateImage for details of the resource creation APIs.



Note

Specifying VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT or

VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT requires specifying

VK_BUFFER_CREATE_SPARSE_BINDING_BIT or VK_IMAGE_CREATE_SPARSE_BINDING_BIT,

respectively, as well. This means that resources must be created with the

appropriate *_SPARSE_BINDING_BIT to be used with the sparse binding command

(vkQueueBindSparse).

28.7.5. Sparse Resource Memory Requirements

Sparse resources have specific memory requirements related to binding sparse memory. These

memory requirements are reported differently for VkBuffer objects and VkImage objects.

Buffer and Fully-Resident Images

Buffers (both fully and partially resident) and fully-resident images can be bound to memory using

only the data from VkMemoryRequirements. For all sparse resources the VkMemoryRequirements

::alignment member denotes both the bindable sparse block size in bytes and required alignment of

VkDeviceMemory.

557

Partially Resident Images

Partially resident images have a different method for binding memory. As with buffers and fully

resident images, the VkMemoryRequirements::alignment field denotes the bindable sparse block size in

bytes for the image.

Requesting sparse memory requirements for VkImage objects using

vkGetImageSparseMemoryRequirements will return an array of one or more

VkSparseImageMemoryRequirements structures. Each structure describes the sparse memory

requirements for a group of aspects of the image.

The sparse image must have been created using the VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag to

retrieve valid sparse image memory requirements.

Sparse Image Memory Requirements

The VkSparseImageMemoryRequirements structure is defined as:

typedef struct VkSparseImageMemoryRequirements {

 VkSparseImageFormatProperties formatProperties;

 uint32_t imageMipTailFirstLod;

 VkDeviceSize imageMipTailSize;

 VkDeviceSize imageMipTailOffset;

 VkDeviceSize imageMipTailStride;

} VkSparseImageMemoryRequirements;

• formatProperties.aspectMask is the set of aspects of the image that this sparse memory

requirement applies to. This will usually have a single aspect specified. However, depth/stencil

images may have depth and stencil data interleaved in the same sparse block, in which case

both VK_IMAGE_ASPECT_DEPTH_BIT and VK_IMAGE_ASPECT_STENCIL_BIT would be present.

• formatProperties.imageGranularity describes the dimensions of a single bindable sparse image

block in pixel units. For aspect VK_IMAGE_ASPECT_METADATA_BIT, all dimensions will be zero pixels.

All metadata is located in the mip tail region.

• formatProperties.flags is a bitmask of VkSparseImageFormatFlagBits:

◦ If VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT is set the image uses a single mip tail region

for all array layers.

◦ If VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT is set the dimensions of mip levels must be

integer multiples of the corresponding dimensions of the sparse image block for levels not

located in the mip tail.

◦ If VK_SPARSE_IMAGE_FORMAT_NONSTANDARD_BLOCK_SIZE_BIT is set the image uses non-standard

sparse image block dimensions. The formatProperties.imageGranularity values do not match

the standard sparse image block dimension corresponding to the image’s pixel format.

• imageMipTailFirstLod is the first mip level at which image subresources are included in the mip

tail region.

• imageMipTailSize is the memory size (in bytes) of the mip tail region. If formatProperties.flags

contains VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT, this is the size of the whole mip tail,

558

otherwise this is the size of the mip tail of a single array layer. This value is guaranteed to be a

multiple of the sparse block size in bytes.

• imageMipTailOffset is the opaque memory offset used with

VkSparseImageOpaqueMemoryBindInfo to bind the mip tail region(s).

• imageMipTailStride is the offset stride between each array-layer’s mip tail, if

formatProperties.flags does not contain VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT (otherwise

the value is undefined).

To query sparse memory requirements for an image, call:

void vkGetImageSparseMemoryRequirements(

 VkDevice device,

 VkImage image,

 uint32_t* pSparseMemoryRequirementCount,

 VkSparseImageMemoryRequirements* pSparseMemoryRequirements);

• device is the logical device that owns the image.

• image is the VkImage object to get the memory requirements for.

• pSparseMemoryRequirementCount is a pointer to an integer related to the number of sparse

memory requirements available or queried, as described below.

• pSparseMemoryRequirements is either NULL or a pointer to an array of

VkSparseImageMemoryRequirements structures.

If pSparseMemoryRequirements is NULL, then the number of sparse memory requirements available is

returned in pSparseMemoryRequirementCount. Otherwise, pSparseMemoryRequirementCount must point to

a variable set by the user to the number of elements in the pSparseMemoryRequirements array, and on

return the variable is overwritten with the number of structures actually written to

pSparseMemoryRequirements. If pSparseMemoryRequirementCount is less than the number of sparse

memory requirements available, at most pSparseMemoryRequirementCount structures will be written.

If the image was not created with VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT then

pSparseMemoryRequirementCount will be set to zero and pSparseMemoryRequirements will not be written

to.



Note

It is legal for an implementation to report a larger value in VkMemoryRequirements

::size than would be obtained by adding together memory sizes for all

VkSparseImageMemoryRequirements returned by vkGetImageSparseMemoryRequirements.

This may occur when the hardware requires unused padding in the address range

describing the resource.

559

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• image must be a valid VkImage handle

• pSparseMemoryRequirementCount must be a pointer to a uint32_t value

• If the value referenced by pSparseMemoryRequirementCount is not 0, and

pSparseMemoryRequirements is not NULL, pSparseMemoryRequirements must be a pointer to an

array of pSparseMemoryRequirementCount VkSparseImageMemoryRequirements structures

• image must have been created, allocated, or retrieved from device

28.7.6. Binding Resource Memory

Non-sparse resources are backed by a single physical allocation prior to device use (via

vkBindImageMemory or vkBindBufferMemory), and their backing must not be changed. On the other

hand, sparse resources can be bound to memory non-contiguously and these bindings can be

altered during the lifetime of the resource.



Note

It is important to note that freeing a VkDeviceMemory object with vkFreeMemory will

not cause resources (or resource regions) bound to the memory object to become

unbound. Access to resources that are bound to memory objects that have been

freed will result in undefined behavior, potentially including application

termination.

Implementations must ensure that no access to physical memory owned by the

system or another process will occur in this scenario. In other words, accessing

resources bound to freed memory may result in application termination, but must

not result in system termination or in reading non-process-accessible memory.

Sparse memory bindings execute on a queue that includes the VK_QUEUE_SPARSE_BINDING_BIT bit.

Applications must use synchronization primitives to guarantee that other queues do not access

ranges of memory concurrently with a binding change. Accessing memory in a range while it is

being rebound results in undefined behavior. It is valid to access other ranges of the same resource

while a bind operation is executing.



Note

Implementations must provide a guarantee that simultaneously binding sparse

blocks while another queue accesses those same sparse blocks via a sparse

resource must not access memory owned by another process or otherwise corrupt

the system.

While some implementations may include VK_QUEUE_SPARSE_BINDING_BIT support in queue families

that also include graphics and compute support, other implementations may only expose a

VK_QUEUE_SPARSE_BINDING_BIT-only queue family. In either case, applications must use

synchronization primitives to explicitly request any ordering dependencies between sparse

560

memory binding operations and other graphics/compute/transfer operations, as sparse binding

operations are not automatically ordered against command buffer execution, even within a single

queue.

When binding memory explicitly for the VK_IMAGE_ASPECT_METADATA_BIT the application must use the

VK_SPARSE_MEMORY_BIND_METADATA_BIT in the VkSparseMemoryBind::flags field when binding memory.

Binding memory for metadata is done the same way as binding memory for the mip tail, with the

addition of the VK_SPARSE_MEMORY_BIND_METADATA_BIT flag.

Binding the mip tail for any aspect must only be performed using

VkSparseImageOpaqueMemoryBindInfo. If formatProperties.flags contains

VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT, then it can be bound with a single

VkSparseMemoryBind structure, with resourceOffset = imageMipTailOffset and size =

imageMipTailSize.

If formatProperties.flags does not contain VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT then the

offset for the mip tail in each array layer is given as:

arrayMipTailOffset = imageMipTailOffset + arrayLayer * imageMipTailStride;

and the mip tail can be bound with layerCount VkSparseMemoryBind structures, each using size =

imageMipTailSize and resourceOffset = arrayMipTailOffset as defined above.

Sparse memory binding is handled by the following APIs and related data structures.

Sparse Memory Binding Functions

The VkSparseMemoryBind structure is defined as:

typedef struct VkSparseMemoryBind {

 VkDeviceSize resourceOffset;

 VkDeviceSize size;

 VkDeviceMemory memory;

 VkDeviceSize memoryOffset;

 VkSparseMemoryBindFlags flags;

} VkSparseMemoryBind;

• resourceOffset is the offset into the resource.

• size is the size of the memory region to be bound.

• memory is the VkDeviceMemory object that the range of the resource is bound to. If memory is

VK_NULL_HANDLE, the range is unbound.

• memoryOffset is the offset into the VkDeviceMemory object to bind the resource range to. If memory is

VK_NULL_HANDLE, this value is ignored.

• flags is a bitmask of VkSparseMemoryBindFlagBits specifying usage of the binding operation.

The binding range [resourceOffset, resourceOffset + size) has different constraints based on flags. If

561

flags contains VK_SPARSE_MEMORY_BIND_METADATA_BIT, the binding range must be within the mip tail

region of the metadata aspect. This metadata region is defined by:

metadataRegion = [base, base + imageMipTailSize)

base = imageMipTailOffset + imageMipTailStride × n

and imageMipTailOffset, imageMipTailSize, and imageMipTailStride values are from the

VkSparseImageMemoryRequirements corresponding to the metadata aspect of the image, and n is a

valid array layer index for the image,

imageMipTailStride is considered to be zero for aspects where VkSparseImageMemoryRequirements

::formatProperties.flags contains VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT.

If flags does not contain VK_SPARSE_MEMORY_BIND_METADATA_BIT, the binding range must be within the

range [0,VkMemoryRequirements::size).

Valid Usage

• If memory is not VK_NULL_HANDLE, memory and memoryOffset must match the memory

requirements of the resource, as described in section Resource Memory Association

• If memory is not VK_NULL_HANDLE, memory must not have been created with a memory

type that reports VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT bit set

• size must be greater than 0

• resourceOffset must be less than the size of the resource

• size must be less than or equal to the size of the resource minus resourceOffset

• memoryOffset must be less than the size of memory

• size must be less than or equal to the size of memory minus memoryOffset

Valid Usage (Implicit)

• If memory is not VK_NULL_HANDLE, memory must be a valid VkDeviceMemory handle

• flags must be a valid combination of VkSparseMemoryBindFlagBits values

Bits which can be set in VkSparseMemoryBind::flags, specifying usage of a sparse memory binding

operation, are:

typedef enum VkSparseMemoryBindFlagBits {

 VK_SPARSE_MEMORY_BIND_METADATA_BIT = 0x00000001,

} VkSparseMemoryBindFlagBits;

• VK_SPARSE_MEMORY_BIND_METADATA_BIT specifies that the memory being bound is only for the

metadata aspect.

562

Memory is bound to VkBuffer objects created with the VK_BUFFER_CREATE_SPARSE_BINDING_BIT flag

using the following structure:

typedef struct VkSparseBufferMemoryBindInfo {

 VkBuffer buffer;

 uint32_t bindCount;

 const VkSparseMemoryBind* pBinds;

} VkSparseBufferMemoryBindInfo;

• buffer is the VkBuffer object to be bound.

• bindCount is the number of VkSparseMemoryBind structures in the pBinds array.

• pBinds is a pointer to array of VkSparseMemoryBind structures.

Valid Usage (Implicit)

• buffer must be a valid VkBuffer handle

• pBinds must be a pointer to an array of bindCount valid VkSparseMemoryBind structures

• bindCount must be greater than 0

Memory is bound to opaque regions of VkImage objects created with the

VK_IMAGE_CREATE_SPARSE_BINDING_BIT flag using the following structure:

typedef struct VkSparseImageOpaqueMemoryBindInfo {

 VkImage image;

 uint32_t bindCount;

 const VkSparseMemoryBind* pBinds;

} VkSparseImageOpaqueMemoryBindInfo;

• image is the VkImage object to be bound.

• bindCount is the number of VkSparseMemoryBind structures in the pBinds array.

• pBinds is a pointer to array of VkSparseMemoryBind structures.

Valid Usage

• For any given element of pBinds, if the flags member of that element contains

VK_SPARSE_MEMORY_BIND_METADATA_BIT, the binding range defined must be within the mip

tail region of the metadata aspect of image

563

Valid Usage (Implicit)

• image must be a valid VkImage handle

• pBinds must be a pointer to an array of bindCount valid VkSparseMemoryBind structures

• bindCount must be greater than 0



Note

This operation is normally used to bind memory to fully-resident sparse images or

for mip tail regions of partially resident images. However, it can also be used to

bind memory for the entire binding range of partially resident images.

In case flags does not contain VK_SPARSE_MEMORY_BIND_METADATA_BIT, the

resourceOffset is in the range [0, VkMemoryRequirements::size), This range

includes data from all aspects of the image, including metadata. For most

implementations this will probably mean that the resourceOffset is a simple

device address offset within the resource. It is possible for an application to bind a

range of memory that includes both resource data and metadata. However, the

application would not know what part of the image the memory is used for, or if

any range is being used for metadata.

When flags contains VK_SPARSE_MEMORY_BIND_METADATA_BIT, the binding range

specified must be within the mip tail region of the metadata aspect. In this case

the resourceOffset is not required to be a simple device address offset within the

resource. However, it is defined to be within [imageMipTailOffset,

imageMipTailOffset + imageMipTailSize) for the metadata aspect. See

VkSparseMemoryBind for the full constraints on binding region with this flag

present.

Memory can be bound to sparse image blocks of VkImage objects created with the

VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag using the following structure:

typedef struct VkSparseImageMemoryBindInfo {

 VkImage image;

 uint32_t bindCount;

 const VkSparseImageMemoryBind* pBinds;

} VkSparseImageMemoryBindInfo;

• image is the VkImage object to be bound

• bindCount is the number of VkSparseImageMemoryBind structures in pBinds array

• pBinds is a pointer to array of VkSparseImageMemoryBind structures

564

Valid Usage (Implicit)

• image must be a valid VkImage handle

• pBinds must be a pointer to an array of bindCount valid VkSparseImageMemoryBind structures

• bindCount must be greater than 0

The VkSparseImageMemoryBind structure is defined as:

typedef struct VkSparseImageMemoryBind {

 VkImageSubresource subresource;

 VkOffset3D offset;

 VkExtent3D extent;

 VkDeviceMemory memory;

 VkDeviceSize memoryOffset;

 VkSparseMemoryBindFlags flags;

} VkSparseImageMemoryBind;

• subresource is the aspectMask and region of interest in the image.

• offset are the coordinates of the first texel within the image subresource to bind.

• extent is the size in texels of the region within the image subresource to bind. The extent must

be a multiple of the sparse image block dimensions, except when binding sparse image blocks

along the edge of an image subresource it can instead be such that any coordinate of offset +

extent equals the corresponding dimensions of the image subresource.

• memory is the VkDeviceMemory object that the sparse image blocks of the image are bound to. If

memory is VK_NULL_HANDLE, the sparse image blocks are unbound.

• memoryOffset is an offset into VkDeviceMemory object. If memory is VK_NULL_HANDLE, this value is

ignored.

• flags are sparse memory binding flags.

565

Valid Usage

• If the sparse aliased residency feature is not enabled, and if any other resources are

bound to ranges of memory, the range of memory being bound must not overlap with those

bound ranges

• memory and memoryOffset must match the memory requirements of the calling command’s

image, as described in section Resource Memory Association

• subresource must be a valid image subresource for image (see Image Views)

• offset.x must be a multiple of the sparse image block width

(VkSparseImageFormatProperties::imageGranularity.width) of the image

• extent.width must either be a multiple of the sparse image block width of the image, or

else (extent.width + offset.x) must equal the width of the image subresource

• offset.y must be a multiple of the sparse image block height

(VkSparseImageFormatProperties::imageGranularity.height) of the image

• extent.height must either be a multiple of the sparse image block height of the image, or

else (extent.height + offset.y) must equal the height of the image subresource

• offset.z must be a multiple of the sparse image block depth

(VkSparseImageFormatProperties::imageGranularity.depth) of the image

• extent.depth must either be a multiple of the sparse image block depth of the image, or

else (extent.depth + offset.z) must equal the depth of the image subresource

Valid Usage (Implicit)

• subresource must be a valid VkImageSubresource structure

• If memory is not VK_NULL_HANDLE, memory must be a valid VkDeviceMemory handle

• flags must be a valid combination of VkSparseMemoryBindFlagBits values

To submit sparse binding operations to a queue, call:

VkResult vkQueueBindSparse(

 VkQueue queue,

 uint32_t bindInfoCount,

 const VkBindSparseInfo* pBindInfo,

 VkFence fence);

• queue is the queue that the sparse binding operations will be submitted to.

• bindInfoCount is the number of elements in the pBindInfo array.

• pBindInfo is an array of VkBindSparseInfo structures, each specifying a sparse binding

submission batch.

• fence is an optional handle to a fence to be signaled. If fence is not VK_NULL_HANDLE, it defines

566

a fence signal operation.

vkQueueBindSparse is a queue submission command, with each batch defined by an element of

pBindInfo as an instance of the VkBindSparseInfo structure. Batches begin execution in the order

they appear in pBindInfo, but may complete out of order.

Within a batch, a given range of a resource must not be bound more than once. Across batches, if a

range is to be bound to one allocation and offset and then to another allocation and offset, then the

application must guarantee (usually using semaphores) that the binding operations are executed in

the correct order, as well as to order binding operations against the execution of command buffer

submissions.

As no operation to vkQueueBindSparse causes any pipeline stage to access memory,

synchronization primitives used in this command effectively only define execution dependencies.

Additional information about fence and semaphore operation is described in the synchronization

chapter.

Valid Usage

• If fence is not VK_NULL_HANDLE, fence must be unsignaled

• If fence is not VK_NULL_HANDLE, fence must not be associated with any other queue

command that has not yet completed execution on that queue

• Any given element of the pSignalSemaphores member of any element of pBindInfo must be

unsignaled when the semaphore signal operation it defines is executed on the device

• When a semaphore unsignal operation defined by any element of the pWaitSemaphores

member of any element of pBindInfo executes on queue, no other queue must be waiting

on the same semaphore.

• All elements of the pWaitSemaphores member of all elements of pBindInfo must be

semaphores that are signaled, or have semaphore signal operations previously submitted

for execution.

Valid Usage (Implicit)

• queue must be a valid VkQueue handle

• If bindInfoCount is not 0, pBindInfo must be a pointer to an array of bindInfoCount valid

VkBindSparseInfo structures

• If fence is not VK_NULL_HANDLE, fence must be a valid VkFence handle

• The queue must support sparse binding operations

• Both of fence, and queue that are valid handles must have been created, allocated, or

retrieved from the same VkDevice

567

Host Synchronization

• Host access to queue must be externally synchronized

• Host access to pBindInfo[].pWaitSemaphores[] must be externally synchronized

• Host access to pBindInfo[].pSignalSemaphores[] must be externally synchronized

• Host access to pBindInfo[].pBufferBinds[].buffer must be externally synchronized

• Host access to pBindInfo[].pImageOpaqueBinds[].image must be externally synchronized

• Host access to pBindInfo[].pImageBinds[].image must be externally synchronized

• Host access to fence must be externally synchronized

Command Properties

Command Buffer

Levels

Render Pass Scope Supported Queue

Types

Pipeline Type

- - SPARSE_BINDING -

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

The VkBindSparseInfo structure is defined as:

568

typedef struct VkBindSparseInfo {

 VkStructureType sType;

 const void* pNext;

 uint32_t waitSemaphoreCount;

 const VkSemaphore* pWaitSemaphores;

 uint32_t bufferBindCount;

 const VkSparseBufferMemoryBindInfo* pBufferBinds;

 uint32_t imageOpaqueBindCount;

 const VkSparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds;

 uint32_t imageBindCount;

 const VkSparseImageMemoryBindInfo* pImageBinds;

 uint32_t signalSemaphoreCount;

 const VkSemaphore* pSignalSemaphores;

} VkBindSparseInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• waitSemaphoreCount is the number of semaphores upon which to wait before executing the

sparse binding operations for the batch.

• pWaitSemaphores is a pointer to an array of semaphores upon which to wait on before the sparse

binding operations for this batch begin execution. If semaphores to wait on are provided, they

define a semaphore wait operation.

• bufferBindCount is the number of sparse buffer bindings to perform in the batch.

• pBufferBinds is a pointer to an array of VkSparseBufferMemoryBindInfo structures.

• imageOpaqueBindCount is the number of opaque sparse image bindings to perform.

• pImageOpaqueBinds is a pointer to an array of VkSparseImageOpaqueMemoryBindInfo structures,

indicating opaque sparse image bindings to perform.

• imageBindCount is the number of sparse image bindings to perform.

• pImageBinds is a pointer to an array of VkSparseImageMemoryBindInfo structures, indicating

sparse image bindings to perform.

• signalSemaphoreCount is the number of semaphores to be signaled once the sparse binding

operations specified by the structure have completed execution.

• pSignalSemaphores is a pointer to an array of semaphores which will be signaled when the

sparse binding operations for this batch have completed execution. If semaphores to be

signaled are provided, they define a semaphore signal operation.

569

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_BIND_SPARSE_INFO

• pNext must be NULL

• If waitSemaphoreCount is not 0, pWaitSemaphores must be a pointer to an array of

waitSemaphoreCount valid VkSemaphore handles

• If bufferBindCount is not 0, pBufferBinds must be a pointer to an array of bufferBindCount

valid VkSparseBufferMemoryBindInfo structures

• If imageOpaqueBindCount is not 0, pImageOpaqueBinds must be a pointer to an array of

imageOpaqueBindCount valid VkSparseImageOpaqueMemoryBindInfo structures

• If imageBindCount is not 0, pImageBinds must be a pointer to an array of imageBindCount

valid VkSparseImageMemoryBindInfo structures

• If signalSemaphoreCount is not 0, pSignalSemaphores must be a pointer to an array of

signalSemaphoreCount valid VkSemaphore handles

• Both of the elements of pSignalSemaphores, and the elements of pWaitSemaphores that are

valid handles must have been created, allocated, or retrieved from the same VkDevice

28.8. Examples

The following examples illustrate basic creation of sparse images and binding them to physical

memory.

28.8.1. Basic Sparse Resources

This basic example creates a normal VkImage object but uses fine-grained memory allocation to back

the resource with multiple memory ranges.

VkDevice device;

VkQueue queue;

VkImage sparseImage;

VkAllocationCallbacks* pAllocator = NULL;

VkMemoryRequirements memoryRequirements = {};

VkDeviceSize offset = 0;

VkSparseMemoryBind binds[MAX_CHUNKS] = {}; // MAX_CHUNKS is NOT part of Vulkan

uint32_t bindCount = 0;

// ...

// Allocate image object

const VkImageCreateInfo sparseImageInfo =

{

 VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // sType

 NULL, // pNext

 VK_IMAGE_CREATE_SPARSE_BINDING_BIT | ..., // flags

570

 ...

};

vkCreateImage(device, &sparseImageInfo, pAllocator, &sparseImage);

// Get memory requirements

vkGetImageMemoryRequirements(

 device,

 sparseImage,

 &memoryRequirements);

// Bind memory in fine-grained fashion, find available memory ranges

// from potentially multiple VkDeviceMemory pools.

// (Illustration purposes only, can be optimized for perf)

while (memoryRequirements.size && bindCount < MAX_CHUNKS)

{

 VkSparseMemoryBind* pBind = &binds[bindCount];

 pBind->resourceOffset = offset;

 AllocateOrGetMemoryRange(

 device,

 &memoryRequirements,

 &pBind->memory,

 &pBind->memoryOffset,

 &pBind->size);

 // memory ranges must be sized as multiples of the alignment

 assert(IsMultiple(pBind->size, memoryRequirements.alignment));

 assert(IsMultiple(pBind->memoryOffset, memoryRequirements.alignment));

 memoryRequirements.size -= pBind->size;

 offset += pBind->size;

 bindCount++;

}

// Ensure all image has backing

if (memoryRequirements.size)

{

 // Error condition - too many chunks

}

const VkSparseImageOpaqueMemoryBindInfo opaqueBindInfo =

{

 sparseImage, // image

 bindCount, // bindCount

 binds // pBinds

};

const VkBindSparseInfo bindSparseInfo =

{

 VK_STRUCTURE_TYPE_BIND_SPARSE_INFO, // sType

 NULL, // pNext

571

 ...

 1, // imageOpaqueBindCount

 &opaqueBindInfo, // pImageOpaqueBinds

 ...

};

// vkQueueBindSparse is externally synchronized per queue object.

AcquireQueueOwnership(queue);

// Actually bind memory

vkQueueBindSparse(queue, 1, &bindSparseInfo, VK_NULL_HANDLE);

ReleaseQueueOwnership(queue);

28.8.2. Advanced Sparse Resources

This more advanced example creates an arrayed color attachment / texture image and binds only

LOD zero and the required metadata to physical memory.

VkDevice device;

VkQueue queue;

VkImage sparseImage;

VkAllocationCallbacks* pAllocator = NULL;

VkMemoryRequirements memoryRequirements = {};

uint32_t sparseRequirementsCount = 0;

VkSparseImageMemoryRequirements* pSparseReqs = NULL;

VkSparseMemoryBind binds[MY_IMAGE_ARRAY_SIZE] = {};

VkSparseImageMemoryBind imageBinds[MY_IMAGE_ARRAY_SIZE] = {};

uint32_t bindCount = 0;

// Allocate image object (both renderable and sampleable)

const VkImageCreateInfo sparseImageInfo =

{

 VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // sType

 NULL, // pNext

 VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT | ..., // flags

 ...

 VK_FORMAT_R8G8B8A8_UNORM, // format

 ...

 MY_IMAGE_ARRAY_SIZE, // arrayLayers

 ...

 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |

 VK_IMAGE_USAGE_SAMPLED_BIT, // usage

 ...

};

vkCreateImage(device, &sparseImageInfo, pAllocator, &sparseImage);

// Get memory requirements

vkGetImageMemoryRequirements(

 device,

572

 sparseImage,

 &memoryRequirements);

// Get sparse image aspect properties

vkGetImageSparseMemoryRequirements(

 device,

 sparseImage,

 &sparseRequirementsCount,

 NULL);

pSparseReqs = (VkSparseImageMemoryRequirements*)

 malloc(sparseRequirementsCount * sizeof(VkSparseImageMemoryRequirements));

vkGetImageSparseMemoryRequirements(

 device,

 sparseImage,

 &sparseRequirementsCount,

 pSparseReqs);

// Bind LOD level 0 and any required metadata to memory

for (uint32_t i = 0; i < sparseRequirementsCount; ++i)

{

 if (pSparseReqs[i].formatProperties.aspectMask &

 VK_IMAGE_ASPECT_METADATA_BIT)

 {

 // Metadata must not be combined with other aspects

 assert(pSparseReqs[i].formatProperties.aspectMask ==

 VK_IMAGE_ASPECT_METADATA_BIT);

 if (pSparseReqs[i].formatProperties.flags &

 VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT)

 {

 VkSparseMemoryBind* pBind = &binds[bindCount];

 pBind->memorySize = pSparseReqs[i].imageMipTailSize;

 bindCount++;

 // ... Allocate memory range

 pBind->resourceOffset = pSparseReqs[i].imageMipTailOffset;

 pBind->memoryOffset = /* allocated memoryOffset */;

 pBind->memory = /* allocated memory */;

 pBind->flags = VK_SPARSE_MEMORY_BIND_METADATA_BIT;

 }

 else

 {

 // Need a mip tail region per array layer.

 for (uint32_t a = 0; a < sparseImageInfo.arrayLayers; ++a)

 {

 VkSparseMemoryBind* pBind = &binds[bindCount];

 pBind->memorySize = pSparseReqs[i].imageMipTailSize;

573

 bindCount++;

 // ... Allocate memory range

 pBind->resourceOffset = pSparseReqs[i].imageMipTailOffset +

 (a * pSparseReqs[i].imageMipTailStride);

 pBind->memoryOffset = /* allocated memoryOffset */;

 pBind->memory = /* allocated memory */

 pBind->flags = VK_SPARSE_MEMORY_BIND_METADATA_BIT;

 }

 }

 }

 else

 {

 // resource data

 VkExtent3D lod0BlockSize =

 {

 AlignedDivide(

 sparseImageInfo.extent.width,

 pSparseReqs[i].formatProperties.imageGranularity.width);

 AlignedDivide(

 sparseImageInfo.extent.height,

 pSparseReqs[i].formatProperties.imageGranularity.height);

 AlignedDivide(

 sparseImageInfo.extent.depth,

 pSparseReqs[i].formatProperties.imageGranularity.depth);

 }

 size_t totalBlocks =

 lod0BlockSize.width *

 lod0BlockSize.height *

 lod0BlockSize.depth;

 // Each block is the same size as the alignment requirement,

 // calculate total memory size for level 0

 VkDeviceSize lod0MemSize = totalBlocks * memoryRequirements.alignment;

 // Allocate memory for each array layer

 for (uint32_t a = 0; a < sparseImageInfo.arrayLayers; ++a)

 {

 // ... Allocate memory range

 VkSparseImageMemoryBind* pBind = &imageBinds[a];

 pBind->subresource.aspectMask = pSparseReqs[i].formatProperties.

aspectMask;

 pBind->subresource.mipLevel = 0;

 pBind->subresource.arrayLayer = a;

 pBind->offset = (VkOffset3D){0, 0, 0};

 pBind->extent = sparseImageInfo.extent;

 pBind->memoryOffset = /* allocated memoryOffset */;

574

 pBind->memory = /* allocated memory */;

 pBind->flags = 0;

 }

 }

 free(pSparseReqs);

}

const VkSparseImageOpaqueMemoryBindInfo opaqueBindInfo =

{

 sparseImage, // image

 bindCount, // bindCount

 binds // pBinds

};

const VkSparseImageMemoryBindInfo imageBindInfo =

{

 sparseImage, // image

 sparseImageInfo.arrayLayers, // bindCount

 imageBinds // pBinds

};

const VkBindSparseInfo bindSparseInfo =

{

 VK_STRUCTURE_TYPE_BIND_SPARSE_INFO, // sType

 NULL, // pNext

 ...

 1, // imageOpaqueBindCount

 &opaqueBindInfo, // pImageOpaqueBinds

 1, // imageBindCount

 &imageBindInfo, // pImageBinds

 ...

};

// vkQueueBindSparse is externally synchronized per queue object.

AcquireQueueOwnership(queue);

// Actually bind memory

vkQueueBindSparse(queue, 1, &bindSparseInfo, VK_NULL_HANDLE);

ReleaseQueueOwnership(queue);

575

Chapter 29. Extended Functionality

Additional functionality may be provided by layers or extensions. A layer cannot add or modify

Vulkan commands, while an extension may do so.

The set of layers to enable is specified when creating an instance, and those layers are able to

intercept any Vulkan command dispatched to that instance or any of its child objects.

Extensions can operate at either the instance or device extension scope. Enabled instance

extensions are able to affect the operation of the instance and any of its child objects, while device

extensions may only be available on a subset of physical devices, must be individually enabled per-

device, and only affect the operation of the devices where they are enabled.

Examples of these might be:

• Whole API validation is an example of a layer.

• Debug capabilities might make a good instance extension.

• A layer that provides hardware-specific performance telemetry and analysis could be a layer

that is only active for devices created from compatible physical devices.

• Functions to allow an application to use additional hardware features beyond the core would be

a good candidate for a device extension.

29.1. Layers

When a layer is enabled, it inserts itself into the call chain for Vulkan commands the layer is

interested in. A common use of layers is to validate application behavior during development. For

example, the implementation will not check that Vulkan enums used by the application fall within

allowed ranges. Instead, a validation layer would do those checks and flag issues. This avoids a

performance penalty during production use of the application because those layers would not be

enabled in production.

Vulkan layers may wrap object handles (i.e. return a different handle value to the application than

that generated by the implementation). This is generally discouraged, as it increases the probability

of incompatibilities with new extensions. The validation layers wrap handles in order to track the

proper use and destruction of each object. See the Vulkan Loader Specification and Architecture

Overview document for additional information.

To query the available layers, call:

VkResult vkEnumerateInstanceLayerProperties(

 uint32_t* pPropertyCount,

 VkLayerProperties* pProperties);

• pPropertyCount is a pointer to an integer related to the number of layer properties available or

queried, as described below.

• pProperties is either NULL or a pointer to an array of VkLayerProperties structures.

576

If pProperties is NULL, then the number of layer properties available is returned in pPropertyCount.

Otherwise, pPropertyCount must point to a variable set by the user to the number of elements in the

pProperties array, and on return the variable is overwritten with the number of structures actually

written to pProperties. If pPropertyCount is less than the number of layer properties available, at

most pPropertyCount structures will be written. If pPropertyCount is smaller than the number of

layers available, VK_INCOMPLETE will be returned instead of VK_SUCCESS, to indicate that not all the

available layer properties were returned.

The list of available layers may change at any time due to actions outside of the Vulkan

implementation, so two calls to vkEnumerateInstanceLayerProperties with the same parameters may

return different results, or retrieve different pPropertyCount values or pProperties contents. Once an

instance has been created, the layers enabled for that instance will continue to be enabled and

valid for the lifetime of that instance, even if some of them become unavailable for future

instances.

Valid Usage (Implicit)

• pPropertyCount must be a pointer to a uint32_t value

• If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties

must be a pointer to an array of pPropertyCount VkLayerProperties structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkLayerProperties structure is defined as:

typedef struct VkLayerProperties {

 char layerName[VK_MAX_EXTENSION_NAME_SIZE];

 uint32_t specVersion;

 uint32_t implementationVersion;

 char description[VK_MAX_DESCRIPTION_SIZE];

} VkLayerProperties;

• layerName is a null-terminated UTF-8 string specifying the name of the layer. Use this name in

the ppEnabledLayerNames array passed in the VkInstanceCreateInfo structure to enable this layer

for an instance.

• specVersion is the Vulkan version the layer was written to, encoded as described in the API

Version Numbers and Semantics section.

577

• implementationVersion is the version of this layer. It is an integer, increasing with backward

compatible changes.

• description is a null-terminated UTF-8 string providing additional details that can be used by

the application to identify the layer.

To enable a layer, the name of the layer should be added to the ppEnabledLayerNames member of

VkInstanceCreateInfo when creating a VkInstance.

Loader implementations may provide mechanisms outside the Vulkan API for enabling specific

layers. Layers enabled through such a mechanism are implicitly enabled, while layers enabled by

including the layer name in the ppEnabledLayerNames member of VkInstanceCreateInfo are explicitly

enabled. Except where otherwise specified, implicitly enabled and explicitly enabled layers differ

only in the way they are enabled. Explicitly enabling a layer that is implicitly enabled has no

additional effect.

29.1.1. Device Layer Deprecation

Previous versions of this specification distinguished between instance and device layers. Instance

layers were only able to intercept commands that operate on VkInstance and VkPhysicalDevice,

except they were not able to intercept vkCreateDevice. Device layers were enabled for individual

devices when they were created, and could only intercept commands operating on that device or its

child objects.

Device-only layers are now deprecated, and this specification no longer distinguishes between

instance and device layers. Layers are enabled during instance creation, and are able to intercept

all commands operating on that instance or any of its child objects. At the time of deprecation there

were no known device-only layers and no compelling reason to create one.

In order to maintain compatibility with implementations released prior to device-layer

deprecation, applications should still enumerate and enable device layers. The behavior of

vkEnumerateDeviceLayerProperties and valid usage of the ppEnabledLayerNames member of

VkDeviceCreateInfo maximizes compatibility with applications written to work with the previous

requirements.

To enumerate device layers, call:

VkResult vkEnumerateDeviceLayerProperties(

 VkPhysicalDevice physicalDevice,

 uint32_t* pPropertyCount,

 VkLayerProperties* pProperties);

• pPropertyCount is a pointer to an integer related to the number of layer properties available or

queried.

• pProperties is either NULL or a pointer to an array of VkLayerProperties structures.

If pProperties is NULL, then the number of layer properties available is returned in pPropertyCount.

Otherwise, pPropertyCount must point to a variable set by the user to the number of elements in the

pProperties array, and on return the variable is overwritten with the number of structures actually

578

written to pProperties. If pPropertyCount is less than the number of layer properties available, at

most pPropertyCount structures will be written. If pPropertyCount is smaller than the number of

layers available, VK_INCOMPLETE will be returned instead of VK_SUCCESS, to indicate that not all the

available layer properties were returned.

The list of layers enumerated by vkEnumerateDeviceLayerProperties must be exactly the sequence of

layers enabled for the instance. The members of VkLayerProperties for each enumerated layer must

be the same as the properties when the layer was enumerated by

vkEnumerateInstanceLayerProperties.

Valid Usage (Implicit)

• physicalDevice must be a valid VkPhysicalDevice handle

• pPropertyCount must be a pointer to a uint32_t value

• If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties

must be a pointer to an array of pPropertyCount VkLayerProperties structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The ppEnabledLayerNames and enabledLayerCount members of VkDeviceCreateInfo are deprecated and

their values must be ignored by implementations. However, for compatibility, only an empty list of

layers or a list that exactly matches the sequence enabled at instance creation time are valid, and

validation layers should issue diagnostics for other cases.

Regardless of the enabled layer list provided in VkDeviceCreateInfo, the sequence of layers active for

a device will be exactly the sequence of layers enabled when the parent instance was created.

29.2. Extensions

Extensions may define new Vulkan commands, structures, and enumerants. For compilation

purposes, the interfaces defined by registered extensions, including new structures and

enumerants as well as function pointer types for new commands, are defined in the Khronos-

supplied vulkan.h together with the core API. However, commands defined by extensions may not

be available for static linking - in which case function pointers to these commands should be

queried at runtime as described in Command Function Pointers. Extensions may be provided by

layers as well as by a Vulkan implementation.

579

Because extensions may extend or change the behavior of the Vulkan API, extension authors

should add support for their extensions to the Khronos validation layers. This is especially

important for new commands whose parameters have been wrapped by the validation layers. See

the Vulkan Loader Specification and Architecture Overview document for additional information.

To query the available instance extensions, call:

VkResult vkEnumerateInstanceExtensionProperties(

 const char* pLayerName,

 uint32_t* pPropertyCount,

 VkExtensionProperties* pProperties);

• pLayerName is either NULL or a pointer to a null-terminated UTF-8 string naming the layer to

retrieve extensions from.

• pPropertyCount is a pointer to an integer related to the number of extension properties available

or queried, as described below.

• pProperties is either NULL or a pointer to an array of VkExtensionProperties structures.

When pLayerName parameter is NULL, only extensions provided by the Vulkan implementation or by

implicitly enabled layers are returned. When pLayerName is the name of a layer, the instance

extensions provided by that layer are returned.

If pProperties is NULL, then the number of extensions properties available is returned in

pPropertyCount. Otherwise, pPropertyCount must point to a variable set by the user to the number of

elements in the pProperties array, and on return the variable is overwritten with the number of

structures actually written to pProperties. If pPropertyCount is less than the number of extension

properties available, at most pPropertyCount structures will be written. If pPropertyCount is smaller

than the number of extensions available, VK_INCOMPLETE will be returned instead of VK_SUCCESS, to

indicate that not all the available properties were returned.

Because the list of available layers may change externally between calls to

vkEnumerateInstanceExtensionProperties, two calls may retrieve different results if a pLayerName is

available in one call but not in another. The extensions supported by a layer may also change

between two calls, e.g. if the layer implementation is replaced by a different version between those

calls.

Valid Usage (Implicit)

• If pLayerName is not NULL, pLayerName must be a null-terminated UTF-8 string

• pPropertyCount must be a pointer to a uint32_t value

• If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties

must be a pointer to an array of pPropertyCount VkExtensionProperties structures

580

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_LAYER_NOT_PRESENT

To enable an instance extension, the name of the extension should be added to the

ppEnabledExtensionNames member of VkInstanceCreateInfo when creating a VkInstance.

Enabling an extension does not change behavior of functionality exposed by the core Vulkan API or

any other extension, other than making valid the use of the commands, enums and structures

defined by that extension.

To query the extensions available to a given physical device, call:

VkResult vkEnumerateDeviceExtensionProperties(

 VkPhysicalDevice physicalDevice,

 const char* pLayerName,

 uint32_t* pPropertyCount,

 VkExtensionProperties* pProperties);

• physicalDevice is the physical device that will be queried.

• pLayerName is either NULL or a pointer to a null-terminated UTF-8 string naming the layer to

retrieve extensions from.

• pPropertyCount is a pointer to an integer related to the number of extension properties available

or queried, and is treated in the same fashion as the vkEnumerateInstanceExtensionProperties

::pPropertyCount parameter.

• pProperties is either NULL or a pointer to an array of VkExtensionProperties structures.

When pLayerName parameter is NULL, only extensions provided by the Vulkan implementation or by

implicitly enabled layers are returned. When pLayerName is the name of a layer, the device

extensions provided by that layer are returned.

581

Valid Usage (Implicit)

• physicalDevice must be a valid VkPhysicalDevice handle

• If pLayerName is not NULL, pLayerName must be a null-terminated UTF-8 string

• pPropertyCount must be a pointer to a uint32_t value

• If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties

must be a pointer to an array of pPropertyCount VkExtensionProperties structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_LAYER_NOT_PRESENT

The VkExtensionProperties structure is defined as:

typedef struct VkExtensionProperties {

 char extensionName[VK_MAX_EXTENSION_NAME_SIZE];

 uint32_t specVersion;

} VkExtensionProperties;

• extensionName is a null-terminated string specifying the name of the extension.

• specVersion is the version of this extension. It is an integer, incremented with backward

compatible changes.

29.2.1. Instance Extensions and Device Extensions

This section provides some guidelines and rules for when to expose new functionality as an

instance extension, as a device extension, or as both. The decision depends on the scope of the new

functionality; such as whether it extends instance-level or device-level functionality. All Vulkan

commands, structures, and enumerants are considered either instance-level, physical-device-level,

or device-level.

Commands that are dispatched from instances (VkInstance) are considered instance-level

commands. Any structure, enumerated type, and enumerant that is used with instance-level

commands are considered instance-level objects. New instance-level extension functionality must

be structured within an instance extension.

Any command or object that must be used after calling vkCreateDevice is a device-level command

582

or object. These objects include all children of VkDevice objects, such as queues (VkQueue) and

command buffers (VkCommandBuffer). New device-level extension functionality may be structured

within a device extension.

Commands that are dispatched from physical devices (VkPhysicalDevice) are considered physical-

device-level commands. Any structure, enumerated type, and enumerant that is used with physical-

device-level commands, and not used with instance-level commands, are considered physical-

device-level objects. Vulkan 1.0 requires all new physical-device-level extension functionality to be

structured within an instance extension.

29.3. Extension Dependencies

Some extensions are dependent on other extensions to function. To use extensions with

dependencies, such required extensions must also be enabled through the same API mechanisms

when creating an instance with vkCreateInstance or a device with vkCreateDevice. Each extension

which has such dependencies documents them in the appendix summarizing that extension.



Note

The Specification does not currently include required extensions in Valid Usage

statements for individual commands and structures, although we may do so in the

future. Nonetheless, applications must not use any extension functionality if

dependencies of that extension are not enabled.

583

Chapter 30. Features, Limits, and Formats

Vulkan is designed to support a wide range of hardware and as such there are a number of

features, limits, and formats which are not supported on all hardware. Features describe

functionality that is not required and which must be explicitly enabled. Limits describe

implementation-dependent minimums, maximums, and other device characteristics that an

application may need to be aware of. Supported buffer and image formats may vary across

implementations. A minimum set of format features are guaranteed, but others must be explicitly

queried before use to ensure they are supported by the implementation.



Note on extensibility

The features and limits are reported via basic structures (that is

VkPhysicalDeviceFeatures and VkPhysicalDeviceLimits), as well as extensible

structures (VkPhysicalDeviceFeatures2KHR and VkPhysicalDeviceProperties2KHR)

which were added in VK_KHR_get_physical_device_properties2. When new features

or limits are added in future Vulkan version or extensions, each extension should

introduce one new feature structure and/or limit structure (as needed). These

structures can be added to the pNext chain of the VkPhysicalDeviceFeatures2KHR and

VkPhysicalDeviceProperties2KHR structures, respectively.

30.1. Features

The Specification defines a set of fine-grained features that are not required, but may be supported

by a Vulkan implementation. Support for features is reported and enabled on a per-feature basis.

Features are properties of the physical device.

To query supported features, call:

void vkGetPhysicalDeviceFeatures(

 VkPhysicalDevice physicalDevice,

 VkPhysicalDeviceFeatures* pFeatures);

• physicalDevice is the physical device from which to query the supported features.

• pFeatures is a pointer to a VkPhysicalDeviceFeatures structure in which the physical device

features are returned. For each feature, a value of VK_TRUE indicates that the feature is

supported on this physical device, and VK_FALSE indicates that the feature is not supported.

Valid Usage (Implicit)

• physicalDevice must be a valid VkPhysicalDevice handle

• pFeatures must be a pointer to a VkPhysicalDeviceFeatures structure

Fine-grained features used by a logical device must be enabled at VkDevice creation time. If a

feature is enabled that the physical device does not support, VkDevice creation will fail. If an

584

application uses a feature without enabling it at VkDevice creation time, the device behavior is

undefined. The validation layer will warn if features are used without being enabled.

The fine-grained features are enabled by passing a pointer to the VkPhysicalDeviceFeatures

structure via the pEnabledFeatures member of the VkDeviceCreateInfo structure that is passed into

the vkCreateDevice call. If a member of pEnabledFeatures is set to VK_TRUE or VK_FALSE, then the device

will be created with the indicated feature enabled or disabled, respectively.

If an application wishes to enable all features supported by a device, it can simply pass in the

VkPhysicalDeviceFeatures structure that was previously returned by vkGetPhysicalDeviceFeatures.

To disable an individual feature, the application can set the desired member to VK_FALSE in the

same structure. Setting pEnabledFeatures to NULL is equivalent to setting all members of the structure

to VK_FALSE.



Note

Some features, such as robustBufferAccess, may incur a run-time performance

cost. Application writers should carefully consider the implications of enabling all

supported features.

The VkPhysicalDeviceFeatures structure is defined as:

typedef struct VkPhysicalDeviceFeatures {

 VkBool32 robustBufferAccess;

 VkBool32 fullDrawIndexUint32;

 VkBool32 imageCubeArray;

 VkBool32 independentBlend;

 VkBool32 geometryShader;

 VkBool32 tessellationShader;

 VkBool32 sampleRateShading;

 VkBool32 dualSrcBlend;

 VkBool32 logicOp;

 VkBool32 multiDrawIndirect;

 VkBool32 drawIndirectFirstInstance;

 VkBool32 depthClamp;

 VkBool32 depthBiasClamp;

 VkBool32 fillModeNonSolid;

 VkBool32 depthBounds;

 VkBool32 wideLines;

 VkBool32 largePoints;

 VkBool32 alphaToOne;

 VkBool32 multiViewport;

 VkBool32 samplerAnisotropy;

 VkBool32 textureCompressionETC2;

 VkBool32 textureCompressionASTC_LDR;

 VkBool32 textureCompressionBC;

 VkBool32 occlusionQueryPrecise;

 VkBool32 pipelineStatisticsQuery;

 VkBool32 vertexPipelineStoresAndAtomics;

 VkBool32 fragmentStoresAndAtomics;

585

 VkBool32 shaderTessellationAndGeometryPointSize;

 VkBool32 shaderImageGatherExtended;

 VkBool32 shaderStorageImageExtendedFormats;

 VkBool32 shaderStorageImageMultisample;

 VkBool32 shaderStorageImageReadWithoutFormat;

 VkBool32 shaderStorageImageWriteWithoutFormat;

 VkBool32 shaderUniformBufferArrayDynamicIndexing;

 VkBool32 shaderSampledImageArrayDynamicIndexing;

 VkBool32 shaderStorageBufferArrayDynamicIndexing;

 VkBool32 shaderStorageImageArrayDynamicIndexing;

 VkBool32 shaderClipDistance;

 VkBool32 shaderCullDistance;

 VkBool32 shaderFloat64;

 VkBool32 shaderInt64;

 VkBool32 shaderInt16;

 VkBool32 shaderResourceResidency;

 VkBool32 shaderResourceMinLod;

 VkBool32 sparseBinding;

 VkBool32 sparseResidencyBuffer;

 VkBool32 sparseResidencyImage2D;

 VkBool32 sparseResidencyImage3D;

 VkBool32 sparseResidency2Samples;

 VkBool32 sparseResidency4Samples;

 VkBool32 sparseResidency8Samples;

 VkBool32 sparseResidency16Samples;

 VkBool32 sparseResidencyAliased;

 VkBool32 variableMultisampleRate;

 VkBool32 inheritedQueries;

} VkPhysicalDeviceFeatures;

The members of the VkPhysicalDeviceFeatures structure describe the following features:

• robustBufferAccess indicates that accesses to buffers are bounds-checked against the range of

the buffer descriptor (as determined by VkDescriptorBufferInfo::range, VkBufferViewCreateInfo

::range, or the size of the buffer). Out of bounds accesses must not cause application

termination, and the effects of shader loads, stores, and atomics must conform to an

implementation-dependent behavior as described below.

◦ A buffer access is considered to be out of bounds if any of the following are true:

▪ The pointer was formed by OpImageTexelPointer and the coordinate is less than zero or

greater than or equal to the number of whole elements in the bound range.

▪ The pointer was not formed by OpImageTexelPointer and the object pointed to is not

wholly contained within the bound range.



Note

If a SPIR-V OpLoad instruction loads a structure and the tail end of the

structure is out of bounds, then all members of the structure are

considered out of bounds even if the members at the end are not

statically used.

586

▪ If any buffer access in a given SPIR-V block is determined to be out of bounds, then any

other access of the same type (load, store, or atomic) in the same SPIR-V block that

accesses an address less than 16 bytes away from the out of bounds address may also be

considered out of bounds.

◦ Out-of-bounds buffer loads will return any of the following values:

▪ Values from anywhere within the memory range(s) bound to the buffer (possibly

including bytes of memory past the end of the buffer, up to the end of the bound range).

▪ Zero values, or (0,0,0,x) vectors for vector reads where x is a valid value represented in

the type of the vector components and may be any of:

▪ 0, 1, or the maximum representable positive integer value, for signed or unsigned

integer components

▪ 0.0 or 1.0, for floating-point components

◦ Out-of-bounds writes may modify values within the memory range(s) bound to the buffer,

but must not modify any other memory.

◦ Out-of-bounds atomics may modify values within the memory range(s) bound to the buffer,

but must not modify any other memory, and return an undefined value.

◦ Vertex input attributes are considered out of bounds if the address of the attribute plus the

size of the attribute is greater than the size of the bound buffer. Further, if any vertex input

attribute using a specific vertex input binding is out of bounds, then all vertex input

attributes using that vertex input binding for that vertex shader invocation are considered

out of bounds.

▪ If a vertex input attribute is out of bounds, it will be assigned one of the following

values:

▪ Values from anywhere within the memory range(s) bound to the buffer, converted

according to the format of the attribute.

▪ Zero values, format converted according to the format of the attribute.

▪ Zero values, or (0,0,0,x) vectors, as described above.

◦ If robustBufferAccess is not enabled, out of bounds accesses may corrupt any memory

within the process and cause undefined behavior up to and including application

termination.

• fullDrawIndexUint32 indicates the full 32-bit range of indices is supported for indexed draw calls

when using a VkIndexType of VK_INDEX_TYPE_UINT32. maxDrawIndexedIndexValue is the maximum

index value that may be used (aside from the primitive restart index, which is always 2
32

-1

when the VkIndexType is VK_INDEX_TYPE_UINT32). If this feature is supported,

maxDrawIndexedIndexValue must be 2
32

-1; otherwise it must be no smaller than 2
24

-1. See

maxDrawIndexedIndexValue.

• imageCubeArray indicates whether image views with a VkImageViewType of

VK_IMAGE_VIEW_TYPE_CUBE_ARRAY can be created, and that the corresponding SampledCubeArray and

ImageCubeArray SPIR-V capabilities can be used in shader code.

• independentBlend indicates whether the VkPipelineColorBlendAttachmentState settings are

controlled independently per-attachment. If this feature is not enabled, the

587

VkPipelineColorBlendAttachmentState settings for all color attachments must be identical.

Otherwise, a different VkPipelineColorBlendAttachmentState can be provided for each bound

color attachment.

• geometryShader indicates whether geometry shaders are supported. If this feature is not enabled,

the VK_SHADER_STAGE_GEOMETRY_BIT and VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT enum values must

not be used. This also indicates whether shader modules can declare the Geometry capability.

• tessellationShader indicates whether tessellation control and evaluation shaders are supported.

If this feature is not enabled, the VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,

VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,

VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT,

VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT, and

VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO enum values must not be used.

This also indicates whether shader modules can declare the Tessellation capability.

• sampleRateShading indicates whether per-sample shading and multisample interpolation are

supported. If this feature is not enabled, the sampleShadingEnable member of the

VkPipelineMultisampleStateCreateInfo structure must be set to VK_FALSE and the

minSampleShading member is ignored. This also indicates whether shader modules can declare

the SampleRateShading capability.

• dualSrcBlend indicates whether blend operations which take two sources are supported. If this

feature is not enabled, the VK_BLEND_FACTOR_SRC1_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR,

VK_BLEND_FACTOR_SRC1_ALPHA, and VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA enum values must not

be used as source or destination blending factors. See Dual-Source Blending.

• logicOp indicates whether logic operations are supported. If this feature is not enabled, the

logicOpEnable member of the VkPipelineColorBlendStateCreateInfo structure must be set to

VK_FALSE, and the logicOp member is ignored.

• multiDrawIndirect indicates whether multiple draw indirect is supported. If this feature is not

enabled, the drawCount parameter to the vkCmdDrawIndirect and vkCmdDrawIndexedIndirect

commands must be 0 or 1. The maxDrawIndirectCount member of the VkPhysicalDeviceLimits

structure must also be 1 if this feature is not supported. See maxDrawIndirectCount.

• drawIndirectFirstInstance indicates whether indirect draw calls support the firstInstance

parameter. If this feature is not enabled, the firstInstance member of all VkDrawIndirectCommand

and VkDrawIndexedIndirectCommand structures that are provided to the vkCmdDrawIndirect and

vkCmdDrawIndexedIndirect commands must be 0.

• depthClamp indicates whether depth clamping is supported. If this feature is not enabled, the

depthClampEnable member of the VkPipelineRasterizationStateCreateInfo structure must be set

to VK_FALSE. Otherwise, setting depthClampEnable to VK_TRUE will enable depth clamping.

• depthBiasClamp indicates whether depth bias clamping is supported. If this feature is not

enabled, the depthBiasClamp member of the VkPipelineRasterizationStateCreateInfo structure

must be set to 0.0 unless the VK_DYNAMIC_STATE_DEPTH_BIAS dynamic state is enabled, and the

depthBiasClamp parameter to vkCmdSetDepthBias must be set to 0.0.

• fillModeNonSolid indicates whether point and wireframe fill modes are supported. If this

feature is not enabled, the VK_POLYGON_MODE_POINT and VK_POLYGON_MODE_LINE enum values must

not be used.

588

• depthBounds indicates whether depth bounds tests are supported. If this feature is not enabled,

the depthBoundsTestEnable member of the VkPipelineDepthStencilStateCreateInfo structure must

be set to VK_FALSE. When depthBoundsTestEnable is set to VK_FALSE, the minDepthBounds and

maxDepthBounds members of the VkPipelineDepthStencilStateCreateInfo structure are ignored.

• wideLines indicates whether lines with width other than 1.0 are supported. If this feature is not

enabled, the lineWidth member of the VkPipelineRasterizationStateCreateInfo structure must

be set to 1.0 unless the VK_DYNAMIC_STATE_LINE_WIDTH dynamic state is enabled, and the lineWidth

parameter to vkCmdSetLineWidth must be set to 1.0. When this feature is supported, the range

and granularity of supported line widths are indicated by the lineWidthRange and

lineWidthGranularity members of the VkPhysicalDeviceLimits structure, respectively.

• largePoints indicates whether points with size greater than 1.0 are supported. If this feature is

not enabled, only a point size of 1.0 written by a shader is supported. The range and granularity

of supported point sizes are indicated by the pointSizeRange and pointSizeGranularity members

of the VkPhysicalDeviceLimits structure, respectively.

• alphaToOne indicates whether the implementation is able to replace the alpha value of the color

fragment output from the fragment shader with the maximum representable alpha value for

fixed-point colors or 1.0 for floating-point colors. If this feature is not enabled, then the

alphaToOneEnable member of the VkPipelineMultisampleStateCreateInfo structure must be set to

VK_FALSE. Otherwise setting alphaToOneEnable to VK_TRUE will enable alpha-to-one behavior.

• multiViewport indicates whether more than one viewport is supported. If this feature is not

enabled, the viewportCount and scissorCount members of the VkPipelineViewportStateCreateInfo

structure must be set to 1. Similarly, the viewportCount parameter to the vkCmdSetViewport

command and the scissorCount parameter to the vkCmdSetScissor command must be 1, and the

firstViewport parameter to the vkCmdSetViewport command and the firstScissor parameter to

the vkCmdSetScissor command must be 0.

• samplerAnisotropy indicates whether anisotropic filtering is supported. If this feature is not

enabled, the maxAnisotropy member of the VkSamplerCreateInfo structure must be 1.0.

• textureCompressionETC2 indicates whether all of the ETC2 and EAC compressed texture formats

are supported. If this feature is enabled, then the VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT,

VK_FORMAT_FEATURE_BLIT_SRC_BIT and VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

features must be supported in optimalTilingFeatures for the following formats:

◦ VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK

◦ VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK

◦ VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK

◦ VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK

◦ VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK

◦ VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK

◦ VK_FORMAT_EAC_R11_UNORM_BLOCK

◦ VK_FORMAT_EAC_R11_SNORM_BLOCK

◦ VK_FORMAT_EAC_R11G11_UNORM_BLOCK

◦ VK_FORMAT_EAC_R11G11_SNORM_BLOCK

vkGetPhysicalDeviceFormatProperties and vkGetPhysicalDeviceImageFormatProperties can be

used to check for additional supported properties of individual formats.

589

• textureCompressionASTC_LDR indicates whether all of the ASTC LDR compressed texture formats

are supported. If this feature is enabled, then the VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT,

VK_FORMAT_FEATURE_BLIT_SRC_BIT and VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

features must be supported in optimalTilingFeatures for the following formats:

◦ VK_FORMAT_ASTC_4x4_UNORM_BLOCK

◦ VK_FORMAT_ASTC_4x4_SRGB_BLOCK

◦ VK_FORMAT_ASTC_5x4_UNORM_BLOCK

◦ VK_FORMAT_ASTC_5x4_SRGB_BLOCK

◦ VK_FORMAT_ASTC_5x5_UNORM_BLOCK

◦ VK_FORMAT_ASTC_5x5_SRGB_BLOCK

◦ VK_FORMAT_ASTC_6x5_UNORM_BLOCK

◦ VK_FORMAT_ASTC_6x5_SRGB_BLOCK

◦ VK_FORMAT_ASTC_6x6_UNORM_BLOCK

◦ VK_FORMAT_ASTC_6x6_SRGB_BLOCK

◦ VK_FORMAT_ASTC_8x5_UNORM_BLOCK

◦ VK_FORMAT_ASTC_8x5_SRGB_BLOCK

◦ VK_FORMAT_ASTC_8x6_UNORM_BLOCK

◦ VK_FORMAT_ASTC_8x6_SRGB_BLOCK

◦ VK_FORMAT_ASTC_8x8_UNORM_BLOCK

◦ VK_FORMAT_ASTC_8x8_SRGB_BLOCK

◦ VK_FORMAT_ASTC_10x5_UNORM_BLOCK

◦ VK_FORMAT_ASTC_10x5_SRGB_BLOCK

◦ VK_FORMAT_ASTC_10x6_UNORM_BLOCK

◦ VK_FORMAT_ASTC_10x6_SRGB_BLOCK

◦ VK_FORMAT_ASTC_10x8_UNORM_BLOCK

◦ VK_FORMAT_ASTC_10x8_SRGB_BLOCK

◦ VK_FORMAT_ASTC_10x10_UNORM_BLOCK

◦ VK_FORMAT_ASTC_10x10_SRGB_BLOCK

◦ VK_FORMAT_ASTC_12x10_UNORM_BLOCK

◦ VK_FORMAT_ASTC_12x10_SRGB_BLOCK

◦ VK_FORMAT_ASTC_12x12_UNORM_BLOCK

◦ VK_FORMAT_ASTC_12x12_SRGB_BLOCK

vkGetPhysicalDeviceFormatProperties and vkGetPhysicalDeviceImageFormatProperties can be

used to check for additional supported properties of individual formats.

• textureCompressionBC indicates whether all of the BC compressed texture formats are supported.

If this feature is enabled, then the VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT,

VK_FORMAT_FEATURE_BLIT_SRC_BIT and VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

features must be supported in optimalTilingFeatures for the following formats:

◦ VK_FORMAT_BC1_RGB_UNORM_BLOCK

◦ VK_FORMAT_BC1_RGB_SRGB_BLOCK

◦ VK_FORMAT_BC1_RGBA_UNORM_BLOCK

590

◦ VK_FORMAT_BC1_RGBA_SRGB_BLOCK

◦ VK_FORMAT_BC2_UNORM_BLOCK

◦ VK_FORMAT_BC2_SRGB_BLOCK

◦ VK_FORMAT_BC3_UNORM_BLOCK

◦ VK_FORMAT_BC3_SRGB_BLOCK

◦ VK_FORMAT_BC4_UNORM_BLOCK

◦ VK_FORMAT_BC4_SNORM_BLOCK

◦ VK_FORMAT_BC5_UNORM_BLOCK

◦ VK_FORMAT_BC5_SNORM_BLOCK

◦ VK_FORMAT_BC6H_UFLOAT_BLOCK

◦ VK_FORMAT_BC6H_SFLOAT_BLOCK

◦ VK_FORMAT_BC7_UNORM_BLOCK

◦ VK_FORMAT_BC7_SRGB_BLOCK

vkGetPhysicalDeviceFormatProperties and vkGetPhysicalDeviceImageFormatProperties can be

used to check for additional supported properties of individual formats.

• occlusionQueryPrecise indicates whether occlusion queries returning actual sample counts are

supported. Occlusion queries are created in a VkQueryPool by specifying the queryType of

VK_QUERY_TYPE_OCCLUSION in the VkQueryPoolCreateInfo structure which is passed to

vkCreateQueryPool. If this feature is enabled, queries of this type can enable

VK_QUERY_CONTROL_PRECISE_BIT in the flags parameter to vkCmdBeginQuery. If this feature is not

supported, the implementation supports only boolean occlusion queries. When any samples are

passed, boolean queries will return a non-zero result value, otherwise a result value of zero is

returned. When this feature is enabled and VK_QUERY_CONTROL_PRECISE_BIT is set, occlusion

queries will report the actual number of samples passed.

• pipelineStatisticsQuery indicates whether the pipeline statistics queries are supported. If this

feature is not enabled, queries of type VK_QUERY_TYPE_PIPELINE_STATISTICS cannot be created,

and none of the VkQueryPipelineStatisticFlagBits bits can be set in the pipelineStatistics

member of the VkQueryPoolCreateInfo structure.

• vertexPipelineStoresAndAtomics indicates whether storage buffers and images support stores

and atomic operations in the vertex, tessellation, and geometry shader stages. If this feature is

not enabled, all storage image, storage texel buffers, and storage buffer variables used by these

stages in shader modules must be decorated with the NonWriteable decoration (or the readonly

memory qualifier in GLSL).

• fragmentStoresAndAtomics indicates whether storage buffers and images support stores and

atomic operations in the fragment shader stage. If this feature is not enabled, all storage image,

storage texel buffers, and storage buffer variables used by the fragment stage in shader

modules must be decorated with the NonWriteable decoration (or the readonly memory qualifier

in GLSL).

• shaderTessellationAndGeometryPointSize indicates whether the PointSize built-in decoration is

available in the tessellation control, tessellation evaluation, and geometry shader stages. If this

feature is not enabled, members decorated with the PointSize built-in decoration must not be

read from or written to and all points written from a tessellation or geometry shader will have a

size of 1.0. This also indicates whether shader modules can declare the TessellationPointSize

591

capability for tessellation control and evaluation shaders, or if the shader modules can declare

the GeometryPointSize capability for geometry shaders. An implementation supporting this

feature must also support one or both of the tessellationShader or geometryShader features.

• shaderImageGatherExtended indicates whether the extended set of image gather instructions are

available in shader code. If this feature is not enabled, the OpImage*Gather instructions do not

support the Offset and ConstOffsets operands. This also indicates whether shader modules can

declare the ImageGatherExtended capability.

• shaderStorageImageExtendedFormats indicates whether the extended storage image formats are

available in shader code. If this feature is not enabled, the formats requiring the

StorageImageExtendedFormats capability are not supported for storage images. This also indicates

whether shader modules can declare the StorageImageExtendedFormats capability.

• shaderStorageImageMultisample indicates whether multisampled storage images are supported. If

this feature is not enabled, images that are created with a usage that includes

VK_IMAGE_USAGE_STORAGE_BIT must be created with samples equal to VK_SAMPLE_COUNT_1_BIT. This

also indicates whether shader modules can declare the StorageImageMultisample capability.

• shaderStorageImageReadWithoutFormat indicates whether storage images require a format

qualifier to be specified when reading from storage images. If this feature is not enabled, the

OpImageRead instruction must not have an OpTypeImage of Unknown. This also indicates whether

shader modules can declare the StorageImageReadWithoutFormat capability.

• shaderStorageImageWriteWithoutFormat indicates whether storage images require a format

qualifier to be specified when writing to storage images. If this feature is not enabled, the

OpImageWrite instruction must not have an OpTypeImage of Unknown. This also indicates whether

shader modules can declare the StorageImageWriteWithoutFormat capability.

• shaderUniformBufferArrayDynamicIndexing indicates whether arrays of uniform buffers can be

indexed by dynamically uniform integer expressions in shader code. If this feature is not

enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or

VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC must be indexed only by constant integral

expressions when aggregated into arrays in shader code. This also indicates whether shader

modules can declare the UniformBufferArrayDynamicIndexing capability.

• shaderSampledImageArrayDynamicIndexing indicates whether arrays of samplers or sampled

images can be indexed by dynamically uniform integer expressions in shader code. If this

feature is not enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_SAMPLER,

VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, or VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE must be

indexed only by constant integral expressions when aggregated into arrays in shader code. This

also indicates whether shader modules can declare the SampledImageArrayDynamicIndexing

capability.

• shaderStorageBufferArrayDynamicIndexing indicates whether arrays of storage buffers can be

indexed by dynamically uniform integer expressions in shader code. If this feature is not

enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or

VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC must be indexed only by constant integral

expressions when aggregated into arrays in shader code. This also indicates whether shader

modules can declare the StorageBufferArrayDynamicIndexing capability.

• shaderStorageImageArrayDynamicIndexing indicates whether arrays of storage images can be

indexed by dynamically uniform integer expressions in shader code. If this feature is not

592

enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_STORAGE_IMAGE must be indexed

only by constant integral expressions when aggregated into arrays in shader code. This also

indicates whether shader modules can declare the StorageImageArrayDynamicIndexing capability.

• shaderClipDistance indicates whether clip distances are supported in shader code. If this feature

is not enabled, any members decorated with the ClipDistance built-in decoration must not be

read from or written to in shader modules. This also indicates whether shader modules can

declare the ClipDistance capability.

• shaderCullDistance indicates whether cull distances are supported in shader code. If this feature

is not enabled, any members decorated with the CullDistance built-in decoration must not be

read from or written to in shader modules. This also indicates whether shader modules can

declare the CullDistance capability.

• shaderFloat64 indicates whether 64-bit floats (doubles) are supported in shader code. If this

feature is not enabled, 64-bit floating-point types must not be used in shader code. This also

indicates whether shader modules can declare the Float64 capability.

• shaderInt64 indicates whether 64-bit integers (signed and unsigned) are supported in shader

code. If this feature is not enabled, 64-bit integer types must not be used in shader code. This

also indicates whether shader modules can declare the Int64 capability.

• shaderInt16 indicates whether 16-bit integers (signed and unsigned) are supported in shader

code. If this feature is not enabled, 16-bit integer types must not be used in shader code. This

also indicates whether shader modules can declare the Int16 capability.

• shaderResourceResidency indicates whether image operations that return resource residency

information are supported in shader code. If this feature is not enabled, the OpImageSparse*

instructions must not be used in shader code. This also indicates whether shader modules can

declare the SparseResidency capability. The feature requires at least one of the sparseResidency*

features to be supported.

• shaderResourceMinLod indicates whether image operations that specify the minimum resource

level-of-detail (LOD) are supported in shader code. If this feature is not enabled, the MinLod

image operand must not be used in shader code. This also indicates whether shader modules

can declare the MinLod capability.

• sparseBinding indicates whether resource memory can be managed at opaque sparse block

level instead of at the object level. If this feature is not enabled, resource memory must be

bound only on a per-object basis using the vkBindBufferMemory and vkBindImageMemory

commands. In this case, buffers and images must not be created with

VK_BUFFER_CREATE_SPARSE_BINDING_BIT and VK_IMAGE_CREATE_SPARSE_BINDING_BIT set in the flags

member of the VkBufferCreateInfo and VkImageCreateInfo structures, respectively. Otherwise

resource memory can be managed as described in Sparse Resource Features.

• sparseResidencyBuffer indicates whether the device can access partially resident buffers. If this

feature is not enabled, buffers must not be created with VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT

set in the flags member of the VkBufferCreateInfo structure.

• sparseResidencyImage2D indicates whether the device can access partially resident 2D images

with 1 sample per pixel. If this feature is not enabled, images with an imageType of

VK_IMAGE_TYPE_2D and samples set to VK_SAMPLE_COUNT_1_BIT must not be created with

VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT set in the flags member of the VkImageCreateInfo

structure.

593

• sparseResidencyImage3D indicates whether the device can access partially resident 3D images. If

this feature is not enabled, images with an imageType of VK_IMAGE_TYPE_3D must not be created

with VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT set in the flags member of the VkImageCreateInfo

structure.

• sparseResidency2Samples indicates whether the physical device can access partially resident 2D

images with 2 samples per pixel. If this feature is not enabled, images with an imageType of

VK_IMAGE_TYPE_2D and samples set to VK_SAMPLE_COUNT_2_BIT must not be created with

VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT set in the flags member of the VkImageCreateInfo

structure.

• sparseResidency4Samples indicates whether the physical device can access partially resident 2D

images with 4 samples per pixel. If this feature is not enabled, images with an imageType of

VK_IMAGE_TYPE_2D and samples set to VK_SAMPLE_COUNT_4_BIT must not be created with

VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT set in the flags member of the VkImageCreateInfo

structure.

• sparseResidency8Samples indicates whether the physical device can access partially resident 2D

images with 8 samples per pixel. If this feature is not enabled, images with an imageType of

VK_IMAGE_TYPE_2D and samples set to VK_SAMPLE_COUNT_8_BIT must not be created with

VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT set in the flags member of the VkImageCreateInfo

structure.

• sparseResidency16Samples indicates whether the physical device can access partially resident 2D

images with 16 samples per pixel. If this feature is not enabled, images with an imageType of

VK_IMAGE_TYPE_2D and samples set to VK_SAMPLE_COUNT_16_BIT must not be created with

VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT set in the flags member of the VkImageCreateInfo

structure.

• sparseResidencyAliased indicates whether the physical device can correctly access data aliased

into multiple locations. If this feature is not enabled, the VK_BUFFER_CREATE_SPARSE_ALIASED_BIT

and VK_IMAGE_CREATE_SPARSE_ALIASED_BIT enum values must not be used in flags members of the

VkBufferCreateInfo and VkImageCreateInfo structures, respectively.

• variableMultisampleRate indicates whether all pipelines that will be bound to a command buffer

during a subpass with no attachments must have the same value for

VkPipelineMultisampleStateCreateInfo::rasterizationSamples. If set to VK_TRUE, the

implementation supports variable multisample rates in a subpass with no attachments. If set to

VK_FALSE, then all pipelines bound in such a subpass must have the same multisample rate. This

has no effect in situations where a subpass uses any attachments.

• inheritedQueries indicates whether a secondary command buffer may be executed while a

query is active.

30.1.1. Feature Requirements

All Vulkan graphics implementations must support the following features:

• robustBufferAccess.

All other features are not required by the Specification.

594

30.2. Limits

There are a variety of implementation-dependent limits.

The VkPhysicalDeviceLimits are properties of the physical device. These are available in the limits

member of the VkPhysicalDeviceProperties structure which is returned from

vkGetPhysicalDeviceProperties.

The VkPhysicalDeviceLimits structure is defined as:

typedef struct VkPhysicalDeviceLimits {

 uint32_t maxImageDimension1D;

 uint32_t maxImageDimension2D;

 uint32_t maxImageDimension3D;

 uint32_t maxImageDimensionCube;

 uint32_t maxImageArrayLayers;

 uint32_t maxTexelBufferElements;

 uint32_t maxUniformBufferRange;

 uint32_t maxStorageBufferRange;

 uint32_t maxPushConstantsSize;

 uint32_t maxMemoryAllocationCount;

 uint32_t maxSamplerAllocationCount;

 VkDeviceSize bufferImageGranularity;

 VkDeviceSize sparseAddressSpaceSize;

 uint32_t maxBoundDescriptorSets;

 uint32_t maxPerStageDescriptorSamplers;

 uint32_t maxPerStageDescriptorUniformBuffers;

 uint32_t maxPerStageDescriptorStorageBuffers;

 uint32_t maxPerStageDescriptorSampledImages;

 uint32_t maxPerStageDescriptorStorageImages;

 uint32_t maxPerStageDescriptorInputAttachments;

 uint32_t maxPerStageResources;

 uint32_t maxDescriptorSetSamplers;

 uint32_t maxDescriptorSetUniformBuffers;

 uint32_t maxDescriptorSetUniformBuffersDynamic;

 uint32_t maxDescriptorSetStorageBuffers;

 uint32_t maxDescriptorSetStorageBuffersDynamic;

 uint32_t maxDescriptorSetSampledImages;

 uint32_t maxDescriptorSetStorageImages;

 uint32_t maxDescriptorSetInputAttachments;

 uint32_t maxVertexInputAttributes;

 uint32_t maxVertexInputBindings;

 uint32_t maxVertexInputAttributeOffset;

 uint32_t maxVertexInputBindingStride;

 uint32_t maxVertexOutputComponents;

 uint32_t maxTessellationGenerationLevel;

 uint32_t maxTessellationPatchSize;

 uint32_t maxTessellationControlPerVertexInputComponents;

 uint32_t maxTessellationControlPerVertexOutputComponents;

 uint32_t maxTessellationControlPerPatchOutputComponents;

595

 uint32_t maxTessellationControlTotalOutputComponents;

 uint32_t maxTessellationEvaluationInputComponents;

 uint32_t maxTessellationEvaluationOutputComponents;

 uint32_t maxGeometryShaderInvocations;

 uint32_t maxGeometryInputComponents;

 uint32_t maxGeometryOutputComponents;

 uint32_t maxGeometryOutputVertices;

 uint32_t maxGeometryTotalOutputComponents;

 uint32_t maxFragmentInputComponents;

 uint32_t maxFragmentOutputAttachments;

 uint32_t maxFragmentDualSrcAttachments;

 uint32_t maxFragmentCombinedOutputResources;

 uint32_t maxComputeSharedMemorySize;

 uint32_t maxComputeWorkGroupCount[3];

 uint32_t maxComputeWorkGroupInvocations;

 uint32_t maxComputeWorkGroupSize[3];

 uint32_t subPixelPrecisionBits;

 uint32_t subTexelPrecisionBits;

 uint32_t mipmapPrecisionBits;

 uint32_t maxDrawIndexedIndexValue;

 uint32_t maxDrawIndirectCount;

 float maxSamplerLodBias;

 float maxSamplerAnisotropy;

 uint32_t maxViewports;

 uint32_t maxViewportDimensions[2];

 float viewportBoundsRange[2];

 uint32_t viewportSubPixelBits;

 size_t minMemoryMapAlignment;

 VkDeviceSize minTexelBufferOffsetAlignment;

 VkDeviceSize minUniformBufferOffsetAlignment;

 VkDeviceSize minStorageBufferOffsetAlignment;

 int32_t minTexelOffset;

 uint32_t maxTexelOffset;

 int32_t minTexelGatherOffset;

 uint32_t maxTexelGatherOffset;

 float minInterpolationOffset;

 float maxInterpolationOffset;

 uint32_t subPixelInterpolationOffsetBits;

 uint32_t maxFramebufferWidth;

 uint32_t maxFramebufferHeight;

 uint32_t maxFramebufferLayers;

 VkSampleCountFlags framebufferColorSampleCounts;

 VkSampleCountFlags framebufferDepthSampleCounts;

 VkSampleCountFlags framebufferStencilSampleCounts;

 VkSampleCountFlags framebufferNoAttachmentsSampleCounts;

 uint32_t maxColorAttachments;

 VkSampleCountFlags sampledImageColorSampleCounts;

 VkSampleCountFlags sampledImageIntegerSampleCounts;

 VkSampleCountFlags sampledImageDepthSampleCounts;

 VkSampleCountFlags sampledImageStencilSampleCounts;

 VkSampleCountFlags storageImageSampleCounts;

596

 uint32_t maxSampleMaskWords;

 VkBool32 timestampComputeAndGraphics;

 float timestampPeriod;

 uint32_t maxClipDistances;

 uint32_t maxCullDistances;

 uint32_t maxCombinedClipAndCullDistances;

 uint32_t discreteQueuePriorities;

 float pointSizeRange[2];

 float lineWidthRange[2];

 float pointSizeGranularity;

 float lineWidthGranularity;

 VkBool32 strictLines;

 VkBool32 standardSampleLocations;

 VkDeviceSize optimalBufferCopyOffsetAlignment;

 VkDeviceSize optimalBufferCopyRowPitchAlignment;

 VkDeviceSize nonCoherentAtomSize;

} VkPhysicalDeviceLimits;

• maxImageDimension1D is the maximum dimension (width) supported for all images created with

an imageType of VK_IMAGE_TYPE_1D.

• maxImageDimension2D is the maximum dimension (width or height) supported for all images

created with an imageType of VK_IMAGE_TYPE_2D and without VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT

set in flags.

• maxImageDimension3D is the maximum dimension (width, height, or depth) supported for all

images created with an imageType of VK_IMAGE_TYPE_3D.

• maxImageDimensionCube is the maximum dimension (width or height) supported for all images

created with an imageType of VK_IMAGE_TYPE_2D and with VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT set

in flags.

• maxImageArrayLayers is the maximum number of layers (arrayLayers) for an image.

• maxTexelBufferElements is the maximum number of addressable texels for a buffer view created

on a buffer which was created with the VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT or

VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT set in the usage member of the VkBufferCreateInfo

structure.

• maxUniformBufferRange is the maximum value that can be specified in the range member of any

VkDescriptorBufferInfo structures passed to a call to vkUpdateDescriptorSets for descriptors of

type VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC.

• maxStorageBufferRange is the maximum value that can be specified in the range member of any

VkDescriptorBufferInfo structures passed to a call to vkUpdateDescriptorSets for descriptors of

type VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC.

• maxPushConstantsSize is the maximum size, in bytes, of the pool of push constant memory. For

each of the push constant ranges indicated by the pPushConstantRanges member of the

VkPipelineLayoutCreateInfo structure, (offset + size) must be less than or equal to this limit.

• maxMemoryAllocationCount is the maximum number of device memory allocations, as created by

vkAllocateMemory, which can simultaneously exist.

• maxSamplerAllocationCount is the maximum number of sampler objects, as created by

597

vkCreateSampler, which can simultaneously exist on a device.

• bufferImageGranularity is the granularity, in bytes, at which buffer or linear image resources,

and optimal image resources can be bound to adjacent offsets in the same VkDeviceMemory object

without aliasing. See Buffer-Image Granularity for more details.

• sparseAddressSpaceSize is the total amount of address space available, in bytes, for sparse

memory resources. This is an upper bound on the sum of the size of all sparse resources,

regardless of whether any memory is bound to them.

• maxBoundDescriptorSets is the maximum number of descriptor sets that can be simultaneously

used by a pipeline. All DescriptorSet decorations in shader modules must have a value less than

maxBoundDescriptorSets. See Descriptor Sets.

• maxPerStageDescriptorSamplers is the maximum number of samplers that can be accessible to a

single shader stage in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_SAMPLER or

VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER count against this limit. A descriptor is accessible to

a shader stage when the stageFlags member of the VkDescriptorSetLayoutBinding structure has

the bit for that shader stage set. See Sampler and Combined Image Sampler.

• maxPerStageDescriptorUniformBuffers is the maximum number of uniform buffers that can be

accessible to a single shader stage in a pipeline layout. Descriptors with a type of

VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC count against

this limit. A descriptor is accessible to a shader stage when the stageFlags member of the

VkDescriptorSetLayoutBinding structure has the bit for that shader stage set. See Uniform Buffer

and Dynamic Uniform Buffer.

• maxPerStageDescriptorStorageBuffers is the maximum number of storage buffers that can be

accessible to a single shader stage in a pipeline layout. Descriptors with a type of

VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC count against

this limit. A descriptor is accessible to a pipeline shader stage when the stageFlags member of

the VkDescriptorSetLayoutBinding structure has the bit for that shader stage set. See Storage

Buffer and Dynamic Storage Buffer.

• maxPerStageDescriptorSampledImages is the maximum number of sampled images that can be

accessible to a single shader stage in a pipeline layout. Descriptors with a type of

VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, or

VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER count against this limit. A descriptor is accessible to a

pipeline shader stage when the stageFlags member of the VkDescriptorSetLayoutBinding

structure has the bit for that shader stage set. See Combined Image Sampler, Sampled Image,

and Uniform Texel Buffer.

• maxPerStageDescriptorStorageImages is the maximum number of storage images that can be

accessible to a single shader stage in a pipeline layout. Descriptors with a type of

VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER count against

this limit. A descriptor is accessible to a pipeline shader stage when the stageFlags member of

the VkDescriptorSetLayoutBinding structure has the bit for that shader stage set. See Storage

Image, and Storage Texel Buffer.

• maxPerStageDescriptorInputAttachments is the maximum number of input attachments that can

be accessible to a single shader stage in a pipeline layout. Descriptors with a type of

VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT count against this limit. A descriptor is accessible to a

pipeline shader stage when the stageFlags member of the VkDescriptorSetLayoutBinding

598

structure has the bit for that shader stage set. These are only supported for the fragment stage.

See Input Attachment.

• maxPerStageResources is the maximum number of resources that can be accessible to a single

shader stage in a pipeline layout. Descriptors with a type of

VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,

VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER,

VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,

VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC,

VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT count

against this limit. For the fragment shader stage the framebuffer color attachments also count

against this limit.

• maxDescriptorSetSamplers is the maximum number of samplers that can be included in

descriptor bindings in a pipeline layout across all pipeline shader stages and descriptor set

numbers. Descriptors with a type of VK_DESCRIPTOR_TYPE_SAMPLER or

VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER count against this limit. See Sampler and Combined

Image Sampler.

• maxDescriptorSetUniformBuffers is the maximum number of uniform buffers that can be

included in descriptor bindings in a pipeline layout across all pipeline shader stages and

descriptor set numbers. Descriptors with a type of VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or

VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC count against this limit. See Uniform Buffer and

Dynamic Uniform Buffer.

• maxDescriptorSetUniformBuffersDynamic is the maximum number of dynamic uniform buffers

that can be included in descriptor bindings in a pipeline layout across all pipeline shader stages

and descriptor set numbers. Descriptors with a type of

VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC count against this limit. See Dynamic Uniform

Buffer.

• maxDescriptorSetStorageBuffers is the maximum number of storage buffers that can be included

in descriptor bindings in a pipeline layout across all pipeline shader stages and descriptor set

numbers. Descriptors with a type of VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or

VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC count against this limit. See Storage Buffer and

Dynamic Storage Buffer.

• maxDescriptorSetStorageBuffersDynamic is the maximum number of dynamic storage buffers that

can be included in descriptor bindings in a pipeline layout across all pipeline shader stages and

descriptor set numbers. Descriptors with a type of VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC

count against this limit. See Dynamic Storage Buffer.

• maxDescriptorSetSampledImages is the maximum number of sampled images that can be included

in descriptor bindings in a pipeline layout across all pipeline shader stages and descriptor set

numbers. Descriptors with a type of VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,

VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, or VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER count against

this limit. See Combined Image Sampler, Sampled Image, and Uniform Texel Buffer.

• maxDescriptorSetStorageImages is the maximum number of storage images that can be included

in descriptor bindings in a pipeline layout across all pipeline shader stages and descriptor set

numbers. Descriptors with a type of VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or

VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER count against this limit. See Storage Image, and

Storage Texel Buffer.

599

• maxDescriptorSetInputAttachments is the maximum number of input attachments that can be

included in descriptor bindings in a pipeline layout across all pipeline shader stages and

descriptor set numbers. Descriptors with a type of VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT count

against this limit. See Input Attachment.

• maxVertexInputAttributes is the maximum number of vertex input attributes that can be

specified for a graphics pipeline. These are described in the array of

VkVertexInputAttributeDescription structures that are provided at graphics pipeline creation

time via the pVertexAttributeDescriptions member of the VkPipelineVertexInputStateCreateInfo

structure. See Vertex Attributes and Vertex Input Description.

• maxVertexInputBindings is the maximum number of vertex buffers that can be specified for

providing vertex attributes to a graphics pipeline. These are described in the array of

VkVertexInputBindingDescription structures that are provided at graphics pipeline creation time

via the pVertexBindingDescriptions member of the VkPipelineVertexInputStateCreateInfo

structure. The binding member of VkVertexInputBindingDescription must be less than this limit.

See Vertex Input Description.

• maxVertexInputAttributeOffset is the maximum vertex input attribute offset that can be added

to the vertex input binding stride. The offset member of the VkVertexInputAttributeDescription

structure must be less than or equal to this limit. See Vertex Input Description.

• maxVertexInputBindingStride is the maximum vertex input binding stride that can be specified

in a vertex input binding. The stride member of the VkVertexInputBindingDescription structure

must be less than or equal to this limit. See Vertex Input Description.

• maxVertexOutputComponents is the maximum number of components of output variables which

can be output by a vertex shader. See Vertex Shaders.

• maxTessellationGenerationLevel is the maximum tessellation generation level supported by the

fixed-function tessellation primitive generator. See Tessellation.

• maxTessellationPatchSize is the maximum patch size, in vertices, of patches that can be

processed by the tessellation control shader and tessellation primitive generator. The

patchControlPoints member of the VkPipelineTessellationStateCreateInfo structure specified at

pipeline creation time and the value provided in the OutputVertices execution mode of shader

modules must be less than or equal to this limit. See Tessellation.

• maxTessellationControlPerVertexInputComponents is the maximum number of components of

input variables which can be provided as per-vertex inputs to the tessellation control shader

stage.

• maxTessellationControlPerVertexOutputComponents is the maximum number of components of

per-vertex output variables which can be output from the tessellation control shader stage.

• maxTessellationControlPerPatchOutputComponents is the maximum number of components of per-

patch output variables which can be output from the tessellation control shader stage.

• maxTessellationControlTotalOutputComponents is the maximum total number of components of

per-vertex and per-patch output variables which can be output from the tessellation control

shader stage.

• maxTessellationEvaluationInputComponents is the maximum number of components of input

variables which can be provided as per-vertex inputs to the tessellation evaluation shader

stage.

600

• maxTessellationEvaluationOutputComponents is the maximum number of components of per-

vertex output variables which can be output from the tessellation evaluation shader stage.

• maxGeometryShaderInvocations is the maximum invocation count supported for instanced

geometry shaders. The value provided in the Invocations execution mode of shader modules

must be less than or equal to this limit. See Geometry Shading.

• maxGeometryInputComponents is the maximum number of components of input variables which

can be provided as inputs to the geometry shader stage.

• maxGeometryOutputComponents is the maximum number of components of output variables which

can be output from the geometry shader stage.

• maxGeometryOutputVertices is the maximum number of vertices which can be emitted by any

geometry shader.

• maxGeometryTotalOutputComponents is the maximum total number of components of output,

across all emitted vertices, which can be output from the geometry shader stage.

• maxFragmentInputComponents is the maximum number of components of input variables which

can be provided as inputs to the fragment shader stage.

• maxFragmentOutputAttachments is the maximum number of output attachments which can be

written to by the fragment shader stage.

• maxFragmentDualSrcAttachments is the maximum number of output attachments which can be

written to by the fragment shader stage when blending is enabled and one of the dual source

blend modes is in use. See Dual-Source Blending and dualSrcBlend.

• maxFragmentCombinedOutputResources is the total number of storage buffers, storage images, and

output buffers which can be used in the fragment shader stage.

• maxComputeSharedMemorySize is the maximum total storage size, in bytes, of all variables declared

with the WorkgroupLocal storage class in shader modules (or with the shared storage qualifier in

GLSL) in the compute shader stage.

• maxComputeWorkGroupCount[3] is the maximum number of local workgroups that can be

dispatched by a single dispatch command. These three values represent the maximum number

of local workgroups for the X, Y, and Z dimensions, respectively. The workgroup count

parameters to the dispatch commands must be less than or equal to the corresponding limit.

See Dispatching Commands.

• maxComputeWorkGroupInvocations is the maximum total number of compute shader invocations in

a single local workgroup. The product of the X, Y, and Z sizes as specified by the LocalSize

execution mode in shader modules and by the object decorated by the WorkgroupSize decoration

must be less than or equal to this limit.

• maxComputeWorkGroupSize[3] is the maximum size of a local compute workgroup, per dimension.

These three values represent the maximum local workgroup size in the X, Y, and Z dimensions,

respectively. The x, y, and z sizes specified by the LocalSize execution mode and by the object

decorated by the WorkgroupSize decoration in shader modules must be less than or equal to the

corresponding limit.

• subPixelPrecisionBits is the number of bits of subpixel precision in framebuffer coordinates xf

and yf. See Rasterization.

• subTexelPrecisionBits is the number of bits of precision in the division along an axis of an

601

image used for minification and magnification filters. 2subTexelPrecisionBits is the actual number of

divisions along each axis of the image represented. The filtering hardware will snap to these

locations when computing the filtered results.

• mipmapPrecisionBits is the number of bits of division that the LOD calculation for mipmap

fetching get snapped to when determining the contribution from each mip level to the mip

filtered results. 2mipmapPrecisionBits is the actual number of divisions.



Note

For example, if this value is 2 bits then when linearly filtering between two

levels, each level could: contribute: 0%, 33%, 66%, or 100% (this is just an

example and the amount of contribution should be covered by different

equations in the spec).

• maxDrawIndexedIndexValue is the maximum index value that can be used for indexed draw calls

when using 32-bit indices. This excludes the primitive restart index value of 0xFFFFFFFF. See

fullDrawIndexUint32.

• maxDrawIndirectCount is the maximum draw count that is supported for indirect draw calls. See

multiDrawIndirect.

• maxSamplerLodBias is the maximum absolute sampler level of detail bias. The sum of the

mipLodBias member of the VkSamplerCreateInfo structure and the Bias operand of image

sampling operations in shader modules (or 0 if no Bias operand is provided to an image

sampling operation) are clamped to the range [-maxSamplerLodBias,+maxSamplerLodBias]. See

[samplers-mipLodBias].

• maxSamplerAnisotropy is the maximum degree of sampler anisotropy. The maximum degree of

anisotropic filtering used for an image sampling operation is the minimum of the maxAnisotropy

member of the VkSamplerCreateInfo structure and this limit. See [samplers-maxAnisotropy].

• maxViewports is the maximum number of active viewports. The viewportCount member of the

VkPipelineViewportStateCreateInfo structure that is provided at pipeline creation must be less

than or equal to this limit.

• maxViewportDimensions[2] are the maximum viewport dimensions in the X (width) and Y (height)

dimensions, respectively. The maximum viewport dimensions must be greater than or equal to

the largest image which can be created and used as a framebuffer attachment. See Controlling

the Viewport.

• viewportBoundsRange[2] is the [minimum, maximum] range that the corners of a viewport must

be contained in. This range must be at least [-2 × size, 2 × size - 1], where size =

max(maxViewportDimensions[0], maxViewportDimensions[1]). See Controlling the Viewport.

602



Note

The intent of the viewportBoundsRange limit is to allow a maximum sized

viewport to be arbitrarily shifted relative to the output target as long as at least

some portion intersects. This would give a bounds limit of [-size + 1, 2 × size -

1] which would allow all possible non-empty-set intersections of the output

target and the viewport. Since these numbers are typically powers of two,

picking the signed number range using the smallest possible number of bits

ends up with the specified range.

• viewportSubPixelBits is the number of bits of subpixel precision for viewport bounds. The

subpixel precision that floating-point viewport bounds are interpreted at is given by this limit.

• minMemoryMapAlignment is the minimum required alignment, in bytes, of host visible memory

allocations within the host address space. When mapping a memory allocation with

vkMapMemory, subtracting offset bytes from the returned pointer will always produce an

integer multiple of this limit. See Host Access to Device Memory Objects.

• minTexelBufferOffsetAlignment is the minimum required alignment, in bytes, for the offset

member of the VkBufferViewCreateInfo structure for texel buffers. When a buffer view is created

for a buffer which was created with VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT or

VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT set in the usage member of the VkBufferCreateInfo

structure, the offset must be an integer multiple of this limit.

• minUniformBufferOffsetAlignment is the minimum required alignment, in bytes, for the offset

member of the VkDescriptorBufferInfo structure for uniform buffers. When a descriptor of type

VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC is updated,

the offset must be an integer multiple of this limit. Similarly, dynamic offsets for uniform

buffers must be multiples of this limit.

• minStorageBufferOffsetAlignment is the minimum required alignment, in bytes, for the offset

member of the VkDescriptorBufferInfo structure for storage buffers. When a descriptor of type

VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC is updated,

the offset must be an integer multiple of this limit. Similarly, dynamic offsets for storage

buffers must be multiples of this limit.

• minTexelOffset is the minimum offset value for the ConstOffset image operand of any of the

OpImageSample* or OpImageFetch* image instructions.

• maxTexelOffset is the maximum offset value for the ConstOffset image operand of any of the

OpImageSample* or OpImageFetch* image instructions.

• minTexelGatherOffset is the minimum offset value for the Offset or ConstOffsets image operands

of any of the OpImage*Gather image instructions.

• maxTexelGatherOffset is the maximum offset value for the Offset or ConstOffsets image

operands of any of the OpImage*Gather image instructions.

• minInterpolationOffset is the minimum negative offset value for the offset operand of the

InterpolateAtOffset extended instruction.

• maxInterpolationOffset is the maximum positive offset value for the offset operand of the

InterpolateAtOffset extended instruction.

• subPixelInterpolationOffsetBits is the number of subpixel fractional bits that the x and y offsets

603

to the InterpolateAtOffset extended instruction may be rounded to as fixed-point values.

• maxFramebufferWidth is the maximum width for a framebuffer. The width member of the

VkFramebufferCreateInfo structure must be less than or equal to this limit.

• maxFramebufferHeight is the maximum height for a framebuffer. The height member of the

VkFramebufferCreateInfo structure must be less than or equal to this limit.

• maxFramebufferLayers is the maximum layer count for a layered framebuffer. The layers

member of the VkFramebufferCreateInfo structure must be less than or equal to this limit.

• framebufferColorSampleCounts is a bitmask
1
 of VkSampleCountFlagBits indicating the color

sample counts that are supported for all framebuffer color attachments with floating- or fixed-

point formats. There is no limit that indicates the color sample counts that are supported for all

color attachments with integer formats.

• framebufferDepthSampleCounts is a bitmask
1
 of VkSampleCountFlagBits indicating the supported

depth sample counts for all framebuffer depth/stencil attachments, when the format includes a

depth component.

• framebufferStencilSampleCounts is a bitmask
1
 of VkSampleCountFlagBits indicating the

supported stencil sample counts for all framebuffer depth/stencil attachments, when the format

includes a stencil component.

• framebufferNoAttachmentsSampleCounts is a bitmask
1
 of VkSampleCountFlagBits indicating the

supported sample counts for a framebuffer with no attachments.

• maxColorAttachments is the maximum number of color attachments that can be used by a

subpass in a render pass. The colorAttachmentCount member of the VkSubpassDescription

structure must be less than or equal to this limit.

• sampledImageColorSampleCounts is a bitmask
1
 of VkSampleCountFlagBits indicating the sample

counts supported for all 2D images created with VK_IMAGE_TILING_OPTIMAL, usage containing

VK_IMAGE_USAGE_SAMPLED_BIT, and a non-integer color format.

• sampledImageIntegerSampleCounts is a bitmask
1
 of VkSampleCountFlagBits indicating the sample

counts supported for all 2D images created with VK_IMAGE_TILING_OPTIMAL, usage containing

VK_IMAGE_USAGE_SAMPLED_BIT, and an integer color format.

• sampledImageDepthSampleCounts is a bitmask
1
 of VkSampleCountFlagBits indicating the sample

counts supported for all 2D images created with VK_IMAGE_TILING_OPTIMAL, usage containing

VK_IMAGE_USAGE_SAMPLED_BIT, and a depth format.

• sampledImageStencilSampleCounts is a bitmask
1
 of VkSampleCountFlagBits indicating the sample

supported for all 2D images created with VK_IMAGE_TILING_OPTIMAL, usage containing

VK_IMAGE_USAGE_SAMPLED_BIT, and a stencil format.

• storageImageSampleCounts is a bitmask
1
 of VkSampleCountFlagBits indicating the sample counts

supported for all 2D images created with VK_IMAGE_TILING_OPTIMAL, and usage containing

VK_IMAGE_USAGE_STORAGE_BIT.

• maxSampleMaskWords is the maximum number of array elements of a variable decorated with the

SampleMask built-in decoration.

• timestampComputeAndGraphics indicates support for timestamps on all graphics and compute

queues. If this limit is set to VK_TRUE, all queues that advertise the VK_QUEUE_GRAPHICS_BIT or

VK_QUEUE_COMPUTE_BIT in the VkQueueFamilyProperties::queueFlags support

604

VkQueueFamilyProperties::timestampValidBits of at least 36. See Timestamp Queries.

• timestampPeriod is the number of nanoseconds required for a timestamp query to be

incremented by 1. See Timestamp Queries.

• maxClipDistances is the maximum number of clip distances that can be used in a single shader

stage. The size of any array declared with the ClipDistance built-in decoration in a shader

module must be less than or equal to this limit.

• maxCullDistances is the maximum number of cull distances that can be used in a single shader

stage. The size of any array declared with the CullDistance built-in decoration in a shader

module must be less than or equal to this limit.

• maxCombinedClipAndCullDistances is the maximum combined number of clip and cull distances

that can be used in a single shader stage. The sum of the sizes of any pair of arrays declared

with the ClipDistance and CullDistance built-in decoration used by a single shader stage in a

shader module must be less than or equal to this limit.

• discreteQueuePriorities is the number of discrete priorities that can be assigned to a queue

based on the value of each member of VkDeviceQueueCreateInfo::pQueuePriorities. This must be

at least 2, and levels must be spread evenly over the range, with at least one level at 1.0, and

another at 0.0. See Queue Priority.

• pointSizeRange[2] is the range [minimum,maximum] of supported sizes for points. Values written to

variables decorated with the PointSize built-in decoration are clamped to this range.

• lineWidthRange[2] is the range [minimum,maximum] of supported widths for lines. Values specified

by the lineWidth member of the VkPipelineRasterizationStateCreateInfo or the lineWidth

parameter to vkCmdSetLineWidth are clamped to this range.

• pointSizeGranularity is the granularity of supported point sizes. Not all point sizes in the range

defined by pointSizeRange are supported. This limit specifies the granularity (or increment)

between successive supported point sizes.

• lineWidthGranularity is the granularity of supported line widths. Not all line widths in the range

defined by lineWidthRange are supported. This limit specifies the granularity (or increment)

between successive supported line widths.

• strictLines indicates whether lines are rasterized according to the preferred method of

rasterization. If set to VK_FALSE, lines may be rasterized under a relaxed set of rules. If set to

VK_TRUE, lines are rasterized as per the strict definition. See Basic Line Segment Rasterization.

• standardSampleLocations indicates whether rasterization uses the standard sample locations as

documented in Multisampling. If set to VK_TRUE, the implementation uses the documented

sample locations. If set to VK_FALSE, the implementation may use different sample locations.

• optimalBufferCopyOffsetAlignment is the optimal buffer offset alignment in bytes for

vkCmdCopyBufferToImage and vkCmdCopyImageToBuffer. The per texel alignment requirements are

enforced, but applications should use the optimal alignment for optimal performance and

power use.

• optimalBufferCopyRowPitchAlignment is the optimal buffer row pitch alignment in bytes for

vkCmdCopyBufferToImage and vkCmdCopyImageToBuffer. Row pitch is the number of bytes between

texels with the same X coordinate in adjacent rows (Y coordinates differ by one). The per texel

alignment requirements are enforced, but applications should use the optimal alignment for

optimal performance and power use.

605

• nonCoherentAtomSize is the size and alignment in bytes that bounds concurrent access to host-

mapped device memory.

1

For all bitmasks of VkSampleCountFlagBits, the sample count limits defined above represent the

minimum supported sample counts for each image type. Individual images may support

additional sample counts, which are queried using vkGetPhysicalDeviceImageFormatProperties

as described in Supported Sample Counts.

Bits which may be set in the sample count limits returned by VkPhysicalDeviceLimits, as well as in

other queries and structures representing image sample counts, are:

typedef enum VkSampleCountFlagBits {

 VK_SAMPLE_COUNT_1_BIT = 0x00000001,

 VK_SAMPLE_COUNT_2_BIT = 0x00000002,

 VK_SAMPLE_COUNT_4_BIT = 0x00000004,

 VK_SAMPLE_COUNT_8_BIT = 0x00000008,

 VK_SAMPLE_COUNT_16_BIT = 0x00000010,

 VK_SAMPLE_COUNT_32_BIT = 0x00000020,

 VK_SAMPLE_COUNT_64_BIT = 0x00000040,

} VkSampleCountFlagBits;

• VK_SAMPLE_COUNT_1_BIT specifies an image with one sample per pixel.

• VK_SAMPLE_COUNT_2_BIT specifies an image with 2 samples per pixel.

• VK_SAMPLE_COUNT_4_BIT specifies an image with 4 samples per pixel.

• VK_SAMPLE_COUNT_8_BIT specifies an image with 8 samples per pixel.

• VK_SAMPLE_COUNT_16_BIT specifies an image with 16 samples per pixel.

• VK_SAMPLE_COUNT_32_BIT specifies an image with 32 samples per pixel.

• VK_SAMPLE_COUNT_64_BIT specifies an image with 64 samples per pixel.

30.2.1. Limit Requirements

The following table specifies the required minimum/maximum for all Vulkan graphics

implementations. Where a limit corresponds to a fine-grained device feature which is optional, the

feature name is listed with two required limits, one when the feature is supported and one when it

is not supported. If an implementation supports a feature, the limits reported are the same whether

or not the feature is enabled.

Table 31. Required Limit Types

Type Limit Feature

uint32_t maxImageDimension1D -

uint32_t maxImageDimension2D -

uint32_t maxImageDimension3D -

uint32_t maxImageDimensionCube -

606

Type Limit Feature

uint32_t maxImageArrayLayers -

uint32_t maxTexelBufferElements -

uint32_t maxUniformBufferRange -

uint32_t maxStorageBufferRange -

uint32_t maxPushConstantsSize -

uint32_t maxMemoryAllocationCount -

uint32_t maxSamplerAllocationCount -

VkDeviceSize bufferImageGranularity -

VkDeviceSize sparseAddressSpaceSize sparseBinding

uint32_t maxBoundDescriptorSets -

uint32_t maxPerStageDescriptorSamplers -

uint32_t maxPerStageDescriptorUniformBuffers -

uint32_t maxPerStageDescriptorStorageBuffers -

uint32_t maxPerStageDescriptorSampledImages -

uint32_t maxPerStageDescriptorStorageImages -

uint32_t maxPerStageDescriptorInputAttachments -

uint32_t maxPerStageResources -

uint32_t maxDescriptorSetSamplers -

uint32_t maxDescriptorSetUniformBuffers -

uint32_t maxDescriptorSetUniformBuffersDynamic -

uint32_t maxDescriptorSetStorageBuffers -

uint32_t maxDescriptorSetStorageBuffersDynamic -

uint32_t maxDescriptorSetSampledImages -

uint32_t maxDescriptorSetStorageImages -

uint32_t maxDescriptorSetInputAttachments -

uint32_t maxVertexInputAttributes -

uint32_t maxVertexInputBindings -

uint32_t maxVertexInputAttributeOffset -

uint32_t maxVertexInputBindingStride -

uint32_t maxVertexOutputComponents -

uint32_t maxTessellationGenerationLevel tessellationShader

uint32_t maxTessellationPatchSize tessellationShader

uint32_t maxTessellationControlPerVertexInputComponents tessellationShader

uint32_t maxTessellationControlPerVertexOutputComponent
s

tessellationShader

uint32_t maxTessellationControlPerPatchOutputComponents tessellationShader

uint32_t maxTessellationControlTotalOutputComponents tessellationShader

607

Type Limit Feature

uint32_t maxTessellationEvaluationInputComponents tessellationShader

uint32_t maxTessellationEvaluationOutputComponents tessellationShader

uint32_t maxGeometryShaderInvocations geometryShader

uint32_t maxGeometryInputComponents geometryShader

uint32_t maxGeometryOutputComponents geometryShader

uint32_t maxGeometryOutputVertices geometryShader

uint32_t maxGeometryTotalOutputComponents geometryShader

uint32_t maxFragmentInputComponents -

uint32_t maxFragmentOutputAttachments -

uint32_t maxFragmentDualSrcAttachments dualSrcBlend

uint32_t maxFragmentCombinedOutputResources -

uint32_t maxComputeSharedMemorySize -

3 × uint32_t maxComputeWorkGroupCount -

uint32_t maxComputeWorkGroupInvocations -

3 × uint32_t maxComputeWorkGroupSize -

uint32_t subPixelPrecisionBits -

uint32_t subTexelPrecisionBits -

uint32_t mipmapPrecisionBits -

uint32_t maxDrawIndexedIndexValue fullDrawIndexUint32

uint32_t maxDrawIndirectCount multiDrawIndirect

float maxSamplerLodBias -

float maxSamplerAnisotropy samplerAnisotropy

uint32_t maxViewports multiViewport

2 × uint32_t maxViewportDimensions -

2 × float viewportBoundsRange -

uint32_t viewportSubPixelBits -

size_t minMemoryMapAlignment -

VkDeviceSize minTexelBufferOffsetAlignment -

VkDeviceSize minUniformBufferOffsetAlignment -

VkDeviceSize minStorageBufferOffsetAlignment -

int32_t minTexelOffset -

uint32_t maxTexelOffset -

int32_t minTexelGatherOffset shaderImageGatherExtended

uint32_t maxTexelGatherOffset shaderImageGatherExtended

float minInterpolationOffset sampleRateShading

float maxInterpolationOffset sampleRateShading

uint32_t subPixelInterpolationOffsetBits sampleRateShading

uint32_t maxFramebufferWidth -

608

Type Limit Feature

uint32_t maxFramebufferHeight -

uint32_t maxFramebufferLayers -

VkSampleCountFl

ags

framebufferColorSampleCounts -

VkSampleCountFl

ags

framebufferDepthSampleCounts -

VkSampleCountFl

ags

framebufferStencilSampleCounts -

VkSampleCountFl

ags

framebufferNoAttachmentsSampleCounts -

uint32_t maxColorAttachments -

VkSampleCountFl

ags

sampledImageColorSampleCounts -

VkSampleCountFl

ags

sampledImageIntegerSampleCounts -

VkSampleCountFl

ags

sampledImageDepthSampleCounts -

VkSampleCountFl

ags

sampledImageStencilSampleCounts -

VkSampleCountFl

ags

storageImageSampleCounts shaderStorageImageMultisamp
le

uint32_t maxSampleMaskWords -

VkBool32 timestampComputeAndGraphics -

float timestampPeriod -

uint32_t maxClipDistances shaderClipDistance

uint32_t maxCullDistances shaderCullDistance

uint32_t maxCombinedClipAndCullDistances shaderCullDistance

uint32_t discreteQueuePriorities -

2 × float pointSizeRange largePoints

2 × float lineWidthRange wideLines

float pointSizeGranularity largePoints

float lineWidthGranularity wideLines

VkBool32 strictLines -

VkBool32 standardSampleLocations -

VkDeviceSize optimalBufferCopyOffsetAlignment -

VkDeviceSize optimalBufferCopyRowPitchAlignment -

VkDeviceSize nonCoherentAtomSize -

Table 32. Required Limits

609

Limit Unsupport

ed Limit

Supported Limit Limit Type
1

maxImageDimension1D - 4096 min

maxImageDimension2D - 4096 min

maxImageDimension3D - 256 min

maxImageDimensionCube - 4096 min

maxImageArrayLayers - 256 min

maxTexelBufferElements - 65536 min

maxUniformBufferRange - 16384 min

maxStorageBufferRange - 2
27

min

maxPushConstantsSize - 128 min

maxMemoryAllocationCount - 4096 min

maxSamplerAllocationCount - 4000 min

bufferImageGranularity - 131072 max

sparseAddressSpaceSize 0 2
31

min

maxBoundDescriptorSets - 4 min

maxPerStageDescriptorSamplers - 16 min

maxPerStageDescriptorUniformBuffers - 12 min

maxPerStageDescriptorStorageBuffers - 4 min

maxPerStageDescriptorSampledImages - 16 min

maxPerStageDescriptorStorageImages - 4 min

maxPerStageDescriptorInputAttachments - 4 min

maxPerStageResources - 128
2

min

maxDescriptorSetSamplers - 96
8

min, n ×
PerStage

maxDescriptorSetUniformBuffers - 72
8

min, n ×
PerStage

maxDescriptorSetUniformBuffersDynamic - 8 min

maxDescriptorSetStorageBuffers - 24
8

min, n ×
PerStage

maxDescriptorSetStorageBuffersDynamic - 4 min

maxDescriptorSetSampledImages - 96
8

min, n ×
PerStage

maxDescriptorSetStorageImages - 24
8

min, n ×
PerStage

maxDescriptorSetInputAttachments - 4 min

maxVertexInputAttributes - 16 min

maxVertexInputBindings - 16 min

maxVertexInputAttributeOffset - 2047 min

610

Limit Unsupport

ed Limit

Supported Limit Limit Type
1

maxVertexInputBindingStride - 2048 min

maxVertexOutputComponents - 64 min

maxTessellationGenerationLevel 0 64 min

maxTessellationPatchSize 0 32 min

maxTessellationControlPerVertexInputComponents 0 64 min

maxTessellationControlPerVertexOutputComponents 0 64 min

maxTessellationControlPerPatchOutputComponents 0 120 min

maxTessellationControlTotalOutputComponents 0 2048 min

maxTessellationEvaluationInputComponents 0 64 min

maxTessellationEvaluationOutputComponents 0 64 min

maxGeometryShaderInvocations 0 32 min

maxGeometryInputComponents 0 64 min

maxGeometryOutputComponents 0 64 min

maxGeometryOutputVertices 0 256 min

maxGeometryTotalOutputComponents 0 1024 min

maxFragmentInputComponents - 64 min

maxFragmentOutputAttachments - 4 min

maxFragmentDualSrcAttachments 0 1 min

maxFragmentCombinedOutputResources - 4 min

maxComputeSharedMemorySize - 16384 min

maxComputeWorkGroupCount - (65535,65535,6553

5)

min

maxComputeWorkGroupInvocations - 128 min

maxComputeWorkGroupSize - (128,128,64) min

subPixelPrecisionBits - 4 min

subTexelPrecisionBits - 4 min

mipmapPrecisionBits - 4 min

maxDrawIndexedIndexValue 2
24

-1 2
32

-1 min

maxDrawIndirectCount 1 2
16

-1 min

maxSamplerLodBias - 2 min

maxSamplerAnisotropy 1 16 min

maxViewports 1 16 min

maxViewportDimensions - (4096,4096)
3

min

viewportBoundsRange - (-8192,8191)
4

(max,min)

viewportSubPixelBits - 0 min

611

Limit Unsupport

ed Limit

Supported Limit Limit Type
1

minMemoryMapAlignment - 64 min

minTexelBufferOffsetAlignment - 256 max

minUniformBufferOffsetAlignment - 256 max

minStorageBufferOffsetAlignment - 256 max

minTexelOffset - -8 max

maxTexelOffset - 7 min

minTexelGatherOffset 0 -8 max

maxTexelGatherOffset 0 7 min

minInterpolationOffset 0.0 -0.5
5

max

maxInterpolationOffset 0.0 0.5 - (1 ULP)
5

min

subPixelInterpolationOffsetBits 0 4
5

min

maxFramebufferWidth - 4096 min

maxFramebufferHeight - 4096 min

maxFramebufferLayers - 256 min

framebufferColorSampleCounts - (VK_SAMPLE_COUNT_1

_BIT |
VK_SAMPLE_COUNT_4_

BIT)

min

framebufferDepthSampleCounts - (VK_SAMPLE_COUNT_1

_BIT |
VK_SAMPLE_COUNT_4_

BIT)

min

framebufferStencilSampleCounts - (VK_SAMPLE_COUNT_1

_BIT |
VK_SAMPLE_COUNT_4_

BIT)

min

framebufferNoAttachmentsSampleCounts - (VK_SAMPLE_COUNT_1

_BIT |
VK_SAMPLE_COUNT_4_

BIT)

min

maxColorAttachments - 4 min

sampledImageColorSampleCounts - (VK_SAMPLE_COUNT_1

_BIT |
VK_SAMPLE_COUNT_4_

BIT)

min

sampledImageIntegerSampleCounts - VK_SAMPLE_COUNT_1_
BIT

min

sampledImageDepthSampleCounts - (VK_SAMPLE_COUNT_1

_BIT |
VK_SAMPLE_COUNT_4_

BIT)

min

612

Limit Unsupport

ed Limit

Supported Limit Limit Type
1

sampledImageStencilSampleCounts - (VK_SAMPLE_COUNT_1

_BIT |
VK_SAMPLE_COUNT_4_

BIT)

min

storageImageSampleCounts VK_SAMPLE_C
OUNT_1_BIT

(VK_SAMPLE_COUNT_1

_BIT |
VK_SAMPLE_COUNT_4_

BIT)

min

maxSampleMaskWords - 1 min

timestampComputeAndGraphics - - implementatio

n dependent

timestampPeriod - - duration

maxClipDistances 0 8 min

maxCullDistances 0 8 min

maxCombinedClipAndCullDistances 0 8 min

discreteQueuePriorities - 2 min

pointSizeRange (1.0,1.0) (1.0,64.0 - ULP)
6

(max,min)

lineWidthRange (1.0,1.0) (1.0,8.0 - ULP)
7

(max,min)

pointSizeGranularity 0.0 1.0
6

max, fixed

point

increment

lineWidthGranularity 0.0 1.0
7

max, fixed

point

increment

strictLines - - implementatio

n dependent

standardSampleLocations - - implementatio

n dependent

optimalBufferCopyOffsetAlignment - - recommendati

on

optimalBufferCopyRowPitchAlignment - - recommendati

on

nonCoherentAtomSize - 256 max

1

The Limit Type column indicates the limit is either the minimum limit all implementations

must support or the maximum limit all implementations must support. For bitmasks a

minimum limit is the least bits all implementations must set, but they may have additional bits

set beyond this minimum.

2

The maxPerStageResources must be at least the smallest of the following:

613

• the sum of the maxPerStageDescriptorUniformBuffers, maxPerStageDescriptorStorageBuffers,

maxPerStageDescriptorSampledImages, maxPerStageDescriptorStorageImages,

maxPerStageDescriptorInputAttachments, maxColorAttachments limits, or

• 128.

It may not be possible to reach this limit in every stage.

3

See maxViewportDimensions for the required relationship to other limits.

4

See viewportBoundsRange for the required relationship to other limits.

5

The values minInterpolationOffset and maxInterpolationOffset describe the closed interval of

supported interpolation offsets: [minInterpolationOffset, maxInterpolationOffset]. The ULP is

determined by subPixelInterpolationOffsetBits. If subPixelInterpolationOffsetBits is 4, this

provides increments of (1/2
4
) = 0.0625, and thus the range of supported interpolation offsets

would be [-0.5, 0.4375].

6

The point size ULP is determined by pointSizeGranularity. If the pointSizeGranularity is 0.125,

the range of supported point sizes must be at least [1.0, 63.875].

7

The line width ULP is determined by lineWidthGranularity. If the lineWidthGranularity is 0.0625,

the range of supported line widths must be at least [1.0, 7.9375].

8

The maxDescriptorSet* limit is n times the corresponding maxPerStageDescriptor* limit, where n is

the number of shader stages supported by the VkPhysicalDevice. If all shader stages are

supported, n = 6 (vertex, tessellation control, tessellation evaluation, geometry, fragment,

compute).

30.3. Formats

The features for the set of formats (VkFormat) supported by the implementation are queried

individually using the vkGetPhysicalDeviceFormatProperties command.

30.3.1. Format Definition

Image formats which can be passed to, and may be returned from Vulkan commands, are:

typedef enum VkFormat {

 VK_FORMAT_UNDEFINED = 0,

 VK_FORMAT_R4G4_UNORM_PACK8 = 1,

 VK_FORMAT_R4G4B4A4_UNORM_PACK16 = 2,

614

 VK_FORMAT_B4G4R4A4_UNORM_PACK16 = 3,

 VK_FORMAT_R5G6B5_UNORM_PACK16 = 4,

 VK_FORMAT_B5G6R5_UNORM_PACK16 = 5,

 VK_FORMAT_R5G5B5A1_UNORM_PACK16 = 6,

 VK_FORMAT_B5G5R5A1_UNORM_PACK16 = 7,

 VK_FORMAT_A1R5G5B5_UNORM_PACK16 = 8,

 VK_FORMAT_R8_UNORM = 9,

 VK_FORMAT_R8_SNORM = 10,

 VK_FORMAT_R8_USCALED = 11,

 VK_FORMAT_R8_SSCALED = 12,

 VK_FORMAT_R8_UINT = 13,

 VK_FORMAT_R8_SINT = 14,

 VK_FORMAT_R8_SRGB = 15,

 VK_FORMAT_R8G8_UNORM = 16,

 VK_FORMAT_R8G8_SNORM = 17,

 VK_FORMAT_R8G8_USCALED = 18,

 VK_FORMAT_R8G8_SSCALED = 19,

 VK_FORMAT_R8G8_UINT = 20,

 VK_FORMAT_R8G8_SINT = 21,

 VK_FORMAT_R8G8_SRGB = 22,

 VK_FORMAT_R8G8B8_UNORM = 23,

 VK_FORMAT_R8G8B8_SNORM = 24,

 VK_FORMAT_R8G8B8_USCALED = 25,

 VK_FORMAT_R8G8B8_SSCALED = 26,

 VK_FORMAT_R8G8B8_UINT = 27,

 VK_FORMAT_R8G8B8_SINT = 28,

 VK_FORMAT_R8G8B8_SRGB = 29,

 VK_FORMAT_B8G8R8_UNORM = 30,

 VK_FORMAT_B8G8R8_SNORM = 31,

 VK_FORMAT_B8G8R8_USCALED = 32,

 VK_FORMAT_B8G8R8_SSCALED = 33,

 VK_FORMAT_B8G8R8_UINT = 34,

 VK_FORMAT_B8G8R8_SINT = 35,

 VK_FORMAT_B8G8R8_SRGB = 36,

 VK_FORMAT_R8G8B8A8_UNORM = 37,

 VK_FORMAT_R8G8B8A8_SNORM = 38,

 VK_FORMAT_R8G8B8A8_USCALED = 39,

 VK_FORMAT_R8G8B8A8_SSCALED = 40,

 VK_FORMAT_R8G8B8A8_UINT = 41,

 VK_FORMAT_R8G8B8A8_SINT = 42,

 VK_FORMAT_R8G8B8A8_SRGB = 43,

 VK_FORMAT_B8G8R8A8_UNORM = 44,

 VK_FORMAT_B8G8R8A8_SNORM = 45,

 VK_FORMAT_B8G8R8A8_USCALED = 46,

 VK_FORMAT_B8G8R8A8_SSCALED = 47,

 VK_FORMAT_B8G8R8A8_UINT = 48,

 VK_FORMAT_B8G8R8A8_SINT = 49,

 VK_FORMAT_B8G8R8A8_SRGB = 50,

 VK_FORMAT_A8B8G8R8_UNORM_PACK32 = 51,

 VK_FORMAT_A8B8G8R8_SNORM_PACK32 = 52,

 VK_FORMAT_A8B8G8R8_USCALED_PACK32 = 53,

615

 VK_FORMAT_A8B8G8R8_SSCALED_PACK32 = 54,

 VK_FORMAT_A8B8G8R8_UINT_PACK32 = 55,

 VK_FORMAT_A8B8G8R8_SINT_PACK32 = 56,

 VK_FORMAT_A8B8G8R8_SRGB_PACK32 = 57,

 VK_FORMAT_A2R10G10B10_UNORM_PACK32 = 58,

 VK_FORMAT_A2R10G10B10_SNORM_PACK32 = 59,

 VK_FORMAT_A2R10G10B10_USCALED_PACK32 = 60,

 VK_FORMAT_A2R10G10B10_SSCALED_PACK32 = 61,

 VK_FORMAT_A2R10G10B10_UINT_PACK32 = 62,

 VK_FORMAT_A2R10G10B10_SINT_PACK32 = 63,

 VK_FORMAT_A2B10G10R10_UNORM_PACK32 = 64,

 VK_FORMAT_A2B10G10R10_SNORM_PACK32 = 65,

 VK_FORMAT_A2B10G10R10_USCALED_PACK32 = 66,

 VK_FORMAT_A2B10G10R10_SSCALED_PACK32 = 67,

 VK_FORMAT_A2B10G10R10_UINT_PACK32 = 68,

 VK_FORMAT_A2B10G10R10_SINT_PACK32 = 69,

 VK_FORMAT_R16_UNORM = 70,

 VK_FORMAT_R16_SNORM = 71,

 VK_FORMAT_R16_USCALED = 72,

 VK_FORMAT_R16_SSCALED = 73,

 VK_FORMAT_R16_UINT = 74,

 VK_FORMAT_R16_SINT = 75,

 VK_FORMAT_R16_SFLOAT = 76,

 VK_FORMAT_R16G16_UNORM = 77,

 VK_FORMAT_R16G16_SNORM = 78,

 VK_FORMAT_R16G16_USCALED = 79,

 VK_FORMAT_R16G16_SSCALED = 80,

 VK_FORMAT_R16G16_UINT = 81,

 VK_FORMAT_R16G16_SINT = 82,

 VK_FORMAT_R16G16_SFLOAT = 83,

 VK_FORMAT_R16G16B16_UNORM = 84,

 VK_FORMAT_R16G16B16_SNORM = 85,

 VK_FORMAT_R16G16B16_USCALED = 86,

 VK_FORMAT_R16G16B16_SSCALED = 87,

 VK_FORMAT_R16G16B16_UINT = 88,

 VK_FORMAT_R16G16B16_SINT = 89,

 VK_FORMAT_R16G16B16_SFLOAT = 90,

 VK_FORMAT_R16G16B16A16_UNORM = 91,

 VK_FORMAT_R16G16B16A16_SNORM = 92,

 VK_FORMAT_R16G16B16A16_USCALED = 93,

 VK_FORMAT_R16G16B16A16_SSCALED = 94,

 VK_FORMAT_R16G16B16A16_UINT = 95,

 VK_FORMAT_R16G16B16A16_SINT = 96,

 VK_FORMAT_R16G16B16A16_SFLOAT = 97,

 VK_FORMAT_R32_UINT = 98,

 VK_FORMAT_R32_SINT = 99,

 VK_FORMAT_R32_SFLOAT = 100,

 VK_FORMAT_R32G32_UINT = 101,

 VK_FORMAT_R32G32_SINT = 102,

 VK_FORMAT_R32G32_SFLOAT = 103,

 VK_FORMAT_R32G32B32_UINT = 104,

616

 VK_FORMAT_R32G32B32_SINT = 105,

 VK_FORMAT_R32G32B32_SFLOAT = 106,

 VK_FORMAT_R32G32B32A32_UINT = 107,

 VK_FORMAT_R32G32B32A32_SINT = 108,

 VK_FORMAT_R32G32B32A32_SFLOAT = 109,

 VK_FORMAT_R64_UINT = 110,

 VK_FORMAT_R64_SINT = 111,

 VK_FORMAT_R64_SFLOAT = 112,

 VK_FORMAT_R64G64_UINT = 113,

 VK_FORMAT_R64G64_SINT = 114,

 VK_FORMAT_R64G64_SFLOAT = 115,

 VK_FORMAT_R64G64B64_UINT = 116,

 VK_FORMAT_R64G64B64_SINT = 117,

 VK_FORMAT_R64G64B64_SFLOAT = 118,

 VK_FORMAT_R64G64B64A64_UINT = 119,

 VK_FORMAT_R64G64B64A64_SINT = 120,

 VK_FORMAT_R64G64B64A64_SFLOAT = 121,

 VK_FORMAT_B10G11R11_UFLOAT_PACK32 = 122,

 VK_FORMAT_E5B9G9R9_UFLOAT_PACK32 = 123,

 VK_FORMAT_D16_UNORM = 124,

 VK_FORMAT_X8_D24_UNORM_PACK32 = 125,

 VK_FORMAT_D32_SFLOAT = 126,

 VK_FORMAT_S8_UINT = 127,

 VK_FORMAT_D16_UNORM_S8_UINT = 128,

 VK_FORMAT_D24_UNORM_S8_UINT = 129,

 VK_FORMAT_D32_SFLOAT_S8_UINT = 130,

 VK_FORMAT_BC1_RGB_UNORM_BLOCK = 131,

 VK_FORMAT_BC1_RGB_SRGB_BLOCK = 132,

 VK_FORMAT_BC1_RGBA_UNORM_BLOCK = 133,

 VK_FORMAT_BC1_RGBA_SRGB_BLOCK = 134,

 VK_FORMAT_BC2_UNORM_BLOCK = 135,

 VK_FORMAT_BC2_SRGB_BLOCK = 136,

 VK_FORMAT_BC3_UNORM_BLOCK = 137,

 VK_FORMAT_BC3_SRGB_BLOCK = 138,

 VK_FORMAT_BC4_UNORM_BLOCK = 139,

 VK_FORMAT_BC4_SNORM_BLOCK = 140,

 VK_FORMAT_BC5_UNORM_BLOCK = 141,

 VK_FORMAT_BC5_SNORM_BLOCK = 142,

 VK_FORMAT_BC6H_UFLOAT_BLOCK = 143,

 VK_FORMAT_BC6H_SFLOAT_BLOCK = 144,

 VK_FORMAT_BC7_UNORM_BLOCK = 145,

 VK_FORMAT_BC7_SRGB_BLOCK = 146,

 VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK = 147,

 VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK = 148,

 VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK = 149,

 VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK = 150,

 VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK = 151,

 VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK = 152,

 VK_FORMAT_EAC_R11_UNORM_BLOCK = 153,

 VK_FORMAT_EAC_R11_SNORM_BLOCK = 154,

 VK_FORMAT_EAC_R11G11_UNORM_BLOCK = 155,

617

 VK_FORMAT_EAC_R11G11_SNORM_BLOCK = 156,

 VK_FORMAT_ASTC_4x4_UNORM_BLOCK = 157,

 VK_FORMAT_ASTC_4x4_SRGB_BLOCK = 158,

 VK_FORMAT_ASTC_5x4_UNORM_BLOCK = 159,

 VK_FORMAT_ASTC_5x4_SRGB_BLOCK = 160,

 VK_FORMAT_ASTC_5x5_UNORM_BLOCK = 161,

 VK_FORMAT_ASTC_5x5_SRGB_BLOCK = 162,

 VK_FORMAT_ASTC_6x5_UNORM_BLOCK = 163,

 VK_FORMAT_ASTC_6x5_SRGB_BLOCK = 164,

 VK_FORMAT_ASTC_6x6_UNORM_BLOCK = 165,

 VK_FORMAT_ASTC_6x6_SRGB_BLOCK = 166,

 VK_FORMAT_ASTC_8x5_UNORM_BLOCK = 167,

 VK_FORMAT_ASTC_8x5_SRGB_BLOCK = 168,

 VK_FORMAT_ASTC_8x6_UNORM_BLOCK = 169,

 VK_FORMAT_ASTC_8x6_SRGB_BLOCK = 170,

 VK_FORMAT_ASTC_8x8_UNORM_BLOCK = 171,

 VK_FORMAT_ASTC_8x8_SRGB_BLOCK = 172,

 VK_FORMAT_ASTC_10x5_UNORM_BLOCK = 173,

 VK_FORMAT_ASTC_10x5_SRGB_BLOCK = 174,

 VK_FORMAT_ASTC_10x6_UNORM_BLOCK = 175,

 VK_FORMAT_ASTC_10x6_SRGB_BLOCK = 176,

 VK_FORMAT_ASTC_10x8_UNORM_BLOCK = 177,

 VK_FORMAT_ASTC_10x8_SRGB_BLOCK = 178,

 VK_FORMAT_ASTC_10x10_UNORM_BLOCK = 179,

 VK_FORMAT_ASTC_10x10_SRGB_BLOCK = 180,

 VK_FORMAT_ASTC_12x10_UNORM_BLOCK = 181,

 VK_FORMAT_ASTC_12x10_SRGB_BLOCK = 182,

 VK_FORMAT_ASTC_12x12_UNORM_BLOCK = 183,

 VK_FORMAT_ASTC_12x12_SRGB_BLOCK = 184,

} VkFormat;

• VK_FORMAT_UNDEFINED indicates that the format is not specified.

• VK_FORMAT_R4G4_UNORM_PACK8 specifies a two-component, 8-bit packed unsigned normalized

format that has a 4-bit R component in bits 4..7, and a 4-bit G component in bits 0..3.

• VK_FORMAT_R4G4B4A4_UNORM_PACK16 specifies a four-component, 16-bit packed unsigned

normalized format that has a 4-bit R component in bits 12..15, a 4-bit G component in bits 8..11,

a 4-bit B component in bits 4..7, and a 4-bit A component in bits 0..3.

• VK_FORMAT_B4G4R4A4_UNORM_PACK16 specifies a four-component, 16-bit packed unsigned

normalized format that has a 4-bit B component in bits 12..15, a 4-bit G component in bits 8..11,

a 4-bit R component in bits 4..7, and a 4-bit A component in bits 0..3.

• VK_FORMAT_R5G6B5_UNORM_PACK16 specifies a three-component, 16-bit packed unsigned normalized

format that has a 5-bit R component in bits 11..15, a 6-bit G component in bits 5..10, and a 5-bit B

component in bits 0..4.

• VK_FORMAT_B5G6R5_UNORM_PACK16 specifies a three-component, 16-bit packed unsigned normalized

format that has a 5-bit B component in bits 11..15, a 6-bit G component in bits 5..10, and a 5-bit R

component in bits 0..4.

• VK_FORMAT_R5G5B5A1_UNORM_PACK16 specifies a four-component, 16-bit packed unsigned

618

normalized format that has a 5-bit R component in bits 11..15, a 5-bit G component in bits 6..10,

a 5-bit B component in bits 1..5, and a 1-bit A component in bit 0.

• VK_FORMAT_B5G5R5A1_UNORM_PACK16 specifies a four-component, 16-bit packed unsigned

normalized format that has a 5-bit B component in bits 11..15, a 5-bit G component in bits 6..10,

a 5-bit R component in bits 1..5, and a 1-bit A component in bit 0.

• VK_FORMAT_A1R5G5B5_UNORM_PACK16 specifies a four-component, 16-bit packed unsigned

normalized format that has a 1-bit A component in bit 15, a 5-bit R component in bits 10..14, a 5-

bit G component in bits 5..9, and a 5-bit B component in bits 0..4.

• VK_FORMAT_R8_UNORM specifies a one-component, 8-bit unsigned normalized format that has a

single 8-bit R component.

• VK_FORMAT_R8_SNORM specifies a one-component, 8-bit signed normalized format that has a single

8-bit R component.

• VK_FORMAT_R8_USCALED specifies a one-component, 8-bit unsigned scaled integer format that has a

single 8-bit R component.

• VK_FORMAT_R8_SSCALED specifies a one-component, 8-bit signed scaled integer format that has a

single 8-bit R component.

• VK_FORMAT_R8_UINT specifies a one-component, 8-bit unsigned integer format that has a single 8-

bit R component.

• VK_FORMAT_R8_SINT specifies a one-component, 8-bit signed integer format that has a single 8-bit

R component.

• VK_FORMAT_R8_SRGB specifies a one-component, 8-bit unsigned normalized format that has a

single 8-bit R component stored with sRGB nonlinear encoding.

• VK_FORMAT_R8G8_UNORM specifies a two-component, 16-bit unsigned normalized format that has an

8-bit R component in byte 0, and an 8-bit G component in byte 1.

• VK_FORMAT_R8G8_SNORM specifies a two-component, 16-bit signed normalized format that has an 8-

bit R component in byte 0, and an 8-bit G component in byte 1.

• VK_FORMAT_R8G8_USCALED specifies a two-component, 16-bit unsigned scaled integer format that

has an 8-bit R component in byte 0, and an 8-bit G component in byte 1.

• VK_FORMAT_R8G8_SSCALED specifies a two-component, 16-bit signed scaled integer format that has

an 8-bit R component in byte 0, and an 8-bit G component in byte 1.

• VK_FORMAT_R8G8_UINT specifies a two-component, 16-bit unsigned integer format that has an 8-bit

R component in byte 0, and an 8-bit G component in byte 1.

• VK_FORMAT_R8G8_SINT specifies a two-component, 16-bit signed integer format that has an 8-bit R

component in byte 0, and an 8-bit G component in byte 1.

• VK_FORMAT_R8G8_SRGB specifies a two-component, 16-bit unsigned normalized format that has an

8-bit R component stored with sRGB nonlinear encoding in byte 0, and an 8-bit G component

stored with sRGB nonlinear encoding in byte 1.

• VK_FORMAT_R8G8B8_UNORM specifies a three-component, 24-bit unsigned normalized format that

has an 8-bit R component in byte 0, an 8-bit G component in byte 1, and an 8-bit B component in

byte 2.

• VK_FORMAT_R8G8B8_SNORM specifies a three-component, 24-bit signed normalized format that has

619

an 8-bit R component in byte 0, an 8-bit G component in byte 1, and an 8-bit B component in

byte 2.

• VK_FORMAT_R8G8B8_USCALED specifies a three-component, 24-bit unsigned scaled format that has an

8-bit R component in byte 0, an 8-bit G component in byte 1, and an 8-bit B component in byte 2.

• VK_FORMAT_R8G8B8_SSCALED specifies a three-component, 24-bit signed scaled format that has an 8-

bit R component in byte 0, an 8-bit G component in byte 1, and an 8-bit B component in byte 2.

• VK_FORMAT_R8G8B8_UINT specifies a three-component, 24-bit unsigned integer format that has an

8-bit R component in byte 0, an 8-bit G component in byte 1, and an 8-bit B component in byte 2.

• VK_FORMAT_R8G8B8_SINT specifies a three-component, 24-bit signed integer format that has an 8-

bit R component in byte 0, an 8-bit G component in byte 1, and an 8-bit B component in byte 2.

• VK_FORMAT_R8G8B8_SRGB specifies a three-component, 24-bit unsigned normalized format that has

an 8-bit R component stored with sRGB nonlinear encoding in byte 0, an 8-bit G component

stored with sRGB nonlinear encoding in byte 1, and an 8-bit B component stored with sRGB

nonlinear encoding in byte 2.

• VK_FORMAT_B8G8R8_UNORM specifies a three-component, 24-bit unsigned normalized format that

has an 8-bit B component in byte 0, an 8-bit G component in byte 1, and an 8-bit R component in

byte 2.

• VK_FORMAT_B8G8R8_SNORM specifies a three-component, 24-bit signed normalized format that has

an 8-bit B component in byte 0, an 8-bit G component in byte 1, and an 8-bit R component in

byte 2.

• VK_FORMAT_B8G8R8_USCALED specifies a three-component, 24-bit unsigned scaled format that has an

8-bit B component in byte 0, an 8-bit G component in byte 1, and an 8-bit R component in byte 2.

• VK_FORMAT_B8G8R8_SSCALED specifies a three-component, 24-bit signed scaled format that has an 8-

bit B component in byte 0, an 8-bit G component in byte 1, and an 8-bit R component in byte 2.

• VK_FORMAT_B8G8R8_UINT specifies a three-component, 24-bit unsigned integer format that has an

8-bit B component in byte 0, an 8-bit G component in byte 1, and an 8-bit R component in byte 2.

• VK_FORMAT_B8G8R8_SINT specifies a three-component, 24-bit signed integer format that has an 8-

bit B component in byte 0, an 8-bit G component in byte 1, and an 8-bit R component in byte 2.

• VK_FORMAT_B8G8R8_SRGB specifies a three-component, 24-bit unsigned normalized format that has

an 8-bit B component stored with sRGB nonlinear encoding in byte 0, an 8-bit G component

stored with sRGB nonlinear encoding in byte 1, and an 8-bit R component stored with sRGB

nonlinear encoding in byte 2.

• VK_FORMAT_R8G8B8A8_UNORM specifies a four-component, 32-bit unsigned normalized format that

has an 8-bit R component in byte 0, an 8-bit G component in byte 1, an 8-bit B component in byte

2, and an 8-bit A component in byte 3.

• VK_FORMAT_R8G8B8A8_SNORM specifies a four-component, 32-bit signed normalized format that has

an 8-bit R component in byte 0, an 8-bit G component in byte 1, an 8-bit B component in byte 2,

and an 8-bit A component in byte 3.

• VK_FORMAT_R8G8B8A8_USCALED specifies a four-component, 32-bit unsigned scaled format that has

an 8-bit R component in byte 0, an 8-bit G component in byte 1, an 8-bit B component in byte 2,

and an 8-bit A component in byte 3.

• VK_FORMAT_R8G8B8A8_SSCALED specifies a four-component, 32-bit signed scaled format that has an

620

8-bit R component in byte 0, an 8-bit G component in byte 1, an 8-bit B component in byte 2, and

an 8-bit A component in byte 3.

• VK_FORMAT_R8G8B8A8_UINT specifies a four-component, 32-bit unsigned integer format that has an

8-bit R component in byte 0, an 8-bit G component in byte 1, an 8-bit B component in byte 2, and

an 8-bit A component in byte 3.

• VK_FORMAT_R8G8B8A8_SINT specifies a four-component, 32-bit signed integer format that has an 8-

bit R component in byte 0, an 8-bit G component in byte 1, an 8-bit B component in byte 2, and

an 8-bit A component in byte 3.

• VK_FORMAT_R8G8B8A8_SRGB specifies a four-component, 32-bit unsigned normalized format that

has an 8-bit R component stored with sRGB nonlinear encoding in byte 0, an 8-bit G component

stored with sRGB nonlinear encoding in byte 1, an 8-bit B component stored with sRGB

nonlinear encoding in byte 2, and an 8-bit A component in byte 3.

• VK_FORMAT_B8G8R8A8_UNORM specifies a four-component, 32-bit unsigned normalized format that

has an 8-bit B component in byte 0, an 8-bit G component in byte 1, an 8-bit R component in byte

2, and an 8-bit A component in byte 3.

• VK_FORMAT_B8G8R8A8_SNORM specifies a four-component, 32-bit signed normalized format that has

an 8-bit B component in byte 0, an 8-bit G component in byte 1, an 8-bit R component in byte 2,

and an 8-bit A component in byte 3.

• VK_FORMAT_B8G8R8A8_USCALED specifies a four-component, 32-bit unsigned scaled format that has

an 8-bit B component in byte 0, an 8-bit G component in byte 1, an 8-bit R component in byte 2,

and an 8-bit A component in byte 3.

• VK_FORMAT_B8G8R8A8_SSCALED specifies a four-component, 32-bit signed scaled format that has an

8-bit B component in byte 0, an 8-bit G component in byte 1, an 8-bit R component in byte 2, and

an 8-bit A component in byte 3.

• VK_FORMAT_B8G8R8A8_UINT specifies a four-component, 32-bit unsigned integer format that has an

8-bit B component in byte 0, an 8-bit G component in byte 1, an 8-bit R component in byte 2, and

an 8-bit A component in byte 3.

• VK_FORMAT_B8G8R8A8_SINT specifies a four-component, 32-bit signed integer format that has an 8-

bit B component in byte 0, an 8-bit G component in byte 1, an 8-bit R component in byte 2, and

an 8-bit A component in byte 3.

• VK_FORMAT_B8G8R8A8_SRGB specifies a four-component, 32-bit unsigned normalized format that

has an 8-bit B component stored with sRGB nonlinear encoding in byte 0, an 8-bit G component

stored with sRGB nonlinear encoding in byte 1, an 8-bit R component stored with sRGB

nonlinear encoding in byte 2, and an 8-bit A component in byte 3.

• VK_FORMAT_A8B8G8R8_UNORM_PACK32 specifies a four-component, 32-bit packed unsigned

normalized format that has an 8-bit A component in bits 24..31, an 8-bit B component in bits

16..23, an 8-bit G component in bits 8..15, and an 8-bit R component in bits 0..7.

• VK_FORMAT_A8B8G8R8_SNORM_PACK32 specifies a four-component, 32-bit packed signed normalized

format that has an 8-bit A component in bits 24..31, an 8-bit B component in bits 16..23, an 8-bit

G component in bits 8..15, and an 8-bit R component in bits 0..7.

• VK_FORMAT_A8B8G8R8_USCALED_PACK32 specifies a four-component, 32-bit packed unsigned scaled

integer format that has an 8-bit A component in bits 24..31, an 8-bit B component in bits 16..23,

an 8-bit G component in bits 8..15, and an 8-bit R component in bits 0..7.

621

• VK_FORMAT_A8B8G8R8_SSCALED_PACK32 specifies a four-component, 32-bit packed signed scaled

integer format that has an 8-bit A component in bits 24..31, an 8-bit B component in bits 16..23,

an 8-bit G component in bits 8..15, and an 8-bit R component in bits 0..7.

• VK_FORMAT_A8B8G8R8_UINT_PACK32 specifies a four-component, 32-bit packed unsigned integer

format that has an 8-bit A component in bits 24..31, an 8-bit B component in bits 16..23, an 8-bit

G component in bits 8..15, and an 8-bit R component in bits 0..7.

• VK_FORMAT_A8B8G8R8_SINT_PACK32 specifies a four-component, 32-bit packed signed integer format

that has an 8-bit A component in bits 24..31, an 8-bit B component in bits 16..23, an 8-bit G

component in bits 8..15, and an 8-bit R component in bits 0..7.

• VK_FORMAT_A8B8G8R8_SRGB_PACK32 specifies a four-component, 32-bit packed unsigned normalized

format that has an 8-bit A component in bits 24..31, an 8-bit B component stored with sRGB

nonlinear encoding in bits 16..23, an 8-bit G component stored with sRGB nonlinear encoding in

bits 8..15, and an 8-bit R component stored with sRGB nonlinear encoding in bits 0..7.

• VK_FORMAT_A2R10G10B10_UNORM_PACK32 specifies a four-component, 32-bit packed unsigned

normalized format that has a 2-bit A component in bits 30..31, a 10-bit R component in bits

20..29, a 10-bit G component in bits 10..19, and a 10-bit B component in bits 0..9.

• VK_FORMAT_A2R10G10B10_SNORM_PACK32 specifies a four-component, 32-bit packed signed

normalized format that has a 2-bit A component in bits 30..31, a 10-bit R component in bits

20..29, a 10-bit G component in bits 10..19, and a 10-bit B component in bits 0..9.

• VK_FORMAT_A2R10G10B10_USCALED_PACK32 specifies a four-component, 32-bit packed unsigned

scaled integer format that has a 2-bit A component in bits 30..31, a 10-bit R component in bits

20..29, a 10-bit G component in bits 10..19, and a 10-bit B component in bits 0..9.

• VK_FORMAT_A2R10G10B10_SSCALED_PACK32 specifies a four-component, 32-bit packed signed scaled

integer format that has a 2-bit A component in bits 30..31, a 10-bit R component in bits 20..29, a

10-bit G component in bits 10..19, and a 10-bit B component in bits 0..9.

• VK_FORMAT_A2R10G10B10_UINT_PACK32 specifies a four-component, 32-bit packed unsigned integer

format that has a 2-bit A component in bits 30..31, a 10-bit R component in bits 20..29, a 10-bit G

component in bits 10..19, and a 10-bit B component in bits 0..9.

• VK_FORMAT_A2R10G10B10_SINT_PACK32 specifies a four-component, 32-bit packed signed integer

format that has a 2-bit A component in bits 30..31, a 10-bit R component in bits 20..29, a 10-bit G

component in bits 10..19, and a 10-bit B component in bits 0..9.

• VK_FORMAT_A2B10G10R10_UNORM_PACK32 specifies a four-component, 32-bit packed unsigned

normalized format that has a 2-bit A component in bits 30..31, a 10-bit B component in bits

20..29, a 10-bit G component in bits 10..19, and a 10-bit R component in bits 0..9.

• VK_FORMAT_A2B10G10R10_SNORM_PACK32 specifies a four-component, 32-bit packed signed

normalized format that has a 2-bit A component in bits 30..31, a 10-bit B component in bits

20..29, a 10-bit G component in bits 10..19, and a 10-bit R component in bits 0..9.

• VK_FORMAT_A2B10G10R10_USCALED_PACK32 specifies a four-component, 32-bit packed unsigned

scaled integer format that has a 2-bit A component in bits 30..31, a 10-bit B component in bits

20..29, a 10-bit G component in bits 10..19, and a 10-bit R component in bits 0..9.

• VK_FORMAT_A2B10G10R10_SSCALED_PACK32 specifies a four-component, 32-bit packed signed scaled

integer format that has a 2-bit A component in bits 30..31, a 10-bit B component in bits 20..29, a

10-bit G component in bits 10..19, and a 10-bit R component in bits 0..9.

622

• VK_FORMAT_A2B10G10R10_UINT_PACK32 specifies a four-component, 32-bit packed unsigned integer

format that has a 2-bit A component in bits 30..31, a 10-bit B component in bits 20..29, a 10-bit G

component in bits 10..19, and a 10-bit R component in bits 0..9.

• VK_FORMAT_A2B10G10R10_SINT_PACK32 specifies a four-component, 32-bit packed signed integer

format that has a 2-bit A component in bits 30..31, a 10-bit B component in bits 20..29, a 10-bit G

component in bits 10..19, and a 10-bit R component in bits 0..9.

• VK_FORMAT_R16_UNORM specifies a one-component, 16-bit unsigned normalized format that has a

single 16-bit R component.

• VK_FORMAT_R16_SNORM specifies a one-component, 16-bit signed normalized format that has a

single 16-bit R component.

• VK_FORMAT_R16_USCALED specifies a one-component, 16-bit unsigned scaled integer format that has

a single 16-bit R component.

• VK_FORMAT_R16_SSCALED specifies a one-component, 16-bit signed scaled integer format that has a

single 16-bit R component.

• VK_FORMAT_R16_UINT specifies a one-component, 16-bit unsigned integer format that has a single

16-bit R component.

• VK_FORMAT_R16_SINT specifies a one-component, 16-bit signed integer format that has a single 16-

bit R component.

• VK_FORMAT_R16_SFLOAT specifies a one-component, 16-bit signed floating-point format that has a

single 16-bit R component.

• VK_FORMAT_R16G16_UNORM specifies a two-component, 32-bit unsigned normalized format that has

a 16-bit R component in bytes 0..1, and a 16-bit G component in bytes 2..3.

• VK_FORMAT_R16G16_SNORM specifies a two-component, 32-bit signed normalized format that has a

16-bit R component in bytes 0..1, and a 16-bit G component in bytes 2..3.

• VK_FORMAT_R16G16_USCALED specifies a two-component, 32-bit unsigned scaled integer format that

has a 16-bit R component in bytes 0..1, and a 16-bit G component in bytes 2..3.

• VK_FORMAT_R16G16_SSCALED specifies a two-component, 32-bit signed scaled integer format that

has a 16-bit R component in bytes 0..1, and a 16-bit G component in bytes 2..3.

• VK_FORMAT_R16G16_UINT specifies a two-component, 32-bit unsigned integer format that has a 16-

bit R component in bytes 0..1, and a 16-bit G component in bytes 2..3.

• VK_FORMAT_R16G16_SINT specifies a two-component, 32-bit signed integer format that has a 16-bit

R component in bytes 0..1, and a 16-bit G component in bytes 2..3.

• VK_FORMAT_R16G16_SFLOAT specifies a two-component, 32-bit signed floating-point format that has

a 16-bit R component in bytes 0..1, and a 16-bit G component in bytes 2..3.

• VK_FORMAT_R16G16B16_UNORM specifies a three-component, 48-bit unsigned normalized format that

has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, and a 16-bit B

component in bytes 4..5.

• VK_FORMAT_R16G16B16_SNORM specifies a three-component, 48-bit signed normalized format that

has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, and a 16-bit B

component in bytes 4..5.

• VK_FORMAT_R16G16B16_USCALED specifies a three-component, 48-bit unsigned scaled integer format

623

that has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, and a 16-bit B

component in bytes 4..5.

• VK_FORMAT_R16G16B16_SSCALED specifies a three-component, 48-bit signed scaled integer format

that has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, and a 16-bit B

component in bytes 4..5.

• VK_FORMAT_R16G16B16_UINT specifies a three-component, 48-bit unsigned integer format that has a

16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, and a 16-bit B component in

bytes 4..5.

• VK_FORMAT_R16G16B16_SINT specifies a three-component, 48-bit signed integer format that has a

16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, and a 16-bit B component in

bytes 4..5.

• VK_FORMAT_R16G16B16_SFLOAT specifies a three-component, 48-bit signed floating-point format that

has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, and a 16-bit B

component in bytes 4..5.

• VK_FORMAT_R16G16B16A16_UNORM specifies a four-component, 64-bit unsigned normalized format

that has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, a 16-bit B

component in bytes 4..5, and a 16-bit A component in bytes 6..7.

• VK_FORMAT_R16G16B16A16_SNORM specifies a four-component, 64-bit signed normalized format that

has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, a 16-bit B component

in bytes 4..5, and a 16-bit A component in bytes 6..7.

• VK_FORMAT_R16G16B16A16_USCALED specifies a four-component, 64-bit unsigned scaled integer

format that has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, a 16-bit B

component in bytes 4..5, and a 16-bit A component in bytes 6..7.

• VK_FORMAT_R16G16B16A16_SSCALED specifies a four-component, 64-bit signed scaled integer format

that has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, a 16-bit B

component in bytes 4..5, and a 16-bit A component in bytes 6..7.

• VK_FORMAT_R16G16B16A16_UINT specifies a four-component, 64-bit unsigned integer format that has

a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, a 16-bit B component in

bytes 4..5, and a 16-bit A component in bytes 6..7.

• VK_FORMAT_R16G16B16A16_SINT specifies a four-component, 64-bit signed integer format that has a

16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, a 16-bit B component in

bytes 4..5, and a 16-bit A component in bytes 6..7.

• VK_FORMAT_R16G16B16A16_SFLOAT specifies a four-component, 64-bit signed floating-point format

that has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, a 16-bit B

component in bytes 4..5, and a 16-bit A component in bytes 6..7.

• VK_FORMAT_R32_UINT specifies a one-component, 32-bit unsigned integer format that has a single

32-bit R component.

• VK_FORMAT_R32_SINT specifies a one-component, 32-bit signed integer format that has a single 32-

bit R component.

• VK_FORMAT_R32_SFLOAT specifies a one-component, 32-bit signed floating-point format that has a

single 32-bit R component.

• VK_FORMAT_R32G32_UINT specifies a two-component, 64-bit unsigned integer format that has a 32-

624

bit R component in bytes 0..3, and a 32-bit G component in bytes 4..7.

• VK_FORMAT_R32G32_SINT specifies a two-component, 64-bit signed integer format that has a 32-bit

R component in bytes 0..3, and a 32-bit G component in bytes 4..7.

• VK_FORMAT_R32G32_SFLOAT specifies a two-component, 64-bit signed floating-point format that has

a 32-bit R component in bytes 0..3, and a 32-bit G component in bytes 4..7.

• VK_FORMAT_R32G32B32_UINT specifies a three-component, 96-bit unsigned integer format that has a

32-bit R component in bytes 0..3, a 32-bit G component in bytes 4..7, and a 32-bit B component in

bytes 8..11.

• VK_FORMAT_R32G32B32_SINT specifies a three-component, 96-bit signed integer format that has a

32-bit R component in bytes 0..3, a 32-bit G component in bytes 4..7, and a 32-bit B component in

bytes 8..11.

• VK_FORMAT_R32G32B32_SFLOAT specifies a three-component, 96-bit signed floating-point format that

has a 32-bit R component in bytes 0..3, a 32-bit G component in bytes 4..7, and a 32-bit B

component in bytes 8..11.

• VK_FORMAT_R32G32B32A32_UINT specifies a four-component, 128-bit unsigned integer format that

has a 32-bit R component in bytes 0..3, a 32-bit G component in bytes 4..7, a 32-bit B component

in bytes 8..11, and a 32-bit A component in bytes 12..15.

• VK_FORMAT_R32G32B32A32_SINT specifies a four-component, 128-bit signed integer format that has

a 32-bit R component in bytes 0..3, a 32-bit G component in bytes 4..7, a 32-bit B component in

bytes 8..11, and a 32-bit A component in bytes 12..15.

• VK_FORMAT_R32G32B32A32_SFLOAT specifies a four-component, 128-bit signed floating-point format

that has a 32-bit R component in bytes 0..3, a 32-bit G component in bytes 4..7, a 32-bit B

component in bytes 8..11, and a 32-bit A component in bytes 12..15.

• VK_FORMAT_R64_UINT specifies a one-component, 64-bit unsigned integer format that has a single

64-bit R component.

• VK_FORMAT_R64_SINT specifies a one-component, 64-bit signed integer format that has a single 64-

bit R component.

• VK_FORMAT_R64_SFLOAT specifies a one-component, 64-bit signed floating-point format that has a

single 64-bit R component.

• VK_FORMAT_R64G64_UINT specifies a two-component, 128-bit unsigned integer format that has a 64-

bit R component in bytes 0..7, and a 64-bit G component in bytes 8..15.

• VK_FORMAT_R64G64_SINT specifies a two-component, 128-bit signed integer format that has a 64-bit

R component in bytes 0..7, and a 64-bit G component in bytes 8..15.

• VK_FORMAT_R64G64_SFLOAT specifies a two-component, 128-bit signed floating-point format that

has a 64-bit R component in bytes 0..7, and a 64-bit G component in bytes 8..15.

• VK_FORMAT_R64G64B64_UINT specifies a three-component, 192-bit unsigned integer format that has

a 64-bit R component in bytes 0..7, a 64-bit G component in bytes 8..15, and a 64-bit B component

in bytes 16..23.

• VK_FORMAT_R64G64B64_SINT specifies a three-component, 192-bit signed integer format that has a

64-bit R component in bytes 0..7, a 64-bit G component in bytes 8..15, and a 64-bit B component

in bytes 16..23.

625

• VK_FORMAT_R64G64B64_SFLOAT specifies a three-component, 192-bit signed floating-point format

that has a 64-bit R component in bytes 0..7, a 64-bit G component in bytes 8..15, and a 64-bit B

component in bytes 16..23.

• VK_FORMAT_R64G64B64A64_UINT specifies a four-component, 256-bit unsigned integer format that

has a 64-bit R component in bytes 0..7, a 64-bit G component in bytes 8..15, a 64-bit B component

in bytes 16..23, and a 64-bit A component in bytes 24..31.

• VK_FORMAT_R64G64B64A64_SINT specifies a four-component, 256-bit signed integer format that has

a 64-bit R component in bytes 0..7, a 64-bit G component in bytes 8..15, a 64-bit B component in

bytes 16..23, and a 64-bit A component in bytes 24..31.

• VK_FORMAT_R64G64B64A64_SFLOAT specifies a four-component, 256-bit signed floating-point format

that has a 64-bit R component in bytes 0..7, a 64-bit G component in bytes 8..15, a 64-bit B

component in bytes 16..23, and a 64-bit A component in bytes 24..31.

• VK_FORMAT_B10G11R11_UFLOAT_PACK32 specifies a three-component, 32-bit packed unsigned

floating-point format that has a 10-bit B component in bits 22..31, an 11-bit G component in bits

11..21, an 11-bit R component in bits 0..10. See Unsigned 10-Bit Floating-Point Numbers and

Unsigned 11-Bit Floating-Point Numbers.

• VK_FORMAT_E5B9G9R9_UFLOAT_PACK32 specifies a three-component, 32-bit packed unsigned floating-

point format that has a 5-bit shared exponent in bits 27..31, a 9-bit B component mantissa in bits

18..26, a 9-bit G component mantissa in bits 9..17, and a 9-bit R component mantissa in bits 0..8.

• VK_FORMAT_D16_UNORM specifies a one-component, 16-bit unsigned normalized format that has a

single 16-bit depth component.

• VK_FORMAT_X8_D24_UNORM_PACK32 specifies a two-component, 32-bit format that has 24 unsigned

normalized bits in the depth component and, optionally:, 8 bits that are unused.

• VK_FORMAT_D32_SFLOAT specifies a one-component, 32-bit signed floating-point format that has 32-

bits in the depth component.

• VK_FORMAT_S8_UINT specifies a one-component, 8-bit unsigned integer format that has 8-bits in the

stencil component.

• VK_FORMAT_D16_UNORM_S8_UINT specifies a two-component, 24-bit format that has 16 unsigned

normalized bits in the depth component and 8 unsigned integer bits in the stencil component.

• VK_FORMAT_D24_UNORM_S8_UINT specifies a two-component, 32-bit packed format that has 8

unsigned integer bits in the stencil component, and 24 unsigned normalized bits in the depth

component.

• VK_FORMAT_D32_SFLOAT_S8_UINT specifies a two-component format that has 32 signed float bits in

the depth component and 8 unsigned integer bits in the stencil component. There are

optionally: 24-bits that are unused.

• VK_FORMAT_BC1_RGB_UNORM_BLOCK specifies a three-component, block-compressed format where

each 64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGB texel

data. This format has no alpha and is considered opaque.

• VK_FORMAT_BC1_RGB_SRGB_BLOCK specifies a three-component, block-compressed format where

each 64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGB texel

data with sRGB nonlinear encoding. This format has no alpha and is considered opaque.

• VK_FORMAT_BC1_RGBA_UNORM_BLOCK specifies a four-component, block-compressed format where

626

each 64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGB texel

data, and provides 1 bit of alpha.

• VK_FORMAT_BC1_RGBA_SRGB_BLOCK specifies a four-component, block-compressed format where

each 64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGB texel

data with sRGB nonlinear encoding, and provides 1 bit of alpha.

• VK_FORMAT_BC2_UNORM_BLOCK specifies a four-component, block-compressed format where each

128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGBA texel data

with the first 64 bits encoding alpha values followed by 64 bits encoding RGB values.

• VK_FORMAT_BC2_SRGB_BLOCK specifies a four-component, block-compressed format where each

128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGBA texel data

with the first 64 bits encoding alpha values followed by 64 bits encoding RGB values with sRGB

nonlinear encoding.

• VK_FORMAT_BC3_UNORM_BLOCK specifies a four-component, block-compressed format where each

128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGBA texel data

with the first 64 bits encoding alpha values followed by 64 bits encoding RGB values.

• VK_FORMAT_BC3_SRGB_BLOCK specifies a four-component, block-compressed format where each

128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGBA texel data

with the first 64 bits encoding alpha values followed by 64 bits encoding RGB values with sRGB

nonlinear encoding.

• VK_FORMAT_BC4_UNORM_BLOCK specifies a one-component, block-compressed format where each 64-

bit compressed texel block encodes a 4×4 rectangle of unsigned normalized red texel data.

• VK_FORMAT_BC4_SNORM_BLOCK specifies a one-component, block-compressed format where each 64-

bit compressed texel block encodes a 4×4 rectangle of signed normalized red texel data.

• VK_FORMAT_BC5_UNORM_BLOCK specifies a two-component, block-compressed format where each

128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RG texel data

with the first 64 bits encoding red values followed by 64 bits encoding green values.

• VK_FORMAT_BC5_SNORM_BLOCK specifies a two-component, block-compressed format where each

128-bit compressed texel block encodes a 4×4 rectangle of signed normalized RG texel data with

the first 64 bits encoding red values followed by 64 bits encoding green values.

• VK_FORMAT_BC6H_UFLOAT_BLOCK specifies a three-component, block-compressed format where each

128-bit compressed texel block encodes a 4×4 rectangle of unsigned floating-point RGB texel

data.

• VK_FORMAT_BC6H_SFLOAT_BLOCK specifies a three-component, block-compressed format where each

128-bit compressed texel block encodes a 4×4 rectangle of signed floating-point RGB texel data.

• VK_FORMAT_BC7_UNORM_BLOCK specifies a four-component, block-compressed format where each

128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGBA texel

data.

• VK_FORMAT_BC7_SRGB_BLOCK specifies a four-component, block-compressed format where each

128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGBA texel data

with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK specifies a three-component, ETC2 compressed format

where each 64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGB

627

texel data. This format has no alpha and is considered opaque.

• VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK specifies a three-component, ETC2 compressed format where

each 64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGB texel

data with sRGB nonlinear encoding. This format has no alpha and is considered opaque.

• VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK specifies a four-component, ETC2 compressed format

where each 64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGB

texel data, and provides 1 bit of alpha.

• VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK specifies a four-component, ETC2 compressed format

where each 64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGB

texel data with sRGB nonlinear encoding, and provides 1 bit of alpha.

• VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK specifies a four-component, ETC2 compressed format

where each 128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized

RGBA texel data with the first 64 bits encoding alpha values followed by 64 bits encoding RGB

values.

• VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK specifies a four-component, ETC2 compressed format

where each 128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized

RGBA texel data with the first 64 bits encoding alpha values followed by 64 bits encoding RGB

values with sRGB nonlinear encoding applied.

• VK_FORMAT_EAC_R11_UNORM_BLOCK specifies a one-component, ETC2 compressed format where each

64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized red texel data.

• VK_FORMAT_EAC_R11_SNORM_BLOCK specifies a one-component, ETC2 compressed format where each

64-bit compressed texel block encodes a 4×4 rectangle of signed normalized red texel data.

• VK_FORMAT_EAC_R11G11_UNORM_BLOCK specifies a two-component, ETC2 compressed format where

each 128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RG texel

data with the first 64 bits encoding red values followed by 64 bits encoding green values.

• VK_FORMAT_EAC_R11G11_SNORM_BLOCK specifies a two-component, ETC2 compressed format where

each 128-bit compressed texel block encodes a 4×4 rectangle of signed normalized RG texel data

with the first 64 bits encoding red values followed by 64 bits encoding green values.

• VK_FORMAT_ASTC_4x4_UNORM_BLOCK specifies a four-component, ASTC compressed format where

each 128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGBA texel

data.

• VK_FORMAT_ASTC_4x4_SRGB_BLOCK specifies a four-component, ASTC compressed format where

each 128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGBA texel

data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_5x4_UNORM_BLOCK specifies a four-component, ASTC compressed format where

each 128-bit compressed texel block encodes a 5×4 rectangle of unsigned normalized RGBA texel

data.

• VK_FORMAT_ASTC_5x4_SRGB_BLOCK specifies a four-component, ASTC compressed format where

each 128-bit compressed texel block encodes a 5×4 rectangle of unsigned normalized RGBA texel

data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_5x5_UNORM_BLOCK specifies a four-component, ASTC compressed format where

each 128-bit compressed texel block encodes a 5×5 rectangle of unsigned normalized RGBA texel

628

data.

• VK_FORMAT_ASTC_5x5_SRGB_BLOCK specifies a four-component, ASTC compressed format where

each 128-bit compressed texel block encodes a 5×5 rectangle of unsigned normalized RGBA texel

data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_6x5_UNORM_BLOCK specifies a four-component, ASTC compressed format where

each 128-bit compressed texel block encodes a 6×5 rectangle of unsigned normalized RGBA texel

data.

• VK_FORMAT_ASTC_6x5_SRGB_BLOCK specifies a four-component, ASTC compressed format where

each 128-bit compressed texel block encodes a 6×5 rectangle of unsigned normalized RGBA texel

data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_6x6_UNORM_BLOCK specifies a four-component, ASTC compressed format where

each 128-bit compressed texel block encodes a 6×6 rectangle of unsigned normalized RGBA texel

data.

• VK_FORMAT_ASTC_6x6_SRGB_BLOCK specifies a four-component, ASTC compressed format where

each 128-bit compressed texel block encodes a 6×6 rectangle of unsigned normalized RGBA texel

data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_8x5_UNORM_BLOCK specifies a four-component, ASTC compressed format where

each 128-bit compressed texel block encodes an 8×5 rectangle of unsigned normalized RGBA

texel data.

• VK_FORMAT_ASTC_8x5_SRGB_BLOCK specifies a four-component, ASTC compressed format where

each 128-bit compressed texel block encodes an 8×5 rectangle of unsigned normalized RGBA

texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_8x6_UNORM_BLOCK specifies a four-component, ASTC compressed format where

each 128-bit compressed texel block encodes an 8×6 rectangle of unsigned normalized RGBA

texel data.

• VK_FORMAT_ASTC_8x6_SRGB_BLOCK specifies a four-component, ASTC compressed format where

each 128-bit compressed texel block encodes an 8×6 rectangle of unsigned normalized RGBA

texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_8x8_UNORM_BLOCK specifies a four-component, ASTC compressed format where

each 128-bit compressed texel block encodes an 8×8 rectangle of unsigned normalized RGBA

texel data.

• VK_FORMAT_ASTC_8x8_SRGB_BLOCK specifies a four-component, ASTC compressed format where

each 128-bit compressed texel block encodes an 8×8 rectangle of unsigned normalized RGBA

texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_10x5_UNORM_BLOCK specifies a four-component, ASTC compressed format where

each 128-bit compressed texel block encodes a 10×5 rectangle of unsigned normalized RGBA

texel data.

• VK_FORMAT_ASTC_10x5_SRGB_BLOCK specifies a four-component, ASTC compressed format where

each 128-bit compressed texel block encodes a 10×5 rectangle of unsigned normalized RGBA

texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_10x6_UNORM_BLOCK specifies a four-component, ASTC compressed format where

each 128-bit compressed texel block encodes a 10×6 rectangle of unsigned normalized RGBA

629

texel data.

• VK_FORMAT_ASTC_10x6_SRGB_BLOCK specifies a four-component, ASTC compressed format where

each 128-bit compressed texel block encodes a 10×6 rectangle of unsigned normalized RGBA

texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_10x8_UNORM_BLOCK specifies a four-component, ASTC compressed format where

each 128-bit compressed texel block encodes a 10×8 rectangle of unsigned normalized RGBA

texel data.

• VK_FORMAT_ASTC_10x8_SRGB_BLOCK specifies a four-component, ASTC compressed format where

each 128-bit compressed texel block encodes a 10×8 rectangle of unsigned normalized RGBA

texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_10x10_UNORM_BLOCK specifies a four-component, ASTC compressed format where

each 128-bit compressed texel block encodes a 10×10 rectangle of unsigned normalized RGBA

texel data.

• VK_FORMAT_ASTC_10x10_SRGB_BLOCK specifies a four-component, ASTC compressed format where

each 128-bit compressed texel block encodes a 10×10 rectangle of unsigned normalized RGBA

texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_12x10_UNORM_BLOCK specifies a four-component, ASTC compressed format where

each 128-bit compressed texel block encodes a 12×10 rectangle of unsigned normalized RGBA

texel data.

• VK_FORMAT_ASTC_12x10_SRGB_BLOCK specifies a four-component, ASTC compressed format where

each 128-bit compressed texel block encodes a 12×10 rectangle of unsigned normalized RGBA

texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_12x12_UNORM_BLOCK specifies a four-component, ASTC compressed format where

each 128-bit compressed texel block encodes a 12×12 rectangle of unsigned normalized RGBA

texel data.

• VK_FORMAT_ASTC_12x12_SRGB_BLOCK specifies a four-component, ASTC compressed format where

each 128-bit compressed texel block encodes a 12×12 rectangle of unsigned normalized RGBA

texel data with sRGB nonlinear encoding applied to the RGB components.

Packed Formats

For the purposes of address alignment when accessing buffer memory containing vertex attribute

or texel data, the following formats are considered packed - whole texels or attributes are stored in

a single data element, rather than individual components occupying a single data element:

• Packed into 8-bit data types:

◦ VK_FORMAT_R4G4_UNORM_PACK8

• Packed into 16-bit data types:

◦ VK_FORMAT_R4G4B4A4_UNORM_PACK16

◦ VK_FORMAT_B4G4R4A4_UNORM_PACK16

◦ VK_FORMAT_R5G6B5_UNORM_PACK16

◦ VK_FORMAT_B5G6R5_UNORM_PACK16

◦ VK_FORMAT_R5G5B5A1_UNORM_PACK16

630

◦ VK_FORMAT_B5G5R5A1_UNORM_PACK16

◦ VK_FORMAT_A1R5G5B5_UNORM_PACK16

• Packed into 32-bit data types:

◦ VK_FORMAT_A8B8G8R8_UNORM_PACK32

◦ VK_FORMAT_A8B8G8R8_SNORM_PACK32

◦ VK_FORMAT_A8B8G8R8_USCALED_PACK32

◦ VK_FORMAT_A8B8G8R8_SSCALED_PACK32

◦ VK_FORMAT_A8B8G8R8_UINT_PACK32

◦ VK_FORMAT_A8B8G8R8_SINT_PACK32

◦ VK_FORMAT_A8B8G8R8_SRGB_PACK32

◦ VK_FORMAT_A2R10G10B10_UNORM_PACK32

◦ VK_FORMAT_A2R10G10B10_SNORM_PACK32

◦ VK_FORMAT_A2R10G10B10_USCALED_PACK32

◦ VK_FORMAT_A2R10G10B10_SSCALED_PACK32

◦ VK_FORMAT_A2R10G10B10_UINT_PACK32

◦ VK_FORMAT_A2R10G10B10_SINT_PACK32

◦ VK_FORMAT_A2B10G10R10_UNORM_PACK32

◦ VK_FORMAT_A2B10G10R10_SNORM_PACK32

◦ VK_FORMAT_A2B10G10R10_USCALED_PACK32

◦ VK_FORMAT_A2B10G10R10_SSCALED_PACK32

◦ VK_FORMAT_A2B10G10R10_UINT_PACK32

◦ VK_FORMAT_A2B10G10R10_SINT_PACK32

◦ VK_FORMAT_B10G11R11_UFLOAT_PACK32

◦ VK_FORMAT_E5B9G9R9_UFLOAT_PACK32

◦ VK_FORMAT_X8_D24_UNORM_PACK32

Identification of Formats

A “format” is represented by a single enum value. The name of a format is usually built up by using

the following pattern:

etext:VK_FORMAT_{component-format|compression-scheme}_{numeric-format}

The component-format specifies either the size of the R, G, B, and A components (if they are

present) in the case of a color format, or the size of the depth (D) and stencil (S) components (if they

are present) in the case of a depth/stencil format (see below). An X indicates a component that is

unused, but may be present for padding.

631

Table 33. Interpretation of Numeric Format

Numeric

format

Description

UNORM The components are unsigned normalized values in the range [0,1]

SNORM The components are signed normalized values in the range [-1,1]

USCALED The components are unsigned integer values that get converted to floating-

point in the range [0,2
n
-1]

SSCALED The components are signed integer values that get converted to floating-point

in the range [-2
n-1

,2
n-1

-1]

UINT The components are unsigned integer values in the range [0,2
n
-1]

SINT The components are signed integer values in the range [-2
n-1

,2
n-1

-1]

UFLOAT The components are unsigned floating-point numbers (used by packed,

shared exponent, and some compressed formats)

SFLOAT The components are signed floating-point numbers

SRGB The R, G, and B components are unsigned normalized values that represent

values using sRGB nonlinear encoding, while the A component (if one exists)

is a regular unsigned normalized value

The suffix _PACKnn indicates that the format is packed into an underlying type with nn bits.

The suffix _BLOCK indicates that the format is a block-compressed format, with the representation of

multiple pixels encoded interdependently within a region.

Table 34. Interpretation of Compression Scheme

Compression

scheme

Description

BC Block Compression. See Block-Compressed Image Formats.

ETC2 Ericsson Texture Compression. See ETC Compressed Image Formats.

EAC ETC2 Alpha Compression. See ETC Compressed Image Formats.

ASTC Adaptive Scalable Texture Compression (LDR Profile). See ASTC Compressed

Image Formats.

Representation

Color formats must be represented in memory in exactly the form indicated by the format’s name.

This means that promoting one format to another with more bits per component and/or additional

components must not occur for color formats. Depth/stencil formats have more relaxed

requirements as discussed below. Each format has an element size, the number of bytes used to

stored one element or one compressed block, with the value of the element size listed in VkFormat.

The representation of non-packed formats is that the first component specified in the name of the

format is in the lowest memory addresses and the last component specified is in the highest

memory addresses. See Byte mappings for non-packed/compressed color formats. The in-memory

ordering of bytes within a component is determined by the host endianness.

632

Table 35. Byte mappings for non-packed/compressed color formats

0 1 2 3 4 5 6 7 8 9 1

0

1

1

1

2

1

3

1

4

1

5

← Byte

R VK_FORMAT_R8_*

R G VK_FORMAT_R8G8_*

R G B VK_FORMAT_R8G8B8_*

B G R VK_FORMAT_B8G8R8_*

R G B A VK_FORMAT_R8G8B8A8_*

B G R A VK_FORMAT_B8G8R8A8_*

R VK_FORMAT_R16_*

R G VK_FORMAT_R16G16_*

R G B VK_FORMAT_R16G16B16_*

R G B A VK_FORMAT_R16G16B16A16_*

R VK_FORMAT_R32_*

R G VK_FORMAT_R32G32_*

R G B VK_FORMAT_R32G32B32_*

R G B A VK_FORMAT_R32G32B32A32_*

R VK_FORMAT_R64_*

R G VK_FORMAT_R64G64_*

VK_FORMAT_R64G64B64_* as VK_FORMAT_R64G64_* but with B in bytes 16-23

VK_FORMAT_R64G64B64A64_* as VK_FORMAT_R64G64B64_* but with A in bytes 24-31

Packed formats store multiple components within one underlying type. The bit representation is

that the first component specified in the name of the format is in the most-significant bits and the

last component specified is in the least-significant bits of the underlying type. The in-memory

ordering of bytes comprising the underlying type is determined by the host endianness.

Table 36. Bit mappings for packed 8-bit formats

Bit

7 6 5 4 3 2 1 0

VK_FORMAT_R4G4_UNORM_PACK8

R G

3 2 1 0 3 2 1 0

Table 37. Bit mappings for packed 16-bit formats

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VK_FORMAT_R4G4B4A4_UNORM_PACK16

R G B A

3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

VK_FORMAT_B4G4R4A4_UNORM_PACK16

633

Bit

B G R A

3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

VK_FORMAT_R5G6B5_UNORM_PACK16

R G B

4 3 2 1 0 5 4 3 2 1 0 4 3 2 1 0

VK_FORMAT_B5G6R5_UNORM_PACK16

B G R

4 3 2 1 0 5 4 3 2 1 0 4 3 2 1 0

VK_FORMAT_R5G5B5A1_UNORM_PACK16

R G B A

4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 0

VK_FORMAT_B5G5R5A1_UNORM_PACK16

B G R A

4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 0

VK_FORMAT_A1R5G5B5_UNORM_PACK16

A R G B

0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0

Table 38. Bit mappings for packed 32-bit formats

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VK_FORMAT_A8B8G8R8_*_PACK32

A B G R

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

VK_FORMAT_A2R10G10B10_*_PACK32

A R G B

1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

VK_FORMAT_A2B10G10R10_*_PACK32

A B G R

1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

VK_FORMAT_B10G11R11_UFLOAT_PACK32

B G R

9 8 7 6 5 4 3 2 1 0 10 9 8 7 6 5 4 3 2 1 0 10 9 8 7 6 5 4 3 2 1 0

VK_FORMAT_E5B9G9R9_UFLOAT_PACK32

E B G R

4 3 2 1 0 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0

VK_FORMAT_X8_D24_UNORM_PACK32

X D

7 6 5 4 3 2 1 0 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Depth/Stencil Formats

Depth/stencil formats are considered opaque and need not be stored in the exact number of bits per

634

texel or component ordering indicated by the format enum. However, implementations must not

substitute a different depth or stencil precision than that described in the format (e.g. D16 must not

be implemented as D24 or D32).

Format Compatibility Classes

Uncompressed color formats are compatible with each other if they occupy the same number of bits

per data element. Compressed color formats are compatible with each other if the only difference

between them is the numerical type of the uncompressed pixels (e.g. signed vs. unsigned, or SRGB

vs. UNORM encoding). Each depth/stencil format is only compatible with itself. In the following

table, all the formats in the same row are compatible.

Table 39. Compatible formats

Class Formats

8-bit VK_FORMAT_R4G4_UNORM_PACK8,

VK_FORMAT_R8_UNORM,

VK_FORMAT_R8_SNORM,

VK_FORMAT_R8_USCALED,

VK_FORMAT_R8_SSCALED,

VK_FORMAT_R8_UINT,

VK_FORMAT_R8_SINT,

VK_FORMAT_R8_SRGB

16-bit VK_FORMAT_R4G4B4A4_UNORM_PACK16,

VK_FORMAT_B4G4R4A4_UNORM_PACK16,

VK_FORMAT_R5G6B5_UNORM_PACK16,

VK_FORMAT_B5G6R5_UNORM_PACK16,

VK_FORMAT_R5G5B5A1_UNORM_PACK16,

VK_FORMAT_B5G5R5A1_UNORM_PACK16,

VK_FORMAT_A1R5G5B5_UNORM_PACK16,

VK_FORMAT_R8G8_UNORM,

VK_FORMAT_R8G8_SNORM,

VK_FORMAT_R8G8_USCALED,

VK_FORMAT_R8G8_SSCALED,

VK_FORMAT_R8G8_UINT,

VK_FORMAT_R8G8_SINT,

VK_FORMAT_R8G8_SRGB,

VK_FORMAT_R16_UNORM,

VK_FORMAT_R16_SNORM,

VK_FORMAT_R16_USCALED,

VK_FORMAT_R16_SSCALED,

VK_FORMAT_R16_UINT,

VK_FORMAT_R16_SINT,

VK_FORMAT_R16_SFLOAT

635

Class Formats

24-bit VK_FORMAT_R8G8B8_UNORM,

VK_FORMAT_R8G8B8_SNORM,

VK_FORMAT_R8G8B8_USCALED,

VK_FORMAT_R8G8B8_SSCALED,

VK_FORMAT_R8G8B8_UINT,

VK_FORMAT_R8G8B8_SINT,

VK_FORMAT_R8G8B8_SRGB,

VK_FORMAT_B8G8R8_UNORM,

VK_FORMAT_B8G8R8_SNORM,

VK_FORMAT_B8G8R8_USCALED,

VK_FORMAT_B8G8R8_SSCALED,

VK_FORMAT_B8G8R8_UINT,

VK_FORMAT_B8G8R8_SINT,

VK_FORMAT_B8G8R8_SRGB

636

Class Formats

32-bit VK_FORMAT_R8G8B8A8_UNORM,

VK_FORMAT_R8G8B8A8_SNORM,

VK_FORMAT_R8G8B8A8_USCALED,

VK_FORMAT_R8G8B8A8_SSCALED,

VK_FORMAT_R8G8B8A8_UINT,

VK_FORMAT_R8G8B8A8_SINT,

VK_FORMAT_R8G8B8A8_SRGB,

VK_FORMAT_B8G8R8A8_UNORM,

VK_FORMAT_B8G8R8A8_SNORM,

VK_FORMAT_B8G8R8A8_USCALED,

VK_FORMAT_B8G8R8A8_SSCALED,

VK_FORMAT_B8G8R8A8_UINT,

VK_FORMAT_B8G8R8A8_SINT,

VK_FORMAT_B8G8R8A8_SRGB,

VK_FORMAT_A8B8G8R8_UNORM_PACK32,

VK_FORMAT_A8B8G8R8_SNORM_PACK32,

VK_FORMAT_A8B8G8R8_USCALED_PACK32,

VK_FORMAT_A8B8G8R8_SSCALED_PACK32,

VK_FORMAT_A8B8G8R8_UINT_PACK32,

VK_FORMAT_A8B8G8R8_SINT_PACK32,

VK_FORMAT_A8B8G8R8_SRGB_PACK32,

VK_FORMAT_A2R10G10B10_UNORM_PACK32,

VK_FORMAT_A2R10G10B10_SNORM_PACK32,

VK_FORMAT_A2R10G10B10_USCALED_PACK32,

VK_FORMAT_A2R10G10B10_SSCALED_PACK32,

VK_FORMAT_A2R10G10B10_UINT_PACK32,

VK_FORMAT_A2R10G10B10_SINT_PACK32,

VK_FORMAT_A2B10G10R10_UNORM_PACK32,

VK_FORMAT_A2B10G10R10_SNORM_PACK32,

VK_FORMAT_A2B10G10R10_USCALED_PACK32,

VK_FORMAT_A2B10G10R10_SSCALED_PACK32,

VK_FORMAT_A2B10G10R10_UINT_PACK32,

VK_FORMAT_A2B10G10R10_SINT_PACK32,

VK_FORMAT_R16G16_UNORM,

VK_FORMAT_R16G16_SNORM,

VK_FORMAT_R16G16_USCALED,

VK_FORMAT_R16G16_SSCALED,

VK_FORMAT_R16G16_UINT,

VK_FORMAT_R16G16_SINT,

VK_FORMAT_R16G16_SFLOAT,

VK_FORMAT_R32_UINT,

VK_FORMAT_R32_SINT,

VK_FORMAT_R32_SFLOAT,

VK_FORMAT_B10G11R11_UFLOAT_PACK32,

VK_FORMAT_E5B9G9R9_UFLOAT_PACK32

637

Class Formats

48-bit VK_FORMAT_R16G16B16_UNORM,

VK_FORMAT_R16G16B16_SNORM,

VK_FORMAT_R16G16B16_USCALED,

VK_FORMAT_R16G16B16_SSCALED,

VK_FORMAT_R16G16B16_UINT,

VK_FORMAT_R16G16B16_SINT,

VK_FORMAT_R16G16B16_SFLOAT

64-bit VK_FORMAT_R16G16B16A16_UNORM,

VK_FORMAT_R16G16B16A16_SNORM,

VK_FORMAT_R16G16B16A16_USCALED,

VK_FORMAT_R16G16B16A16_SSCALED,

VK_FORMAT_R16G16B16A16_UINT,

VK_FORMAT_R16G16B16A16_SINT,

VK_FORMAT_R16G16B16A16_SFLOAT,

VK_FORMAT_R32G32_UINT,

VK_FORMAT_R32G32_SINT,

VK_FORMAT_R32G32_SFLOAT,

VK_FORMAT_R64_UINT,

VK_FORMAT_R64_SINT,

VK_FORMAT_R64_SFLOAT

96-bit VK_FORMAT_R32G32B32_UINT,

VK_FORMAT_R32G32B32_SINT,

VK_FORMAT_R32G32B32_SFLOAT

128-bit VK_FORMAT_R32G32B32A32_UINT,

VK_FORMAT_R32G32B32A32_SINT,

VK_FORMAT_R32G32B32A32_SFLOAT,

VK_FORMAT_R64G64_UINT,

VK_FORMAT_R64G64_SINT,

VK_FORMAT_R64G64_SFLOAT

192-bit VK_FORMAT_R64G64B64_UINT,

VK_FORMAT_R64G64B64_SINT,

VK_FORMAT_R64G64B64_SFLOAT

256-bit VK_FORMAT_R64G64B64A64_UINT,

VK_FORMAT_R64G64B64A64_SINT,

VK_FORMAT_R64G64B64A64_SFLOAT

BC1_RGB VK_FORMAT_BC1_RGB_UNORM_BLOCK,

VK_FORMAT_BC1_RGB_SRGB_BLOCK

BC1_RGBA VK_FORMAT_BC1_RGBA_UNORM_BLOCK,

VK_FORMAT_BC1_RGBA_SRGB_BLOCK

BC2 VK_FORMAT_BC2_UNORM_BLOCK,

VK_FORMAT_BC2_SRGB_BLOCK

BC3 VK_FORMAT_BC3_UNORM_BLOCK,

VK_FORMAT_BC3_SRGB_BLOCK

BC4 VK_FORMAT_BC4_UNORM_BLOCK,

VK_FORMAT_BC4_SNORM_BLOCK

638

Class Formats

BC5 VK_FORMAT_BC5_UNORM_BLOCK,

VK_FORMAT_BC5_SNORM_BLOCK

BC6H VK_FORMAT_BC6H_UFLOAT_BLOCK,

VK_FORMAT_BC6H_SFLOAT_BLOCK

BC7 VK_FORMAT_BC7_UNORM_BLOCK,

VK_FORMAT_BC7_SRGB_BLOCK

ETC2_RGB VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK,

VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK

ETC2_RGBA VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK,

VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK

ETC2_EAC_RGBA VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK,

VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK

EAC_R VK_FORMAT_EAC_R11_UNORM_BLOCK,

VK_FORMAT_EAC_R11_SNORM_BLOCK

EAC_RG VK_FORMAT_EAC_R11G11_UNORM_BLOCK,

VK_FORMAT_EAC_R11G11_SNORM_BLOCK

ASTC_4x4 VK_FORMAT_ASTC_4x4_UNORM_BLOCK,

VK_FORMAT_ASTC_4x4_SRGB_BLOCK

ASTC_5x4 VK_FORMAT_ASTC_5x4_UNORM_BLOCK,

VK_FORMAT_ASTC_5x4_SRGB_BLOCK

ASTC_5x5 VK_FORMAT_ASTC_5x5_UNORM_BLOCK,

VK_FORMAT_ASTC_5x5_SRGB_BLOCK

ASTC_6x5 VK_FORMAT_ASTC_6x5_UNORM_BLOCK,

VK_FORMAT_ASTC_6x5_SRGB_BLOCK

ASTC_6x6 VK_FORMAT_ASTC_6x6_UNORM_BLOCK,

VK_FORMAT_ASTC_6x6_SRGB_BLOCK

ASTC_8x5 VK_FORMAT_ASTC_8x5_UNORM_BLOCK,

VK_FORMAT_ASTC_8x5_SRGB_BLOCK

ASTC_8x6 VK_FORMAT_ASTC_8x6_UNORM_BLOCK,

VK_FORMAT_ASTC_8x6_SRGB_BLOCK

ASTC_8x8 VK_FORMAT_ASTC_8x8_UNORM_BLOCK,

VK_FORMAT_ASTC_8x8_SRGB_BLOCK

ASTC_10x5 VK_FORMAT_ASTC_10x5_UNORM_BLOCK,

VK_FORMAT_ASTC_10x5_SRGB_BLOCK

ASTC_10x6 VK_FORMAT_ASTC_10x6_UNORM_BLOCK,

VK_FORMAT_ASTC_10x6_SRGB_BLOCK

ASTC_10x8 VK_FORMAT_ASTC_10x8_UNORM_BLOCK,

VK_FORMAT_ASTC_10x8_SRGB_BLOCK

ASTC_10x10 VK_FORMAT_ASTC_10x10_UNORM_BLOCK,

VK_FORMAT_ASTC_10x10_SRGB_BLOCK

ASTC_12x10 VK_FORMAT_ASTC_12x10_UNORM_BLOCK,

VK_FORMAT_ASTC_12x10_SRGB_BLOCK

639

Class Formats

ASTC_12x12 VK_FORMAT_ASTC_12x12_UNORM_BLOCK,

VK_FORMAT_ASTC_12x12_SRGB_BLOCK

D16 VK_FORMAT_D16_UNORM

D24 VK_FORMAT_X8_D24_UNORM_PACK32

D32 VK_FORMAT_D32_SFLOAT

S8 VK_FORMAT_S8_UINT

D16S8 VK_FORMAT_D16_UNORM_S8_UINT

D24S8 VK_FORMAT_D24_UNORM_S8_UINT

D32S8 VK_FORMAT_D32_SFLOAT_S8_UINT

30.3.2. Format Properties

To query supported format features which are properties of the physical device, call:

void vkGetPhysicalDeviceFormatProperties(

 VkPhysicalDevice physicalDevice,

 VkFormat format,

 VkFormatProperties* pFormatProperties);

• physicalDevice is the physical device from which to query the format properties.

• format is the format whose properties are queried.

• pFormatProperties is a pointer to a VkFormatProperties structure in which physical device

properties for format are returned.

Valid Usage (Implicit)

• physicalDevice must be a valid VkPhysicalDevice handle

• format must be a valid VkFormat value

• pFormatProperties must be a pointer to a VkFormatProperties structure

The VkFormatProperties structure is defined as:

typedef struct VkFormatProperties {

 VkFormatFeatureFlags linearTilingFeatures;

 VkFormatFeatureFlags optimalTilingFeatures;

 VkFormatFeatureFlags bufferFeatures;

} VkFormatProperties;

• linearTilingFeatures is a bitmask of VkFormatFeatureFlagBits specifying features supported by

images created with a tiling parameter of VK_IMAGE_TILING_LINEAR.

640

• optimalTilingFeatures is a bitmask of VkFormatFeatureFlagBits specifying features supported

by images created with a tiling parameter of VK_IMAGE_TILING_OPTIMAL.

• bufferFeatures is a bitmask of VkFormatFeatureFlagBits specifying features supported by

buffers.



Note

If no format feature flags are supported, then the only possible use would be

image transfers - which alone are not useful. As such, if no format feature flags are

supported, the format itself is not supported, and images of that format cannot be

created.

If format is a block-compression format, then buffers must not support any features for the format.

Bits which can be set in the VkFormatProperties features linearTilingFeatures,

optimalTilingFeatures, and bufferFeatures are:

typedef enum VkFormatFeatureFlagBits {

 VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT = 0x00000001,

 VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT = 0x00000002,

 VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT = 0x00000004,

 VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT = 0x00000008,

 VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT = 0x00000010,

 VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT = 0x00000020,

 VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT = 0x00000040,

 VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT = 0x00000080,

 VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT = 0x00000100,

 VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT = 0x00000200,

 VK_FORMAT_FEATURE_BLIT_SRC_BIT = 0x00000400,

 VK_FORMAT_FEATURE_BLIT_DST_BIT = 0x00000800,

 VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT = 0x00001000,

} VkFormatFeatureFlagBits;

The following bits may be set in linearTilingFeatures and optimalTilingFeatures, specifying that

the features are supported by images or image views created with the queried

vkGetPhysicalDeviceFormatProperties::format:

• VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT specifies that an image view can be sampled from.

• VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT specifies that an image view can be used as a storage

images.

• VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT specifies that an image view can be used as storage

image that supports atomic operations.

• VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT specifies that an image view can be used as a

framebuffer color attachment and as an input attachment.

• VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT specifies that an image view can be used as a

framebuffer color attachment that supports blending and as an input attachment.

• VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT specifies that an image view can be used as a

641

framebuffer depth/stencil attachment and as an input attachment.

• VK_FORMAT_FEATURE_BLIT_SRC_BIT specifies that an image can be used as srcImage for the

vkCmdBlitImage command.

• VK_FORMAT_FEATURE_BLIT_DST_BIT specifies that an image can be used as dstImage for the

vkCmdBlitImage command.

• VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT specifies that if

VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT is also set, an image view can be used with a sampler that

has either of magFilter or minFilter set to VK_FILTER_LINEAR, or mipmapMode set to

VK_SAMPLER_MIPMAP_MODE_LINEAR. If VK_FORMAT_FEATURE_BLIT_SRC_BIT is also set, an image can be

used as the srcImage to vkCmdBlitImage with a filter of VK_FILTER_LINEAR. This bit must only be

exposed for formats that also support the VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT or

VK_FORMAT_FEATURE_BLIT_SRC_BIT.

If the format being queried is a depth/stencil format, this bit only indicates that the depth aspect

(not the stencil aspect) of an image of this format supports linear filtering, and that linear

filtering of the depth aspect is supported whether depth compare is enabled in the sampler or

not. If this bit is not present, linear filtering with depth compare disabled is unsupported and

linear filtering with depth compare enabled is supported, but may compute the filtered value in

an implementation-dependent manner which differs from the normal rules of linear filtering.

The resulting value must be in the range [0,1] and should be proportional to, or a weighted

average of, the number of comparison passes or failures.

The following bits may be set in bufferFeatures, specifying that the features are supported by

buffers or buffer views created with the queried vkGetPhysicalDeviceProperties::format:

• VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT specifies that the format can be used to create a

buffer view that can be bound to a VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER descriptor.

• VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT specifies that the format can be used to create a

buffer view that can be bound to a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor.

• VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT specifies that atomic operations are

supported on VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER with this format.

• VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT specifies that the format can be used as a vertex attribute

format (VkVertexInputAttributeDescription::format).

30.3.3. Required Format Support

Implementations must support at least the following set of features on the listed formats. For

images, these features must be supported for every VkImageType (including arrayed and cube

variants) unless otherwise noted. These features are supported on existing formats without needing

to advertise an extension or needing to explicitly enable them. Support for additional functionality

beyond the requirements listed here is queried using the vkGetPhysicalDeviceFormatProperties

command.

The following tables show which feature bits must be supported for each format.

Table 40. Key for format feature tables

642

✓ This feature must be supported on the named format

† This feature must be supported on at least some of the named

formats, with more information in the table where the symbol

appears

Table 41. Feature bits in optimalTilingFeatures

VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT

VK_FORMAT_FEATURE_BLIT_SRC_BIT

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

VK_FORMAT_FEATURE_BLIT_DST_BIT

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

Table 42. Feature bits in bufferFeatures

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

643

Table 43. Mandatory format support: sub-byte channels

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓

VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format ↓

VK_FORMAT_UNDEFINED

VK_FORMAT_R4G4_UNORM_PACK8

VK_FORMAT_R4G4B4A4_UNORM_PACK16

VK_FORMAT_B4G4R4A4_UNORM_PACK16 ✓ ✓ ✓

VK_FORMAT_R5G6B5_UNORM_PACK16 ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_B5G6R5_UNORM_PACK16

VK_FORMAT_R5G5B5A1_UNORM_PACK16

VK_FORMAT_B5G5R5A1_UNORM_PACK16

VK_FORMAT_A1R5G5B5_UNORM_PACK16 ✓ ✓ ✓ ✓ ✓ ✓

644

Table 44. Mandatory format support: 1-3 byte-sized channels

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓

VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format ↓

VK_FORMAT_R8_UNORM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R8_SNORM ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R8_USCALED

VK_FORMAT_R8_SSCALED

VK_FORMAT_R8_UINT ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R8_SINT ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R8_SRGB

VK_FORMAT_R8G8_UNORM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R8G8_SNORM ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R8G8_USCALED

VK_FORMAT_R8G8_SSCALED

VK_FORMAT_R8G8_UINT ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R8G8_SINT ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R8G8_SRGB

VK_FORMAT_R8G8B8_UNORM

VK_FORMAT_R8G8B8_SNORM

VK_FORMAT_R8G8B8_USCALED

VK_FORMAT_R8G8B8_SSCALED

VK_FORMAT_R8G8B8_UINT

VK_FORMAT_R8G8B8_SINT

VK_FORMAT_R8G8B8_SRGB

VK_FORMAT_B8G8R8_UNORM

VK_FORMAT_B8G8R8_SNORM

VK_FORMAT_B8G8R8_USCALED

VK_FORMAT_B8G8R8_SSCALED

VK_FORMAT_B8G8R8_UINT

VK_FORMAT_B8G8R8_SINT

VK_FORMAT_B8G8R8_SRGB

645

Table 45. Mandatory format support: 4 byte-sized channels

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓

VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format ↓

VK_FORMAT_R8G8B8A8_UNORM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R8G8B8A8_SNORM ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R8G8B8A8_USCALED

VK_FORMAT_R8G8B8A8_SSCALED

VK_FORMAT_R8G8B8A8_UINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R8G8B8A8_SINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R8G8B8A8_SRGB ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_B8G8R8A8_UNORM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_B8G8R8A8_SNORM

VK_FORMAT_B8G8R8A8_USCALED

VK_FORMAT_B8G8R8A8_SSCALED

VK_FORMAT_B8G8R8A8_UINT

VK_FORMAT_B8G8R8A8_SINT

VK_FORMAT_B8G8R8A8_SRGB ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_A8B8G8R8_UNORM_PACK32 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_A8B8G8R8_SNORM_PACK32 ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_A8B8G8R8_USCALED_PACK32

VK_FORMAT_A8B8G8R8_SSCALED_PACK32

VK_FORMAT_A8B8G8R8_UINT_PACK32 ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_A8B8G8R8_SINT_PACK32 ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_A8B8G8R8_SRGB_PACK32 ✓ ✓ ✓ ✓ ✓ ✓

646

Table 46. Mandatory format support: 10-bit channels

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓

VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format ↓

VK_FORMAT_A2R10G10B10_UNORM_PACK32

VK_FORMAT_A2R10G10B10_SNORM_PACK32

VK_FORMAT_A2R10G10B10_USCALED_PACK32

VK_FORMAT_A2R10G10B10_SSCALED_PACK32

VK_FORMAT_A2R10G10B10_UINT_PACK32

VK_FORMAT_A2R10G10B10_SINT_PACK32

VK_FORMAT_A2B10G10R10_UNORM_PACK32 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_A2B10G10R10_SNORM_PACK32

VK_FORMAT_A2B10G10R10_USCALED_PACK32

VK_FORMAT_A2B10G10R10_SSCALED_PACK32

VK_FORMAT_A2B10G10R10_UINT_PACK32 ✓ ✓ ✓ ✓ ✓

VK_FORMAT_A2B10G10R10_SINT_PACK32

647

Table 47. Mandatory format support: 16-bit channels

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓

VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format ↓

VK_FORMAT_R16_UNORM ✓

VK_FORMAT_R16_SNORM ✓

VK_FORMAT_R16_USCALED

VK_FORMAT_R16_SSCALED

VK_FORMAT_R16_UINT ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R16_SINT ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R16_SFLOAT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R16G16_UNORM ✓

VK_FORMAT_R16G16_SNORM ✓

VK_FORMAT_R16G16_USCALED

VK_FORMAT_R16G16_SSCALED

VK_FORMAT_R16G16_UINT ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R16G16_SINT ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R16G16_SFLOAT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R16G16B16_UNORM

VK_FORMAT_R16G16B16_SNORM

VK_FORMAT_R16G16B16_USCALED

VK_FORMAT_R16G16B16_SSCALED

VK_FORMAT_R16G16B16_UINT

VK_FORMAT_R16G16B16_SINT

VK_FORMAT_R16G16B16_SFLOAT

VK_FORMAT_R16G16B16A16_UNORM ✓

VK_FORMAT_R16G16B16A16_SNORM ✓

VK_FORMAT_R16G16B16A16_USCALED

VK_FORMAT_R16G16B16A16_SSCALED

VK_FORMAT_R16G16B16A16_UINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R16G16B16A16_SINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R16G16B16A16_SFLOAT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

648

Table 48. Mandatory format support: 32-bit channels

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓

VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format ↓

VK_FORMAT_R32_UINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R32_SINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R32_SFLOAT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R32G32_UINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R32G32_SINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R32G32_SFLOAT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R32G32B32_UINT ✓

VK_FORMAT_R32G32B32_SINT ✓

VK_FORMAT_R32G32B32_SFLOAT ✓

VK_FORMAT_R32G32B32A32_UINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R32G32B32A32_SINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R32G32B32A32_SFLOAT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

649

Table 49. Mandatory format support: 64-bit/uneven channels

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓

VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format ↓

VK_FORMAT_R64_UINT

VK_FORMAT_R64_SINT

VK_FORMAT_R64_SFLOAT

VK_FORMAT_R64G64_UINT

VK_FORMAT_R64G64_SINT

VK_FORMAT_R64G64_SFLOAT

VK_FORMAT_R64G64B64_UINT

VK_FORMAT_R64G64B64_SINT

VK_FORMAT_R64G64B64_SFLOAT

VK_FORMAT_R64G64B64A64_UINT

VK_FORMAT_R64G64B64A64_SINT

VK_FORMAT_R64G64B64A64_SFLOAT

VK_FORMAT_B10G11R11_UFLOAT_PACK32 ✓ ✓ ✓ ✓

VK_FORMAT_E5B9G9R9_UFLOAT_PACK32 ✓ ✓ ✓

Table 50. Mandatory format support: depth/stencil with VkImageType VK_IMAGE_TYPE_2D

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

650

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓

VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format ↓

VK_FORMAT_D16_UNORM ✓ ✓ ✓

VK_FORMAT_X8_D24_UNORM_PACK32 †

VK_FORMAT_D32_SFLOAT ✓ ✓ †

VK_FORMAT_S8_UINT

VK_FORMAT_D16_UNORM_S8_UINT

VK_FORMAT_D24_UNORM_S8_UINT †

VK_FORMAT_D32_SFLOAT_S8_UINT †

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT feature must be supported for at least one of

VK_FORMAT_X8_D24_UNORM_PACK32 and VK_FORMAT_D32_SFLOAT, and must be supported for at least one

of VK_FORMAT_D24_UNORM_S8_UINT and VK_FORMAT_D32_SFLOAT_S8_UINT.

651

Table 51. Mandatory format support: BC compressed formats with VkImageType VK_IMAGE_TYPE_2D and
VK_IMAGE_TYPE_3D

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓

VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format ↓

VK_FORMAT_BC1_RGB_UNORM_BLOCK † † †

VK_FORMAT_BC1_RGB_SRGB_BLOCK † † †

VK_FORMAT_BC1_RGBA_UNORM_BLOCK † † †

VK_FORMAT_BC1_RGBA_SRGB_BLOCK † † †

VK_FORMAT_BC2_UNORM_BLOCK † † †

VK_FORMAT_BC2_SRGB_BLOCK † † †

VK_FORMAT_BC3_UNORM_BLOCK † † †

VK_FORMAT_BC3_SRGB_BLOCK † † †

VK_FORMAT_BC4_UNORM_BLOCK † † †

VK_FORMAT_BC4_SNORM_BLOCK † † †

VK_FORMAT_BC5_UNORM_BLOCK † † †

VK_FORMAT_BC5_SNORM_BLOCK † † †

VK_FORMAT_BC6H_UFLOAT_BLOCK † † †

VK_FORMAT_BC6H_SFLOAT_BLOCK † † †

VK_FORMAT_BC7_UNORM_BLOCK † † †

VK_FORMAT_BC7_SRGB_BLOCK † † †

The VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT, VK_FORMAT_FEATURE_BLIT_SRC_BIT and

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT features must be supported in

optimalTilingFeatures for all the formats in at least one of: this table, Mandatory format support:

ETC2 and EAC compressed formats with VkImageType VK_IMAGE_TYPE_2D, or Mandatory format

support: ASTC LDR compressed formats with VkImageType VK_IMAGE_TYPE_2D.

652

Table 52. Mandatory format support: ETC2 and EAC compressed formats with VkImageType
VK_IMAGE_TYPE_2D

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓

VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format ↓

VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK † † †

VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK † † †

VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK † † †

VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK † † †

VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK † † †

VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK † † †

VK_FORMAT_EAC_R11_UNORM_BLOCK † † †

VK_FORMAT_EAC_R11_SNORM_BLOCK † † †

VK_FORMAT_EAC_R11G11_UNORM_BLOCK † † †

VK_FORMAT_EAC_R11G11_SNORM_BLOCK † † †

The VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT, VK_FORMAT_FEATURE_BLIT_SRC_BIT and

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT features must be supported in

optimalTilingFeatures for all the formats in at least one of: this table, Mandatory format support:

BC compressed formats with VkImageType VK_IMAGE_TYPE_2D and VK_IMAGE_TYPE_3D, or Mandatory

format support: ASTC LDR compressed formats with VkImageType VK_IMAGE_TYPE_2D.

653

Table 53. Mandatory format support: ASTC LDR compressed formats with VkImageType VK_IMAGE_TYPE_2D

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓

VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format ↓

VK_FORMAT_ASTC_4x4_UNORM_BLOCK † † †

VK_FORMAT_ASTC_4x4_SRGB_BLOCK † † †

VK_FORMAT_ASTC_5x4_UNORM_BLOCK † † †

VK_FORMAT_ASTC_5x4_SRGB_BLOCK † † †

VK_FORMAT_ASTC_5x5_UNORM_BLOCK † † †

VK_FORMAT_ASTC_5x5_SRGB_BLOCK † † †

VK_FORMAT_ASTC_6x5_UNORM_BLOCK † † †

VK_FORMAT_ASTC_6x5_SRGB_BLOCK † † †

VK_FORMAT_ASTC_6x6_UNORM_BLOCK † † †

VK_FORMAT_ASTC_6x6_SRGB_BLOCK † † †

VK_FORMAT_ASTC_8x5_UNORM_BLOCK † † †

VK_FORMAT_ASTC_8x5_SRGB_BLOCK † † †

VK_FORMAT_ASTC_8x6_UNORM_BLOCK † † †

VK_FORMAT_ASTC_8x6_SRGB_BLOCK † † †

VK_FORMAT_ASTC_8x8_UNORM_BLOCK † † †

VK_FORMAT_ASTC_8x8_SRGB_BLOCK † † †

VK_FORMAT_ASTC_10x5_UNORM_BLOCK † † †

VK_FORMAT_ASTC_10x5_SRGB_BLOCK † † †

VK_FORMAT_ASTC_10x6_UNORM_BLOCK † † †

VK_FORMAT_ASTC_10x6_SRGB_BLOCK † † †

VK_FORMAT_ASTC_10x8_UNORM_BLOCK † † †

VK_FORMAT_ASTC_10x8_SRGB_BLOCK † † †

VK_FORMAT_ASTC_10x10_UNORM_BLOCK † † †

VK_FORMAT_ASTC_10x10_SRGB_BLOCK † † †

654

VK_FORMAT_ASTC_12x10_UNORM_BLOCK † † †

VK_FORMAT_ASTC_12x10_SRGB_BLOCK † † †

VK_FORMAT_ASTC_12x12_UNORM_BLOCK † † †

VK_FORMAT_ASTC_12x12_SRGB_BLOCK † † †

The VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT, VK_FORMAT_FEATURE_BLIT_SRC_BIT and

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT features must be supported in

optimalTilingFeatures for all the formats in at least one of: this table, Mandatory format support:

BC compressed formats with VkImageType VK_IMAGE_TYPE_2D and VK_IMAGE_TYPE_3D, or Mandatory

format support: ETC2 and EAC compressed formats with VkImageType VK_IMAGE_TYPE_2D.

30.4. Additional Image Capabilities

In addition to the minimum capabilities described in the previous sections (Limits and Formats),

implementations may support additional capabilities for certain types of images. For example,

larger dimensions or additional sample counts for certain image types, or additional capabilities for

linear tiling format images.

To query additional capabilities specific to image types, call:

VkResult vkGetPhysicalDeviceImageFormatProperties(

 VkPhysicalDevice physicalDevice,

 VkFormat format,

 VkImageType type,

 VkImageTiling tiling,

 VkImageUsageFlags usage,

 VkImageCreateFlags flags,

 VkImageFormatProperties* pImageFormatProperties);

• physicalDevice is the physical device from which to query the image capabilities.

• format is a VkFormat value specifying the image format, corresponding to VkImageCreateInfo

::format.

• type is a VkImageType value specifying the image type, corresponding to VkImageCreateInfo

::imageType.

• tiling is a VkImageTiling value specifying the image tiling, corresponding to

VkImageCreateInfo::tiling.

• usage is a bitmask of VkImageUsageFlagBits specifying the intended usage of the image,

corresponding to VkImageCreateInfo::usage.

• flags is a bitmask of VkImageCreateFlagBits specifying additional parameters of the image,

corresponding to VkImageCreateInfo::flags.

• pImageFormatProperties points to an instance of the VkImageFormatProperties structure in

which capabilities are returned.

The format, type, tiling, usage, and flags parameters correspond to parameters that would be

consumed by vkCreateImage (as members of VkImageCreateInfo).

655

If format is not a supported image format, or if the combination of format, type, tiling, usage, and

flags is not supported for images, then vkGetPhysicalDeviceImageFormatProperties returns

VK_ERROR_FORMAT_NOT_SUPPORTED.

The limitations on an image format that are reported by vkGetPhysicalDeviceImageFormatProperties

have the following property: if usage1 and usage2 of type VkImageUsageFlags are such that the bits

set in usage1 are a subset of the bits set in usage2, and flags1 and flags2 of type VkImageCreateFlags

are such that the bits set in flags1 are a subset of the bits set in flags2, then the limitations for

usage1 and flags1 must be no more strict than the limitations for usage2 and flags2, for all values of

format, type, and tiling.

Valid Usage (Implicit)

• physicalDevice must be a valid VkPhysicalDevice handle

• format must be a valid VkFormat value

• type must be a valid VkImageType value

• tiling must be a valid VkImageTiling value

• usage must be a valid combination of VkImageUsageFlagBits values

• usage must not be 0

• flags must be a valid combination of VkImageCreateFlagBits values

• pImageFormatProperties must be a pointer to a VkImageFormatProperties structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_FORMAT_NOT_SUPPORTED

The VkImageFormatProperties structure is defined as:

typedef struct VkImageFormatProperties {

 VkExtent3D maxExtent;

 uint32_t maxMipLevels;

 uint32_t maxArrayLayers;

 VkSampleCountFlags sampleCounts;

 VkDeviceSize maxResourceSize;

} VkImageFormatProperties;

• maxExtent are the maximum image dimensions. See the Allowed Extent Values section below for

656

how these values are constrained by type.

• maxMipLevels is the maximum number of mipmap levels. maxMipLevels must either be equal to 1

(valid only if tiling is VK_IMAGE_TILING_LINEAR) or be equal to ⌈log2(max(width, height, depth))⌉

+ 1. width, height, and depth are taken from the corresponding members of maxExtent.

• maxArrayLayers is the maximum number of array layers. maxArrayLayers must either be equal to

1 or be greater than or equal to the maxImageArrayLayers member of VkPhysicalDeviceLimits. A

value of 1 is valid only if tiling is VK_IMAGE_TILING_LINEAR or if type is VK_IMAGE_TYPE_3D.

• sampleCounts is a bitmask of VkSampleCountFlagBits specifying all the supported sample counts

for this image as described below.

• maxResourceSize is an upper bound on the total image size in bytes, inclusive of all image

subresources. Implementations may have an address space limit on total size of a resource,

which is advertised by this property. maxResourceSize must be at least 2
31

.



Note

There is no mechanism to query the size of an image before creating it, to compare

that size against maxResourceSize. If an application attempts to create an image that

exceeds this limit, the creation will fail or the image will be invalid. While the

advertised limit must be at least 2
31

, it may not be possible to create an image that

approaches that size, particularly for VK_IMAGE_TYPE_1D.

If the combination of parameters to vkGetPhysicalDeviceImageFormatProperties is not supported by

the implementation for use in vkCreateImage, then all members of VkImageFormatProperties will be

filled with zero.

30.4.1. Supported Sample Counts

vkGetPhysicalDeviceImageFormatProperties returns a bitmask of VkSampleCountFlagBits in

sampleCounts specifying the supported sample counts for the image parameters.

sampleCounts will be set to VK_SAMPLE_COUNT_1_BIT if at least one of the following conditions is true:

• tiling is VK_IMAGE_TILING_LINEAR

• type is not VK_IMAGE_TYPE_2D

• flags contains VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT

• Neither the VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT flag nor the

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT flag in VkFormatProperties

::optimalTilingFeatures returned by vkGetPhysicalDeviceFormatProperties is set

Otherwise, the bits set in sampleCounts will be the sample counts supported for the specified values

of usage and format. For each bit set in usage, the supported sample counts relate to the limits in

VkPhysicalDeviceLimits as follows:

• If usage includes VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT and format is a floating- or fixed-point

color format, a superset of VkPhysicalDeviceLimits::framebufferColorSampleCounts

• If usage includes VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, and format includes a depth

657

aspect, a superset of VkPhysicalDeviceLimits::framebufferDepthSampleCounts

• If usage includes VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, and format includes a stencil

aspect, a superset of VkPhysicalDeviceLimits::framebufferStencilSampleCounts

• If usage includes VK_IMAGE_USAGE_SAMPLED_BIT, and format includes a color aspect, a superset of

VkPhysicalDeviceLimits::sampledImageColorSampleCounts

• If usage includes VK_IMAGE_USAGE_SAMPLED_BIT, and format includes a depth aspect, a superset of

VkPhysicalDeviceLimits::sampledImageDepthSampleCounts

• If usage includes VK_IMAGE_USAGE_SAMPLED_BIT, and format is an integer format, a superset of

VkPhysicalDeviceLimits::sampledImageIntegerSampleCounts

• If usage includes VK_IMAGE_USAGE_STORAGE_BIT, a superset of VkPhysicalDeviceLimits

::storageImageSampleCounts

If multiple bits are set in usage, sampleCounts will be the intersection of the per-usage values

described above.

If none of the bits described above are set in usage, then there is no corresponding limit in

VkPhysicalDeviceLimits. In this case, sampleCounts must include at least VK_SAMPLE_COUNT_1_BIT.

30.4.2. Allowed Extent Values Based On Image Type

Implementations may support extent values larger than the required minimum/maximum values

for certain types of images subject to the constraints below.



Note

Implementations must support images with dimensions up to the required

minimum/maximum values for all types of images. It follows that the query for

additional capabilities must return extent values that are at least as large as the

required values.

For VK_IMAGE_TYPE_1D:

• maxExtent.width ≥ VkPhysicalDeviceLimits.maxImageDimension1D

• maxExtent.height = 1

• maxExtent.depth = 1

For VK_IMAGE_TYPE_2D when flags does not contain VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT:

• maxExtent.width ≥ VkPhysicalDeviceLimits.maxImageDimension2D

• maxExtent.height ≥ VkPhysicalDeviceLimits.maxImageDimension2D

• maxExtent.depth = 1

For VK_IMAGE_TYPE_2D when flags contains VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT:

• maxExtent.width ≥ VkPhysicalDeviceLimits.maxImageDimensionCube

• maxExtent.height ≥ VkPhysicalDeviceLimits.maxImageDimensionCube

658

• maxExtent.depth = 1

For VK_IMAGE_TYPE_3D:

• maxExtent.width ≥ VkPhysicalDeviceLimits.maxImageDimension3D

• maxExtent.height ≥ VkPhysicalDeviceLimits.maxImageDimension3D

• maxExtent.depth ≥ VkPhysicalDeviceLimits.maxImageDimension3D

659

Chapter 31. Debugging

To aid developers in tracking down errors in the application’s use of Vulkan, particularly in

combination with an external debugger or profiler, debugging extensions may be available.

The VkObjectType enumeration defines values, each of which corresponds to a specific Vulkan

handle type. These values can be used to associate debug information with a particular type of

object through one or more extensions.

typedef enum VkObjectType {

 VK_OBJECT_TYPE_UNKNOWN = 0,

 VK_OBJECT_TYPE_INSTANCE = 1,

 VK_OBJECT_TYPE_PHYSICAL_DEVICE = 2,

 VK_OBJECT_TYPE_DEVICE = 3,

 VK_OBJECT_TYPE_QUEUE = 4,

 VK_OBJECT_TYPE_SEMAPHORE = 5,

 VK_OBJECT_TYPE_COMMAND_BUFFER = 6,

 VK_OBJECT_TYPE_FENCE = 7,

 VK_OBJECT_TYPE_DEVICE_MEMORY = 8,

 VK_OBJECT_TYPE_BUFFER = 9,

 VK_OBJECT_TYPE_IMAGE = 10,

 VK_OBJECT_TYPE_EVENT = 11,

 VK_OBJECT_TYPE_QUERY_POOL = 12,

 VK_OBJECT_TYPE_BUFFER_VIEW = 13,

 VK_OBJECT_TYPE_IMAGE_VIEW = 14,

 VK_OBJECT_TYPE_SHADER_MODULE = 15,

 VK_OBJECT_TYPE_PIPELINE_CACHE = 16,

 VK_OBJECT_TYPE_PIPELINE_LAYOUT = 17,

 VK_OBJECT_TYPE_RENDER_PASS = 18,

 VK_OBJECT_TYPE_PIPELINE = 19,

 VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT = 20,

 VK_OBJECT_TYPE_SAMPLER = 21,

 VK_OBJECT_TYPE_DESCRIPTOR_POOL = 22,

 VK_OBJECT_TYPE_DESCRIPTOR_SET = 23,

 VK_OBJECT_TYPE_FRAMEBUFFER = 24,

 VK_OBJECT_TYPE_COMMAND_POOL = 25,

} VkObjectType;

Table 54. VkObjectType and Vulkan Handle Relationship

VkObjectType Vulkan Handle Type

VK_OBJECT_TYPE_UNKNOWN Unknown/Undefined Handle

VK_OBJECT_TYPE_INSTANCE VkInstance

VK_OBJECT_TYPE_PHYSICAL_DEVICE VkPhysicalDevice

VK_OBJECT_TYPE_DEVICE VkDevice

VK_OBJECT_TYPE_QUEUE VkQueue

VK_OBJECT_TYPE_SEMAPHORE VkSemaphore

660

VkObjectType Vulkan Handle Type

VK_OBJECT_TYPE_COMMAND_BUFFER VkCommandBuffer

VK_OBJECT_TYPE_FENCE VkFence

VK_OBJECT_TYPE_DEVICE_MEMORY VkDeviceMemory

VK_OBJECT_TYPE_BUFFER VkBuffer

VK_OBJECT_TYPE_IMAGE VkImage

VK_OBJECT_TYPE_EVENT VkEvent

VK_OBJECT_TYPE_QUERY_POOL VkQueryPool

VK_OBJECT_TYPE_BUFFER_VIEW VkBufferView

VK_OBJECT_TYPE_IMAGE_VIEW VkImageView

VK_OBJECT_TYPE_SHADER_MODULE VkShaderModule

VK_OBJECT_TYPE_PIPELINE_CACHE VkPipelineCache

VK_OBJECT_TYPE_PIPELINE_LAYOUT VkPipelineLayout

VK_OBJECT_TYPE_RENDER_PASS VkRenderPass

VK_OBJECT_TYPE_PIPELINE VkPipeline

VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT VkDescriptorSetLayout

VK_OBJECT_TYPE_SAMPLER VkSampler

VK_OBJECT_TYPE_DESCRIPTOR_POOL VkDescriptorPool

VK_OBJECT_TYPE_DESCRIPTOR_SET VkDescriptorSet

VK_OBJECT_TYPE_FRAMEBUFFER VkFramebuffer

VK_OBJECT_TYPE_COMMAND_POOL VkCommandPool

If this Specification was generated with any such extensions included, they will be described in the

remainder of this chapter.

661

Appendix A: Vulkan Environment for SPIR-V

Shaders for Vulkan are defined by the Khronos SPIR-V Specification as well as the Khronos SPIR-V

Extended Instructions for GLSL Specification. This appendix defines additional SPIR-V

requirements applying to Vulkan shaders.

Required Versions and Formats

A Vulkan 1.0 implementation must support the 1.0 version of SPIR-V and the 1.0 version of the

SPIR-V Extended Instructions for GLSL.

A SPIR-V module passed into vkCreateShaderModule is interpreted as a series of 32-bit words in

host endianness, with literal strings packed as described in section 2.2 of the SPIR-V Specification.

The first few words of the SPIR-V module must be a magic number and a SPIR-V version number,

as described in section 2.3 of the SPIR-V Specification.

Capabilities

Implementations must support the following capability operands declared by OpCapability:

• Matrix

• Shader

• InputAttachment

• Sampled1D

• Image1D

• SampledBuffer

• ImageBuffer

• ImageQuery

• DerivativeControl

Implementations may support features that are not required by the Specification, as described in

the Features chapter. If such a feature is supported, then any capability operand(s) corresponding

to that feature must also be supported.

Table 55. SPIR-V Capabilities which are not required, and corresponding feature or extension names

SPIR-V OpCapability Vulkan feature or extension name

Geometry geometryShader

Tessellation tessellationShader

Float64 shaderFloat64

Int64 shaderInt64

Int16 shaderInt16

TessellationPointSize shaderTessellationAndGeometryPointSize

GeometryPointSize shaderTessellationAndGeometryPointSize

ImageGatherExtended shaderImageGatherExtended

662

SPIR-V OpCapability Vulkan feature or extension name

StorageImageMultisample shaderStorageImageMultisample

UniformBufferArrayDynamicIndexing shaderUniformBufferArrayDynamicIndexing

SampledImageArrayDynamicIndexing shaderSampledImageArrayDynamicIndexing

StorageBufferArrayDynamicIndexing shaderStorageBufferArrayDynamicIndexing

StorageImageArrayDynamicIndexing shaderStorageImageArrayDynamicIndexing

ClipDistance shaderClipDistance

CullDistance shaderCullDistance

ImageCubeArray imageCubeArray

SampleRateShading sampleRateShading

SparseResidency shaderResourceResidency

MinLod shaderResourceMinLod

SampledCubeArray imageCubeArray

ImageMSArray shaderStorageImageMultisample

StorageImageExtendedFormats shaderStorageImageExtendedFormats

InterpolationFunction sampleRateShading

StorageImageReadWithoutFormat shaderStorageImageReadWithoutFormat

StorageImageWriteWithoutFormat shaderStorageImageWriteWithoutFormat

MultiViewport multiViewport

The application must not pass a SPIR-V module containing any of the following to

vkCreateShaderModule:

• any OpCapability not listed above,

• an unsupported capability, or

• a capability which corresponds to a Vulkan feature or extension which has not been enabled.

Validation Rules within a Module

A SPIR-V module passed to vkCreateShaderModule must conform to the following rules:

• Every entry point must have no return value and accept no arguments.

• Recursion: The static function-call graph for an entry point must not contain cycles.

• The Logical addressing model must be selected.

• Scope for execution must be limited to:

◦ Workgroup

◦ Subgroup

• Scope for memory must be limited to:

◦ Device

663

◦ Workgroup

◦ Invocation

• Variables declared in the UniformConstant storage class must not have initializers.

• The OriginLowerLeft execution mode must not be used; fragment entry points must declare

OriginUpperLeft.

• The PixelCenterInteger execution mode must not be used. Pixels are always centered at half-

integer coordinates.

• Images

◦ OpTypeImage must declare a scalar 32-bit float or 32-bit integer type for the “Sampled Type”.

(RelaxedPrecision can be applied to a sampling instruction and to the variable holding the

result of a sampling instruction.)

◦ OpSampledImage must only consume an “Image” operand whose type has its “Sampled”

operand set to 1.

◦ The (u,v) coordinates used for a SubpassData must be the <id> of a constant vector (0,0), or if

a layer coordinate is used, must be a vector that was formed with constant 0 for the u and v

components.

◦ The “Depth” operand of OpTypeImage is ignored.

• Decorations

◦ The GLSLShared and GLSLPacked decorations must not be used.

◦ The Flat, NoPerspective, Sample, and Centroid decorations must not be used on variables

with storage class other than Input or on variables used in the interface of non-fragment

shader entry points.

◦ The Patch decoration must not be used on variables in the interface of a vertex, geometry, or

fragment shader stage’s entry point.

• OpTypeRuntimeArray must only be used for the last member of an OpTypeStruct that is in the

Uniform storage class decorated as BufferBlock.

• Linkage: See Shader Interfaces for additional linking and validation rules.

• Compute Shaders

◦ For each compute shader entry point, either a LocalSize execution mode or an object

decorated with the WorkgroupSize decoration must be specified.

• Atomic instructions must declare a scalar 32-bit integer type for the “Result Type”.

Precision and Operation of SPIR-V Instructions

The following rules apply to both single and double-precision floating point instructions:

• Positive and negative infinities and positive and negative zeros are generated as dictated by

IEEE 754, but subject to the precisions allowed in the following table.

• Dividing a non-zero by a zero results in the appropriately signed IEEE 754 infinity.

• Any denormalized value input into a shader or potentially generated by any instruction in a

664

shader may be flushed to 0.

• The rounding mode cannot be set and is undefined.

• NaNs may not be generated. Instructions that operate on a NaN may not result in a NaN.

• Support for signaling NaNs is optional and exceptions are never raised.

The precision of double-precision instructions is at least that of single precision. For single

precision (32 bit) instructions, precisions are required to be at least as follows, unless decorated

with RelaxedPrecision:

Table 56. Precision of core SPIR-V Instructions

Instruction Precision

OpFAdd Correctly rounded.

OpFSub Correctly rounded.

OpFMul Correctly rounded.

OpFOrdEqual, OpFUnordEqual Correct result.

OpFOrdLessThan, OpFUnordLessThan Correct result.

OpFOrdGreaterThan, OpFUnordGreaterThan Correct result.

OpFOrdLessThanEqual, OpFUnordLessThanEqual Correct result.

OpFOrdGreaterThanEqual,
OpFUnordGreaterThanEqual

Correct result.

OpFDiv 2.5 ULP for b in the range [2
-126

, 2
126

].

conversions between types Correctly rounded.

Table 57. Precision of GLSL.std.450 Instructions

Instruction Precision

fma() Inherited from OpFMul followed by OpFAdd.

exp(x), exp2(x) 3 + 2 × |x| ULP.

log(), log2() 3 ULP outside the range [0.5, 2.0]. Absolute error

< 2
-21

 inside the range [0.5, 2.0].

pow(x, y) Inherited from exp2(y × log2(x)).

sqrt() Inherited from 1.0 / inversesqrt().

inversesqrt() 2 ULP.

GLSL.std.450 extended instructions specifically defined in terms of the above instructions inherit

the above errors. GLSL.std.450 extended instructions not listed above and not defined in terms of

the above have undefined precision. These include, for example, the trigonometric functions and

determinant.

For the OpSRem and OpSMod instructions, if either operand is negative the result is undefined.

665



Note

While the OpSRem and OpSMod instructions are supported by the Vulkan

environment, they require non-negative values and thus do not enable additional

functionality beyond what OpUMod provides.

Compatibility Between SPIR-V Image Formats And Vulkan Formats

Images which are read from or written to by shaders must have SPIR-V image formats compatible

with the Vulkan image formats backing the image under the circumstances described for texture

image validation. The compatibile formats are:

Table 58. SPIR-V and Vulkan Image Format Compatibility

SPIR-V Image Format Compatible Vulkan Format

Rgba32f VK_FORMAT_R32G32B32A32_SFLOAT

Rgba16f VK_FORMAT_R16G16B16A16_SFLOAT

R32f VK_FORMAT_R32_SFLOAT

Rgba8 VK_FORMAT_R8G8B8A8_UNORM

Rgba8Snorm VK_FORMAT_R8G8B8A8_SNORM

Rg32f VK_FORMAT_R32G32_SFLOAT

Rg16f VK_FORMAT_R16G16_SFLOAT

R11fG11fB10f VK_FORMAT_B10G11R11_UFLOAT_PACK32

R16f VK_FORMAT_R16_SFLOAT

Rgba16 VK_FORMAT_R16G16B16A16_UNORM

Rgb10A2 VK_FORMAT_A2B10G10R10_UNORM_PACK32

Rg16 VK_FORMAT_R16G16_UNORM

Rg8 VK_FORMAT_R8G8_UNORM

R16 VK_FORMAT_R16_UNORM

R8 VK_FORMAT_R8_UNORM

Rgba16Snorm VK_FORMAT_R16G16B16A16_SNORM

Rg16Snorm VK_FORMAT_R16G16_SNORM

Rg8Snorm VK_FORMAT_R8G8_SNORM

R16Snorm VK_FORMAT_R16_SNORM

R8Snorm VK_FORMAT_R8_SNORM

Rgba32i VK_FORMAT_R32G32B32A32_SINT

Rgba16i VK_FORMAT_R16G16B16A16_SINT

Rgba8i VK_FORMAT_R8G8B8A8_SINT

R32i VK_FORMAT_R32_SINT

Rg32i VK_FORMAT_R32G32_SINT

Rg16i VK_FORMAT_R16G16_SINT

Rg8i VK_FORMAT_R8G8_SINT

R16i VK_FORMAT_R16_SINT

R8i VK_FORMAT_R8_SINT

Rgba32ui VK_FORMAT_R32G32B32A32_UINT

Rgba16ui VK_FORMAT_R16G16B16A16_UINT

666

SPIR-V Image Format Compatible Vulkan Format

Rgba8ui VK_FORMAT_R8G8B8A8_UINT

R32ui VK_FORMAT_R32_UINT

Rgb10a2ui VK_FORMAT_A2B10G10R10_UINT_PACK32

Rg32ui VK_FORMAT_R32G32_UINT

Rg16ui VK_FORMAT_R16G16_UINT

Rg8ui VK_FORMAT_R8G8_UINT

R16ui VK_FORMAT_R16_UINT

R8ui VK_FORMAT_R8_UINT

667

Appendix B: Compressed Image Formats

The compressed texture formats used by Vulkan are described in the specifically identified sections

of the Khronos Data Format Specification, version 1.1.

Unless otherwise described, the quantities encoded in these compressed formats are treated as

normalized, unsigned values.

Those formats listed as sRGB-encoded have in-memory representations of R, G and B components

which are nonlinearly-encoded as R', G', and B'; any alpha component is unchanged. As part of

filtering, the nonlinear R', G', and B' values are converted to linear R, G, and B components; any

alpha component is unchanged. The conversion between linear and nonlinear encoding is

performed as described in the “KHR_DF_TRANSFER_SRGB” section of the Khronos Data Format

Specification.

668

Block-Compressed Image Formats

Table 59. Mapping of Vulkan BC formats to descriptions

VkFormat Khronos Data Format Specification

description

Formats described in the “S3TC Compressed Texture Image Formats” chapter

VK_FORMAT_BC1_RGB_UNORM_BLOCK BC1 with no alpha

VK_FORMAT_BC1_RGB_SRGB_BLOCK BC1 with no alpha, sRGB-encoded

VK_FORMAT_BC1_RGBA_UNORM_BLOCK BC1 with alpha

VK_FORMAT_BC1_RGBA_SRGB_BLOCK BC1 with alpha, sRGB-encoded

VK_FORMAT_BC2_UNORM_BLOCK BC2

VK_FORMAT_BC2_SRGB_BLOCK BC2, sRGB-encoded

VK_FORMAT_BC3_UNORM_BLOCK BC3

VK_FORMAT_BC3_SRGB_BLOCK BC3, sRGB-encoded

Formats described in the “RGTC Compressed Texture Image Formats” chapter

VK_FORMAT_BC4_UNORM_BLOCK BC4 unsigned

VK_FORMAT_BC4_SNORM_BLOCK BC4 signed

VK_FORMAT_BC5_UNORM_BLOCK BC5 unsigned

VK_FORMAT_BC5_SNORM_BLOCK BC5 signed

Formats described in the “BPTC Compressed Texture Image Formats” chapter

VK_FORMAT_BC6H_UFLOAT_BLOCK BC6H (unsigned version)

VK_FORMAT_BC6H_SFLOAT_BLOCK BC6H (signed version)

VK_FORMAT_BC7_UNORM_BLOCK BC7

VK_FORMAT_BC7_SRGB_BLOCK BC7, sRGB-encoded

669

ETC Compressed Image Formats

The following formats are described in the “ETC2 Compressed Texture Image Formats” chapter of

the Khronos Data Format Specification.

Table 60. Mapping of Vulkan ETC formats to descriptions

VkFormat Khronos Data Format Specification

description

VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK RGB ETC2

VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK RGB ETC2 with sRGB encoding

VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK RGB ETC2 with punch-through alpha

VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK RGB ETC2 with punch-through alpha and sRGB

VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK RGBA ETC2

VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK RGBA ETC2 with sRGB encoding

VK_FORMAT_EAC_R11_UNORM_BLOCK Unsigned R11 EAC

VK_FORMAT_EAC_R11_SNORM_BLOCK Signed R11 EAC

VK_FORMAT_EAC_R11G11_UNORM_BLOCK Unsigned RG11 EAC

VK_FORMAT_EAC_R11G11_SNORM_BLOCK Signed RG11 EAC

670

ASTC Compressed Image Formats

ASTC formats are described in the “ASTC Compressed Texture Image Formats” chapter of the

Khronos Data Format Specification.

Table 61. Mapping of Vulkan ASTC formats to descriptions

VkFormat Compres

sed texel

block

dimensio

ns

sRGB-encoded

VK_FORMAT_ASTC_4x4_UNORM_BLOCK 4 × 4 No

VK_FORMAT_ASTC_4x4_SRGB_BLOCK 4 × 4 Yes

VK_FORMAT_ASTC_5x4_UNORM_BLOCK 5 × 4 No

VK_FORMAT_ASTC_5x4_SRGB_BLOCK 5 × 4 Yes

VK_FORMAT_ASTC_5x5_UNORM_BLOCK 5 × 5 No

VK_FORMAT_ASTC_5x5_SRGB_BLOCK 5 × 5 Yes

VK_FORMAT_ASTC_6x5_UNORM_BLOCK 6 × 5 No

VK_FORMAT_ASTC_6x5_SRGB_BLOCK 6 × 5 Yes

VK_FORMAT_ASTC_6x6_UNORM_BLOCK 6 × 6 No

VK_FORMAT_ASTC_6x6_SRGB_BLOCK 6 × 6 Yes

VK_FORMAT_ASTC_8x5_UNORM_BLOCK 8 × 5 No

VK_FORMAT_ASTC_8x5_SRGB_BLOCK 8 × 5 Yes

VK_FORMAT_ASTC_8x6_UNORM_BLOCK 8 × 6 No

VK_FORMAT_ASTC_8x6_SRGB_BLOCK 8 × 6 Yes

VK_FORMAT_ASTC_8x8_UNORM_BLOCK 8 × 8 No

VK_FORMAT_ASTC_8x8_SRGB_BLOCK 8 × 8 Yes

VK_FORMAT_ASTC_10x5_UNORM_BLOCK 10 × 5 No

VK_FORMAT_ASTC_10x5_SRGB_BLOCK 10 × 5 Yes

VK_FORMAT_ASTC_10x6_UNORM_BLOCK 10 × 6 No

VK_FORMAT_ASTC_10x6_SRGB_BLOCK 10 × 6 Yes

VK_FORMAT_ASTC_10x8_UNORM_BLOCK 10 × 8 No

VK_FORMAT_ASTC_10x8_SRGB_BLOCK 10 × 8 Yes

VK_FORMAT_ASTC_10x10_UNORM_BLOCK 10 × 10 No

VK_FORMAT_ASTC_10x10_SRGB_BLOCK 10 × 10 Yes

VK_FORMAT_ASTC_12x10_UNORM_BLOCK 12 × 10 No

VK_FORMAT_ASTC_12x10_SRGB_BLOCK 12 × 10 Yes

VK_FORMAT_ASTC_12x12_UNORM_BLOCK 12 × 12 No

VK_FORMAT_ASTC_12x12_SRGB_BLOCK 12 × 12 Yes

671

Appendix C: Layers & Extensions

Extensions to the Vulkan API can be defined by authors, groups of authors, and the Khronos Vulkan

Working Group. In order not to compromise the readability of the Vulkan Specification, the core

Specification does not incorporate most extensions. The online Registry of extensions is available at

URL

http://www.khronos.org/registry/vulkan/

and allows generating versions of the Specification incorporating different extensions.

Most of the content previously in this appendix does not specify use of specific Vulkan extensions

and layers, but rather specifies the processes by which extensions and layers are created. As of

version 1.0.21 of the Vulkan Specification, this content has been migrated to the Vulkan

Documentation and Extensions document. Authors creating extensions and layers must follow the

mandatory procedures in that document.

The remainder of this appendix documents a set of extensions chosen when this document was

built. Versions of the Specification published in the Registry include:

• Core API + mandatory extensions required of all Vulkan implementations.

• Core API + all registered and published Khronos (KHR) extensions.

• Core API + all registered and published extensions.

Extensions are grouped as Khronos KHR, Khronos KHX, multivendor EXT, and then alphabetically by

author ID. Within each group, extensions are listed in alphabetical order by their name.



Note

The KHX author ID indicates that an extension is experimental, and is being

considered for standardization in future KHR or core Vulkan API versions.

Developers are encouraged to experiment with them and provide feedback, but

should not use them as the basis for production applications. KHX extensions are

expected to be supported for a limited time only. They may change their interfaces

and behavior in significant ways as a result of feedback, and may be withdrawn or

replaced with stable KHR or core functionality at any time. Implementations of

these extensions receive limited or no testing when submitted to the Khronos

conformance process.

VK_KHR_sampler_mirror_clamp_to_edge

Name String

VK_KHR_sampler_mirror_clamp_to_edge

Extension Type

Device extension

672

http://www.khronos.org/registry/vulkan/

Registered Extension Number

15

Status

Final

Last Modified Date

2016-02-16

Revision

1

Dependencies

• This extension is written against version 1.0 of the Vulkan API.

Contributors

• Tobias Hector, Imagination Technologies

Contacts

• Tobias Hector (tobias.hector@imgtec.com)

VK_KHR_sampler_mirror_clamp_to_edge extends the set of sampler address modes to include an

additional mode (VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE) that effectively uses a texture map

twice as large as the original image in which the additional half of the new image is a mirror image

of the original image.

This new mode relaxes the need to generate images whose opposite edges match by using the

original image to generate a matching “mirror image”. This mode allows the texture to be mirrored

only once in the negative s, t, and r directions.

New Enum Constants

• Extending VkSamplerAddressMode:

◦ VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE

Example

Creating a sampler with the new address mode in each dimension

673

mailto:tobias.hector@imgtec.com

 VkSamplerCreateInfo createInfo =

 {

 VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO // sType

 // Other members set to application-desired values

 };

 createInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE;

 createInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE;

 createInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE;

 VkSampler sampler;

 VkResult result = vkCreateSampler(

 device,

 &createInfo,

 &sampler);

Version History

• Revision 1, 2016-02-16 (Tobias Hector)

◦ Initial draft

674

Appendix D: API Boilerplate

This appendix defines Vulkan API features that are infrastructure required for a complete

functional description of Vulkan, but do not logically belong elsewhere in the Specification.

Structure Types

Vulkan structures containing sType members must have a value of sType matching the type of the

structure, as described more fully in Valid Usage for Structure Types. Structure types supported by

the Vulkan API include:

typedef enum VkStructureType {

 VK_STRUCTURE_TYPE_APPLICATION_INFO = 0,

 VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO = 1,

 VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO = 2,

 VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO = 3,

 VK_STRUCTURE_TYPE_SUBMIT_INFO = 4,

 VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO = 5,

 VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE = 6,

 VK_STRUCTURE_TYPE_BIND_SPARSE_INFO = 7,

 VK_STRUCTURE_TYPE_FENCE_CREATE_INFO = 8,

 VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO = 9,

 VK_STRUCTURE_TYPE_EVENT_CREATE_INFO = 10,

 VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO = 11,

 VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO = 12,

 VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO = 13,

 VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO = 14,

 VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO = 15,

 VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO = 16,

 VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO = 17,

 VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO = 18,

 VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO = 19,

 VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO = 20,

 VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO = 21,

 VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO = 22,

 VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO = 23,

 VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO = 24,

 VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO = 25,

 VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO = 26,

 VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO = 27,

 VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO = 28,

 VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO = 29,

 VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO = 30,

 VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO = 31,

 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO = 32,

 VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO = 33,

 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO = 34,

 VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET = 35,

 VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET = 36,

675

 VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO = 37,

 VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO = 38,

 VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO = 39,

 VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO = 40,

 VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO = 41,

 VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO = 42,

 VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO = 43,

 VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER = 44,

 VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER = 45,

 VK_STRUCTURE_TYPE_MEMORY_BARRIER = 46,

 VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO = 47,

 VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO = 48,

} VkStructureType;

Flag Types

Vulkan flag types are all bitmasks aliasing the base type VkFlags and with corresponding bit flag

types defining the valid bits for that flag, as described in Valid Usage for Flags. Flag types supported

by the Vulkan API include:

typedef VkFlags VkAccessFlags;

typedef VkFlags VkAttachmentDescriptionFlags;

typedef VkFlags VkBufferCreateFlags;

typedef VkFlags VkBufferUsageFlags;

typedef VkFlags VkBufferViewCreateFlags;

typedef VkFlags VkColorComponentFlags;

typedef VkFlags VkCommandBufferResetFlags;

typedef VkFlags VkCommandBufferUsageFlags;

typedef VkFlags VkCommandPoolCreateFlags;

676

typedef VkFlags VkCommandPoolResetFlags;

typedef VkFlags VkCullModeFlags;

typedef VkFlags VkDependencyFlags;

typedef VkFlags VkDescriptorPoolCreateFlags;

typedef VkFlags VkDescriptorPoolResetFlags;

typedef VkFlags VkDescriptorSetLayoutCreateFlags;

typedef VkFlags VkDeviceCreateFlags;

typedef VkFlags VkDeviceQueueCreateFlags;

typedef VkFlags VkEventCreateFlags;

typedef VkFlags VkFenceCreateFlags;

typedef VkFlags VkFormatFeatureFlags;

typedef VkFlags VkFramebufferCreateFlags;

typedef VkFlags VkImageAspectFlags;

typedef VkFlags VkImageCreateFlags;

typedef VkFlags VkImageUsageFlags;

677

typedef VkFlags VkImageViewCreateFlags;

typedef VkFlags VkInstanceCreateFlags;

typedef VkFlags VkMemoryHeapFlags;

typedef VkFlags VkMemoryMapFlags;

typedef VkFlags VkMemoryPropertyFlags;

typedef VkFlags VkPipelineCacheCreateFlags;

typedef VkFlags VkPipelineColorBlendStateCreateFlags;

typedef VkFlags VkPipelineCreateFlags;

typedef VkFlags VkPipelineDepthStencilStateCreateFlags;

typedef VkFlags VkPipelineDynamicStateCreateFlags;

typedef VkFlags VkPipelineInputAssemblyStateCreateFlags;

typedef VkFlags VkPipelineLayoutCreateFlags;

typedef VkFlags VkPipelineMultisampleStateCreateFlags;

typedef VkFlags VkPipelineRasterizationStateCreateFlags;

typedef VkFlags VkPipelineShaderStageCreateFlags;

678

typedef VkFlags VkPipelineStageFlags;

typedef VkFlags VkPipelineTessellationStateCreateFlags;

typedef VkFlags VkPipelineVertexInputStateCreateFlags;

typedef VkFlags VkPipelineViewportStateCreateFlags;

typedef VkFlags VkQueryControlFlags;

typedef VkFlags VkQueryPipelineStatisticFlags;

typedef VkFlags VkQueryPoolCreateFlags;

typedef VkFlags VkQueryResultFlags;

typedef VkFlags VkQueueFlags;

typedef VkFlags VkRenderPassCreateFlags;

typedef VkFlags VkSampleCountFlags;

typedef VkFlags VkSamplerCreateFlags;

typedef VkFlags VkSemaphoreCreateFlags;

typedef VkFlags VkShaderModuleCreateFlags;

typedef VkFlags VkShaderStageFlags;

679

typedef VkFlags VkSparseImageFormatFlags;

typedef VkFlags VkSparseMemoryBindFlags;

typedef VkFlags VkStencilFaceFlags;

typedef VkFlags VkSubpassDescriptionFlags;

Macro Definitions in vulkan.h

Vulkan is defined as a C API. The supplied vulkan.h header defines a small number of C

preprocessor macros that are described below.

Vulkan Version Number Macros

API Version Numbers are packed into integers. These macros manipulate version numbers in

useful ways.

VK_VERSION_MAJOR extracts the API major version number from a packed version number:

#define VK_VERSION_MAJOR(version) ((uint32_t)(version) >> 22)

VK_VERSION_MINOR extracts the API minor version number from a packed version number:

#define VK_VERSION_MINOR(version) (((uint32_t)(version) >> 12) & 0x3ff)

VK_VERSION_PATCH extracts the API patch version number from a packed version number:

#define VK_VERSION_PATCH(version) ((uint32_t)(version) & 0xfff)

VK_API_VERSION_1_0 returns the API version number for Vulkan 1.0. The patch version number in

this macro will always be zero. The supported patch version for a physical device can be queried

with vkGetPhysicalDeviceProperties.

// Vulkan 1.0 version number

#define VK_API_VERSION_1_0 VK_MAKE_VERSION(1, 0, 0)// Patch version should always be

set to 0

VK_API_VERSION is now commented out of vulkan.h and cannot be used.

680

// DEPRECATED: This define has been removed. Specific version defines (e.g.

VK_API_VERSION_1_0), or the VK_MAKE_VERSION macro, should be used instead.

//#define VK_API_VERSION VK_MAKE_VERSION(1, 0, 0) // Patch version should always be

set to 0

VK_MAKE_VERSION constructs an API version number.

#define VK_MAKE_VERSION(major, minor, patch) \

 (((major) << 22) | ((minor) << 12) | (patch))

• major is the major version number.

• minor is the minor version number.

• patch is the patch version number.

This macro can be used when constructing the VkApplicationInfo::apiVersion parameter passed to

vkCreateInstance.

Vulkan Header File Version Number

VK_HEADER_VERSION is the version number of the vulkan.h header. This value is currently kept

synchronized with the release number of the Specification. However, it is not guaranteed to remain

synchronized, since most Specification updates have no effect on vulkan.h.

// Version of this file

#define VK_HEADER_VERSION 57

Vulkan Handle Macros

VK_DEFINE_HANDLE defines a dispatchable handle type.

#define VK_DEFINE_HANDLE(object) typedef struct object##_T* object;

• object is the name of the resulting C type.

The only dispatchable handle types are those related to device and instance management, such as

VkDevice.

VK_DEFINE_NON_DISPATCHABLE_HANDLE defines a non-dispatchable handle type.

681

#if !defined(VK_DEFINE_NON_DISPATCHABLE_HANDLE)

#if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(

__ILP32__)) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined

(__aarch64__) || defined(__powerpc64__)

 #define VK_DEFINE_NON_DISPATCHABLE_HANDLE(object) typedef struct object##_T

*object;

#else

 #define VK_DEFINE_NON_DISPATCHABLE_HANDLE(object) typedef uint64_t object;

#endif

#endif

• object is the name of the resulting C type.

Most Vulkan handle types, such as VkBuffer, are non-dispatchable.



Note

The vulkan.h header allows the VK_DEFINE_NON_DISPATCHABLE_HANDLE definition to be

overridden by the application. If VK_DEFINE_NON_DISPATCHABLE_HANDLE is already

defined when the vulkan.h header is compiled the default definition is skipped.

This allows the application to define a binary-compatible custom handle which

may provide more type-safety or other features needed by the application.

Behavior is undefined if the application defines a non-binary-compatible handle

and may result in memory corruption or application termination. Binary

compatibility is platform dependent so the application must be careful if it

overrides the default VK_DEFINE_NON_DISPATCHABLE_HANDLE definition.

VK_NULL_HANDLE is a reserved value representing a non-valid object handle. It may be passed to and

returned from Vulkan commands only when specifically allowed.

#define VK_NULL_HANDLE 0

Platform-Specific Macro Definitions in vk_platform.h

Additional platform-specific macros and interfaces are defined using the included vk_platform.h

file. These macros are used to control platform-dependent behavior, and their exact definitions are

under the control of specific platforms and Vulkan implementations.

Platform-Specific Calling Conventions

On many platforms the following macros are empty strings, causing platform- and compiler-

specific default calling conventions to be used.

VKAPI_ATTR is a macro placed before the return type in Vulkan API function declarations. This macro

controls calling conventions for C++11 and GCC/Clang-style compilers.

VKAPI_CALL is a macro placed after the return type in Vulkan API function declarations. This macro

682

controls calling conventions for MSVC-style compilers.

VKAPI_PTR is a macro placed between the '(' and '*' in Vulkan API function pointer declarations. This

macro also controls calling conventions, and typically has the same definition as VKAPI_ATTR or

VKAPI_CALL, depending on the compiler.

Platform-Specific Header Control

If the VK_NO_STDINT_H macro is defined by the application at compile time, extended integer types

used by vulkan.h, such as uint8_t, must also be defined by the application. Otherwise, vulkan.h will

not compile. If VK_NO_STDINT_H is not defined, the system <stdint.h> is used to define these types,

or there is a fallback path when Microsoft Visual Studio version 2008 and earlier versions are

detected at compile time.

Window System-Specific Header Control

To use a Vulkan extension supporting a platform-specific window system, header files for that

window systems must be included at compile time. The Vulkan header files cannot determine

whether or not an external header is available at compile time, so applications wishing to use such

an extension must #define a macro causing such headers to be included. If this is not done, the

corresponding extension interfaces will not be defined and they will be unusable.

The extensions, required compile time symbols to enable them, window systems they correspond

to, and external header files that are included when the macro is #defined are shown in the

following table.

Table 62. Window System Extensions and Required Compile Time Symbol Definitions

Extension Name Required Compile

Time Symbol

Window System Name External Header Files

Used

VK_KHR_android_surfa

ce

VK_USE_PLATFORM_A

NDROID_KHR

Android Native <android/native_windo

w.h>

VK_KHR_mir_surface VK_USE_PLATFORM_M

IR_KHR

Mir <mir_toolkit/client_type

s.h>

VK_KHR_wayland_surf

ace

VK_USE_PLATFORM_W

AYLAND_KHR

Wayland <wayland-client.h>

VK_KHR_win32_surface VK_USE_PLATFORM_W

IN32_KHR

Microsoft Windows <windows.h>

VK_KHR_xcb_surface VK_USE_PLATFORM_XC

B_KHR

X Window System Xcb

library

<xcb/xcb.h>

VK_KHR_xlib_surface VK_USE_PLATFORM_XL

IB_KHR

X Window System Xlib

library

<X11/Xlib.h>

683

Appendix E: Invariance

The Vulkan specification is not pixel exact. It therefore does not guarantee an exact match between

images produced by different Vulkan implementations. However, the specification does specify

exact matches, in some cases, for images produced by the same implementation. The purpose of

this appendix is to identify and provide justification for those cases that require exact matches.

Repeatability

The obvious and most fundamental case is repeated issuance of a series of Vulkan commands. For

any given Vulkan and framebuffer state vector, and for any Vulkan command, the resulting Vulkan

and framebuffer state must be identical whenever the command is executed on that initial Vulkan

and framebuffer state. This repeatability requirement does not apply when using shaders

containing side effects (image and buffer variable stores and atomic operations), because these

memory operations are not guaranteed to be processed in a defined order.

One purpose of repeatability is avoidance of visual artifacts when a double-buffered scene is

redrawn. If rendering is not repeatable, swapping between two buffers rendered with the same

command sequence may result in visible changes in the image. Such false motion is distracting to

the viewer. Another reason for repeatability is testability.

Repeatability, while important, is a weak requirement. Given only repeatability as a requirement,

two scenes rendered with one (small) polygon changed in position might differ at every pixel. Such

a difference, while within the law of repeatability, is certainly not within its spirit. Additional

invariance rules are desirable to ensure useful operation.

Multi-pass Algorithms

Invariance is necessary for a whole set of useful multi-pass algorithms. Such algorithms render

multiple times, each time with a different Vulkan mode vector, to eventually produce a result in the

framebuffer. Examples of these algorithms include:

• “Erasing” a primitive from the framebuffer by redrawing it, either in a different color or using

the XOR logical operation.

• Using stencil operations to compute capping planes.

Invariance Rules

For a given Vulkan device:

Rule 1 For any given Vulkan and framebuffer state vector, and for any given Vulkan command, the

resulting Vulkan and framebuffer state must be identical each time the command is executed on that

initial Vulkan and framebuffer state.

Rule 2 Changes to the following state values have no side effects (the use of any other state value is

not affected by the change):

684

Required:

• Color and depth/stencil attachment contents

• Scissor parameters (other than enable)

• Write masks (color, depth, stencil)

• Clear values (color, depth, stencil)

Strongly suggested:

• Stencil parameters (other than enable)

• Depth test parameters (other than enable)

• Blend parameters (other than enable)

• Logical operation parameters (other than enable)

Corollary 1 Fragment generation is invariant with respect to the state values listed in Rule 2.

Rule 3 The arithmetic of each per-fragment operation is invariant except with respect to parameters

that directly control it.

Corollary 2 Images rendered into different color attachments of the same framebuffer, either

simultaneously or separately using the same command sequence, are pixel identical.

Rule 4 Identical pipelines will produce the same result when run multiple times with the same input.

The wording “Identical pipelines” means VkPipeline objects that have been created with identical

SPIR-V binaries and identical state, which are then used by commands executed using the same

Vulkan state vector. Invariance is relaxed for shaders with side effects, such as performing stores or

atomics.

Rule 5 All fragment shaders that either conditionally or unconditionally assign FragCoord.z to

FragDepth are depth-invariant with respect to each other, for those fragments where the assignment to

FragDepth actually is done.

If a sequence of Vulkan commands specifies primitives to be rendered with shaders containing side

effects (image and buffer variable stores and atomic operations), invariance rules are relaxed. In

particular, rule 1, corollary 2, and rule 4 do not apply in the presence of shader side effects.

The following weaker versions of rules 1 and 4 apply to Vulkan commands involving shader side

effects:

Rule 6 For any given Vulkan and framebuffer state vector, and for any given Vulkan command, the

contents of any framebuffer state not directly or indirectly affected by results of shader image or

buffer variable stores or atomic operations must be identical each time the command is executed on

that initial Vulkan and framebuffer state.

Rule 7 Identical pipelines will produce the same result when run multiple times with the same input

as long as:

• shader invocations do not use image atomic operations;

685

• no framebuffer memory is written to more than once by image stores, unless all such stores write

the same value; and

• no shader invocation, or other operation performed to process the sequence of commands, reads

memory written to by an image store.



Note

The OpenGL spec has the following invariance rule: Consider a primitive p'

obtained by translating a primitive p through an offset (x, y) in window

coordinates, where x and y are integers. As long as neither p' nor p is clipped, it

must be the case that each fragment f' produced from p' is identical to a

corresponding fragment f from p except that the center of f' is offset by (x, y) from

the center of f.

This rule does not apply to Vulkan and is an intentional difference from OpenGL.

When any sequence of Vulkan commands triggers shader invocations that perform image stores or

atomic operations, and subsequent Vulkan commands read the memory written by those shader

invocations, these operations must be explicitly synchronized.

Tessellation Invariance

When using a pipeline containing tessellation evaluation shaders, the fixed-function tessellation

primitive generator consumes the input patch specified by an application and emits a new set of

primitives. The following invariance rules are intended to provide repeatability guarantees.

Additionally, they are intended to allow an application with a carefully crafted tessellation

evaluation shader to ensure that the sets of triangles generated for two adjacent patches have

identical vertices along shared patch edges, avoiding “cracks” caused by minor differences in the

positions of vertices along shared edges.

Rule 1 When processing two patches with identical outer and inner tessellation levels, the tessellation

primitive generator will emit an identical set of point, line, or triangle primitives as long as the

pipeline used to process the patch primitives has tessellation evaluation shaders specifying the same

tessellation mode, spacing, vertex order, and point mode decorations. Two sets of primitives are

considered identical if and only if they contain the same number and type of primitives and the

generated tessellation coordinates for the vertex numbered m of the primitive numbered n are

identical for all values of m and n.

Rule 2 The set of vertices generated along the outer edge of the subdivided primitive in triangle and

quad tessellation, and the tessellation coordinates of each, depends only on the corresponding outer

tessellation level and the spacing decorations in the tessellation shaders of the pipeline.

Rule 3 The set of vertices generated when subdividing any outer primitive edge is always symmetric.

For triangle tessellation, if the subdivision generates a vertex with tessellation coordinates of the form

(0, x, 1-x), (x, 0, 1-x), or (x, 1-x, 0), it will also generate a vertex with coordinates of exactly (0, 1-x, x),

(1-x, 0, x), or (1-x, x, 0), respectively. For quad tessellation, if the subdivision generates a vertex with

coordinates of (x, 0) or (0, x), it will also generate a vertex with coordinates of exactly (1-x, 0) or (0, 1-

x), respectively. For isoline tessellation, if it generates vertices at (0, x) and (1, x) where x is not zero, it

will also generate vertices at exactly (0, 1-x) and (1, 1-x), respectively.

686

Rule 4 The set of vertices generated when subdividing outer edges in triangular and quad tessellation

must be independent of the specific edge subdivided, given identical outer tessellation levels and

spacing. For example, if vertices at (x, 1 - x, 0) and (1-x, x, 0) are generated when subdividing the w = 0

edge in triangular tessellation, vertices must be generated at (x, 0, 1-x) and (1-x, 0, x) when

subdividing an otherwise identical v = 0 edge. For quad tessellation, if vertices at (x, 0) and (1-x, 0) are

generated when subdividing the v = 0 edge, vertices must be generated at (0, x) and (0, 1-x) when

subdividing an otherwise identical u = 0 edge.

Rule 5 When processing two patches that are identical in all respects enumerated in rule 1 except for

vertex order, the set of triangles generated for triangle and quad tessellation must be identical except

for vertex and triangle order. For each triangle n1 produced by processing the first patch, there must

be a triangle n2 produced when processing the second patch each of whose vertices has the same

tessellation coordinates as one of the vertices in n1.

Rule 6 When processing two patches that are identical in all respects enumerated in rule 1 other than

matching outer tessellation levels and/or vertex order, the set of interior triangles generated for

triangle and quad tessellation must be identical in all respects except for vertex and triangle order.

For each interior triangle n1 produced by processing the first patch, there must be a triangle n2

produced when processing the second patch each of whose vertices has the same tessellation

coordinates as one of the vertices in n1. A triangle produced by the tessellator is considered an

interior triangle if none of its vertices lie on an outer edge of the subdivided primitive.

Rule 7 For quad and triangle tessellation, the set of triangles connecting an inner and outer edge

depends only on the inner and outer tessellation levels corresponding to that edge and the spacing

decorations.

Rule 8 The value of all defined components of TessCoord will be in the range [0, 1]. Additionally, for

any defined component x of TessCoord, the results of computing 1.0-x in a tessellation evaluation

shader will be exact. If any floating-point values in the range [0, 1] fail to satisfy this property, such

values must not be used as tessellation coordinate components.

687

Glossary

The terms defined in this section are used consistently throughout this Specification and may be

used with or without capitalization.

Accessible (Descriptor Binding)

A descriptor binding is accessible to a shader stage if that stage is included in the stageFlags of

the descriptor binding. Descriptors using that binding can only be used by stages in which they

are accessible.

Acquire Operation (Resource)

An operation that acquires ownership of an image subresource or buffer range.

Adjacent Vertex

A vertex in an adjacency primitive topology that is not part of a given primitive, but is accessible

in geometry shaders.

Aliased Range (Memory)

A range of a device memory allocation that is bound to multiple resources simultaneously.

Allocation Scope

An association of a host memory allocation to a parent object or command, where the

allocation’s lifetime ends before or at the same time as the parent object is freed or destroyed, or

during the parent command.

API Order

A set of ordering rules that govern how primitives in draw commands affect the framebuffer.

Aspect (Image)

An image may contain multiple kinds, or aspects, of data for each pixel, where each aspect is

used in a particular way by the pipeline and may be stored differently or separately from other

aspects. For example, the color components of an image format make up the color aspect of the

image, and may be used as a framebuffer color attachment. Some operations, like depth testing,

operate only on specific aspects of an image. Others operations, like image/buffer copies, only

operate on one aspect at a time.

Attachment (Render Pass)

A zero-based integer index name used in render pass creation to refer to a framebuffer

attachment that is accessed by one or more subpasses. The index also refers to an attachment

description which includes information about the properties of the image view that will later be

attached.

Availability Operation

An operation that causes the values generated by specified memory write accesses to become

available for future access.

Available

688

A state of values written to memory that allows them to be made visible.

Back-Facing

See Facingness.

Batch

A single structure submitted to a queue as part of a queue submission command, describing a

set of queue operations to execute.

Backwards Compatibility

A given version of the API is backwards compatible with an earlier version if an application,

relying only on valid behavior and functionality defined by the earlier specification, is able to

correctly run against each version without any modification. This assumes no active attempt by

that application to not run when it detects a different version.

Full Compatibility

A given version of the API is fully compatible with another version if an application, relying only

on valid behavior and functionality defined by either of those specifications, is able to correctly

run against each version without any modification. This assumes no active attempt by that

application to not run when it detects a different version.

Binding (Memory)

An association established between a range of a resource object and a range of a memory object.

These associations determine the memory locations affected by operations performed on

elements of a resource object. Memory bindings are established using the vkBindBufferMemory

command for non-sparse buffer objects, using the vkBindImageMemory command for non-

sparse image objects, and using the vkQueueBindSparse command for sparse resources.

Blend Constant

Four floating point (RGBA) values used as an input to blending.

Blending

Arithmetic operations between a fragment color value and a value in a color attachment that

produce a final color value to be written to the attachment.

Buffer

A resource that represents a linear array of data in device memory. Represented by a VkBuffer

object.

Buffer View

An object that represents a range of a specific buffer, and state that controls how the contents

are interpreted. Represented by a VkBufferView object.

Built-In Variable

A variable decorated in a shader, where the decoration makes the variable take values provided

by the execution environment or values that are generated by fixed-function pipeline stages.

Built-In Interface Block

689

A block defined in a shader that contains only variables decorated with built-in decorations, and

is used to match against other shader stages.

Clip Coordinates

The homogeneous coordinate space that vertex positions (Position decoration) are written in by

vertex processing stages.

Clip Distance

A built-in output from vertex processing stages that defines a clip half-space against which the

primitive is clipped.

Clip Volume

The intersection of the view volume with all clip half-spaces.

Color Attachment

A subpass attachment point, or image view, that is the target of fragment color outputs and

blending.

Color Renderable Format

A VkFormat where VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT is set in the optimalTilingFeatures or

linearTilingFeatures field of VkFormatProperties::optimalTilingFeatures returned by

vkGetPhysicalDeviceFormatProperties, depending on the tiling used.

Color Sample Mask

A bitfield associated with a fragment, with one bit for each sample in the color attachment(s).

Samples are considered to be covered based on the result of the Coverage Reduction stage.

Uncovered samples do not write to color attachments.

Combined Image Sampler

A descriptor type that includes both a sampled image and a sampler.

Command Buffer

An object that records commands to be submitted to a queue. Represented by a

VkCommandBuffer object.

Command Pool

An object that command buffer memory is allocated from, and that owns that memory.

Command pools aid multithreaded performance by enabling different threads to use different

allocators, without internal synchronization on each use. Represented by a VkCommandPool

object.

Compatible Allocator

When allocators are compatible, allocations from each allocator can be freed by the other

allocator.

Compatible Image Formats

When formats are compatible, images created with one of the formats can have image views

created from it using any of the compatible formats.

690

Compatible Queues

Queues within a queue family. Compatible queues have identical properties.

Component (Format)

A distinct part of a format. Depth, stencil, and color channels (e.g. R, G, B, A), are all separate

components.

Compressed Texel Block

An element of an image having a block-compressed format, comprising a rectangular block of

texel values that are encoded as a single value in memory. Compressed texel blocks of a

particular block-compressed format have a corresponding width, height, and depth that define

the dimensions of these elements in units of texels, and a size in bytes of the encoding in

memory.

Coverage

A bitfield associated with a fragment, where each bit is associated to a rasterization sample.

Samples are initially considered to be covered based on the result of rasterization, and then

coverage can subsequently be turned on or off by other fragment operations or the fragment

shader. Uncovered samples do not write to framebuffer attachments.

Cull Distance

A built-in output from vertex processing stages that defines a cull half-space where the primitive

is rejected if all vertices have a negative value for the same cull distance.

Cull Volume

The intersection of the view volume with all cull half-spaces.

Decoration (SPIR-V)

Auxiliary information such as built-in variables, stream numbers, invariance, interpolation type,

relaxed precision, etc., added to variables or structure-type members through decorations.

Depth/Stencil Attachment

A subpass attachment point, or image view, that is the target of depth and/or stencil test

operations and writes.

Depth/Stencil Format

A VkFormat that includes depth and/or stencil components.

Depth/Stencil Image (or ImageView)

A VkImage (or VkImageView) with a depth/stencil format.

Derivative Group

A set of fragment shader invocations that cooperate to compute derivatives, including implicit

derivatives for sampled image operations.

Descriptor

Information about a resource or resource view written into a descriptor set that is used to access

the resource or view from a shader.

691

Descriptor Binding

An entry in a descriptor set layout corresponding to zero or more descriptors of a single

descriptor type in a set. Defined by a VkDescriptorSetLayoutBinding structure.

Descriptor Pool

An object that descriptor sets are allocated from, and that owns the storage of those descriptor

sets. Descriptor pools aid multithreaded performance by enabling different threads to use

different allocators, without internal synchronization on each use. Represented by a

VkDescriptorPool object.

Descriptor Set

An object that resource descriptors are written into via the API, and that can be bound to a

command buffer such that the descriptors contained within it can be accessed from shaders.

Represented by a VkDescriptorSet object.

Descriptor Set Layout

An object that defines the set of resources (types and counts) and their relative arrangement (in

the binding namespace) within a descriptor set. Used when allocating descriptor sets and when

creating pipeline layouts. Represented by a VkDescriptorSetLayout object.

Device

The processor(s) and execution environment that perform tasks requested by the application via

the Vulkan API.

Device Memory

Memory accessible to the device. Represented by a VkDeviceMemory object.

Device-Level Object

Logical device objects and their child objects For example, VkDevice, VkQueue, and

VkCommandBuffer objects are device-level objects.

Device-Local Memory

Memory that is connected to the device, and may be more performant for device access than

host-local memory.

Direct Drawing Commands

Drawing commands that take all their parameters as direct arguments to the command (and not

sourced via structures in buffer memory as the indirect drawing commands). Includes

vkCmdDraw, and vkCmdDrawIndexed.

Dispatchable Handle

A handle of a pointer handle type which may be used by layers as part of intercepting API

commands. The first argument to each Vulkan command is a dispatchable handle type.

Dispatching Commands

Commands that provoke work using a compute pipeline. Includes vkCmdDispatch and

vkCmdDispatchIndirect.

692

Drawing Commands

Commands that provoke work using a graphics pipeline. Includes vkCmdDraw,

vkCmdDrawIndexed, vkCmdDrawIndirect, and vkCmdDrawIndexedIndirect.

Duration (Command)

The duration of a Vulkan command refers to the interval between calling the command and its

return to the caller.

Dynamic Storage Buffer

A storage buffer whose offset is specified each time the storage buffer is bound to a command

buffer via a descriptor set.

Dynamic Uniform Buffer

A uniform buffer whose offset is specified each time the uniform buffer is bound to a command

buffer via a descriptor set.

Dynamically Uniform

See Dynamically Uniform in section 2.2 “Terms” of the Khronos SPIR-V Specification.

Element Size

The size (in bytes) used to store one element of an uncompressed format or the size (in bytes)

used to store one block of a block-compressed format.

Explicitly-Enabled Layer

A layer enabled by the application by adding it to the enabled layer list in vkCreateInstance or

vkCreateDevice.

Event

A synchronization primitive that is signaled when execution of previous commands complete

through a specified set of pipeline stages. Events can be waited on by the device and polled by

the host. Represented by a VkEvent object.

Executable State (Command Buffer)

A command buffer that has ended recording commands and can be executed. See also Initial

State and Recording State.

Execution Dependency

A dependency that guarantees that certain pipeline stages' work for a first set of commands has

completed execution before certain pipeline stages' work for a second set of commands begins

execution. This is accomplished via pipeline barriers, subpass dependencies, events, or implicit

ordering operations.

Execution Dependency Chain

A sequence of execution dependencies that transitively act as a single execution dependency.

Extension Scope

The set of objects and commands that can be affected by an extension. Extensions are either

device scope or instance scope.

693

External synchronization

A type of synchronization required of the application, where parameters defined to be

externally synchronized must not be used simultaneously in multiple threads.

Facingness (Polygon)

A classification of a polygon as either front-facing or back-facing, depending on the orientation

(winding order) of its vertices.

Facingness (Fragment)

A fragment is either front-facing or back-facing, depending on the primitive it was generated

from. If the primitive was a polygon (regardless of polygon mode), the fragment inherits the

facingness of the polygon. All other fragments are front-facing.

Fence

A synchronization primitive that is signaled when a set of batches or sparse binding operations

complete execution on a queue. Fences can be waited on by the host. Represented by a VkFence

object.

Flat Shading

A property of a vertex attribute that causes the value from a single vertex (the provoking vertex)

to be used for all vertices in a primitive, and for interpolation of that attribute to return that

single value unaltered.

Fragment Input Attachment Interface

A fragment shader entry point’s variables with UniformConstant storage class and a decoration of

InputAttachmentIndex, which receive values from input attachments.

Fragment Output Interface

A fragment shader entry point’s variables with Output storage class, which output to color and/or

depth/stencil attachments.

Framebuffer

A collection of image views and a set of dimensions that, in conjunction with a render pass,

define the inputs and outputs used by drawing commands. Represented by a VkFramebuffer

object.

Framebuffer Attachment

One of the image views used in a framebuffer.

Framebuffer Coordinates

A coordinate system in which adjacent pixels' coordinates differ by 1 in x and/or y, with (0,0) in

the upper left corner and pixel centers at half-integers.

Framebuffer-Space

Operating with respect to framebuffer coordinates.

Framebuffer-Local

A framebuffer-local dependency guarantees that only for a single framebuffer region, the first

694

set of operations happens-before the second set of operations.

Framebuffer-Global

A framebuffer-global dependency guarantees that for all framebuffer regions, the first set of

operations happens-before the second set of operations.

Framebuffer Region

A framebuffer region is a set of sample (x, y, layer, sample) coordinates that is a subset of the

entire framebuffer.

Front-Facing

See Facingness.

Global Workgroup

A collection of local workgroups dispatched by a single dispatch command.

Handle

An opaque integer or pointer value used to refer to a Vulkan object. Each object type has a

unique handle type.

Happen-after

A transitive, irreflexive and antisymmetric ordering relation between operations. An execution

dependency with a source of A and a destination of B enforces that B happens-after A. The

inverse relation of happens-before.

Happen-before

A transitive, irreflexive and antisymmetric ordering relation between operations. An execution

dependency with a source of A and a destination of B enforces that A happens-before B. The

inverse relation of happens-after.

Helper Invocation

A fragment shader invocation that is created solely for the purposes of evaluating derivatives for

use in non-helper fragment shader invocations, and which does not have side effects.

Host

The processor(s) and execution environment that the application runs on, and that the Vulkan

API is exposed on.

Host Memory

Memory not accessible to the device, used to store implementation data structures.

Host-Accessible Subresource

A buffer, or a linear image subresource in either the VK_IMAGE_LAYOUT_PREINITIALIZED or

VK_IMAGE_LAYOUT_GENERAL layout. Host-accessible subresources have a well-defined addressing

scheme which can be used by the host.

Host-Local Memory

Memory that is not local to the device, and may be less performant for device access than

695

device-local memory.

Host-Visible Memory

Device memory that can be mapped on the host and can be read and written by the host.

Identically Defined Objects

Objects of the same type where all arguments to their creation or allocation functions, with the

exception of pAllocator, are

1. Vulkan handles which refer to the same object or

2. identical scalar or enumeration values or

3. CPU pointers which point to an array of values or structures which also satisfy these three

constraints.

Image

A resource that represents a multi-dimensional formatted interpretation of device memory.

Represented by a VkImage object.

Image Subresource

A specific mipmap level and layer of an image.

Image Subresource Range

A set of image subresources that are contiguous mipmap levels and layers.

Image View

An object that represents an image subresource range of a specific image, and state that controls

how the contents are interpreted. Represented by a VkImageView object.

Immutable Sampler

A sampler descriptor provided at descriptor set layout creation time, and that is used for that

binding in all descriptor sets allocated from the layout, and cannot be changed.

Implicitly-Enabled Layer

A layer enabled by a loader-defined mechanism outside the Vulkan API, rather than explicitly by

the application during instance or device creation.

Index Buffer

A buffer bound via vkCmdBindIndexBuffer which is the source of index values used to fetch

vertex attributes for a vkCmdDrawIndexed or vkCmdDrawIndexedIndirect command.

Indexed Drawing Commands

Drawing commands which use an index buffer as the source of index values used to fetch vertex

attributes for a drawing command. Includes vkCmdDrawIndexed, and

vkCmdDrawIndexedIndirect.

Indirect Commands

Drawing or dispatching commands that source some of their parameters from structures in

buffer memory. Includes vkCmdDrawIndirect, vkCmdDrawIndexedIndirect, and

696

vkCmdDispatchIndirect.

Indirect Drawing Commands

Drawing commands that source some of their parameters from structures in buffer memory.

Includes vkCmdDrawIndirect, and vkCmdDrawIndexedIndirect.

Initial State (Command Buffer)

A command buffer that has not begun recording commands. See also Recorded State and

Executable State.

Input Attachment

A descriptor type that represents an image view, and supports unfiltered read-only access in a

shader, only at the fragment’s location in the view.

Instance

The top-level Vulkan object, which represents the application’s connection to the

implementation. Represented by a VkInstance object.

Instance-Level Object

High-level Vulkan objects, which are not logical devices, nor children of logical devices. For

example, VkInstance and VkPhysicalDevice objects are instance-level objects.

Internal Synchronization

A type of synchronization required of the implementation, where parameters not defined to be

externally synchronized may require internal mutexing to avoid multithreaded race conditions.

Invocation (Shader)

A single execution of an entry point in a SPIR-V module. For example, a single vertex’s execution

of a vertex shader or a single fragment’s execution of a fragment shader.

Invocation Group

A set of shader invocations that are executed in parallel and that must execute the same control

flow path in order for control flow to be considered dynamically uniform.

Linear Resource

A resource is linear if it is a VkBuffer, or a VkImage created with VK_IMAGE_TILING_LINEAR. A

resource is non-linear if it is a VkImage created with VK_IMAGE_TILING_OPTIMAL.

Local Workgroup

A collection of compute shader invocations invoked by a single dispatch command, which share

shared memory and can synchronize with each other.

Logical Device

An object that represents the application’s interface to the physical device. The logical device is

the parent of most Vulkan objects. Represented by a VkDevice object.

Logical Operation

Bitwise operations between a fragment color value and a value in a color attachment, that

697

produce a final color value to be written to the attachment.

Lost Device

A state that a logical device may be in as a result of hardware errors or other exceptional

conditions.

Mappable

See Host-Visible Memory.

Memory Dependency

A memory dependency is an execution dependency which includes availability and visibility

operations such that:

• The first set of operations happens-before the availability operation

• The availability operation happens-before the visibility operation

• The visibility operation happens-before the second set of operations

Memory Heap

A region of memory from which device memory allocations can be made.

Memory Type

An index used to select a set of memory properties (e.g. mappable, cached) for a device memory

allocation.

Mip Tail Region

The set of mipmap levels of a sparse residency texture that are too small to fill a sparse block,

and that must all be bound to memory collectively and opaquely.

Non-Dispatchable Handle

A handle of an integer handle type. Handle values may not be unique, even for two objects of

the same type.

Non-Indexed Drawing Commands

Drawing commands for which the vertex attributes are sourced in linear order from the vertex

input attributes for a drawing command (i.e. they do not use an index buffer). Includes

vkCmdDraw, and vkCmdDrawIndirect.

Normalized

A value that is interpreted as being in the range [0,1] as a result of being implicitly divided by

some other value.

Normalized Device Coordinates

A coordinate space after perspective division is applied to clip coordinates, and before the

viewport transformation converts to framebuffer coordinates.

Overlapped Range (Aliased Range)

The aliased range of a device memory allocation that intersects a given image subresource of an

image or range of a buffer.

698

Ownership (Resource)

If an entity (e.g. a queue family) has ownership of a resource, access to that resource is well-

defined for access by that entity.

Packed Format

A format whose components are stored as a single data element in memory, with their relative

locations defined within that element.

Physical Device

An object that represents a single device in the system. Represented by a VkPhysicalDevice

object.

Pipeline

An object that controls how graphics or compute work is executed on the device. A pipeline

includes one or more shaders, as well as state controlling any non-programmable stages of the

pipeline. Represented by a VkPipeline object.

Pipeline Barrier

An execution and/or memory dependency recorded as an explicit command in a command

buffer, that forms a dependency between the previous and subsequent commands.

Pipeline Cache

An object that can be used to collect and retrieve information from pipelines as they are created,

and can be populated with previously retrieved information in order to accelerate pipeline

creation. Represented by a VkPipelineCache object.

Pipeline Layout

An object that defines the set of resources (via a collection of descriptor set layouts) and push

constants used by pipelines that are created using the layout. Used when creating a pipeline and

when binding descriptor sets and setting push constant values. Represented by a

VkPipelineLayout object.

Pipeline Stage

A logically independent execution unit that performs some of the operations defined by an

action command.

pNext Chain

A set of structures chained together through their pNext members.

Point Sampling (Rasterization)

A rule that determines whether a fragment sample location is covered by a polygon primitive by

testing whether the sample location is in the interior of the polygon in framebuffer-space, or on

the boundary of the polygon according to the tie-breaking rules.

Preserve Attachment

One of a list of attachments in a subpass description that is not read or written by the subpass,

but that is read or written on earlier and later subpasses and whose contents must be preserved

through this subpass.

699

Primary Command Buffer

A command buffer that can execute secondary command buffers, and can be submitted directly

to a queue.

Primitive Topology

State that controls how vertices are assembled into primitives, e.g. as lists of triangles, strips of

lines, etc..

Provoking Vertex

The vertex in a primitive from which flat shaded attribute values are taken. This is generally the

“first” vertex in the primitive, and depends on the primitive topology.

Push Constants

A small bank of values writable via the API and accessible in shaders. Push constants allow the

application to set values used in shaders without creating buffers or modifying and binding

descriptor sets for each update.

Push Constant Interface

The set of variables with PushConstant storage class that are statically used by a shader entry

point, and which receive values from push constant commands.

Query Pool

An object that contains a number of query entries and their associated state and results.

Represented by a VkQueryPool object.

Queue

An object that executes command buffers and sparse binding operations on a device.

Represented by a VkQueue object.

Queue Family

A set of queues that have common properties and support the same functionality, as advertised

in VkQueueFamilyProperties.

Queue Operation

A unit of work to be executed by a specific queue on a device, submitted via a queue submission

command. Each queue submission command details the specific queue operations that occur as

a result of calling that command. Queue operations typically include work that is specific to each

command, and synchronization tasks.

Queue Submission

Zero or more batches and an optional fence to be signaled, passed to a command for execution

on a queue. See the Devices and Queues chapter for more information.

Recording State (Command Buffer)

A command buffer that is ready to record commands. See also Initial State and Executable State.

Release Operation (Resource)

An operation that releases ownership of an image subresource or buffer range.

700

Render Pass

An object that represents a set of framebuffer attachments and phases of rendering using those

attachments. Represented by a VkRenderPass object.

Render Pass Instance

A use of a render pass in a command buffer.

Required Extensions

Extensions which must be enabled to use a specific enabled extension (see Extension

Dependencies).

Reset (Command Buffer)

Resetting a command buffer discards any previously recorded commands and puts a command

buffer in the initial state.

Residency Code

An integer value returned by sparse image instructions, indicating whether any sparse unbound

texels were accessed.

Resolve Attachment

A subpass attachment point, or image view, that is the target of a multisample resolve operation

from the corresponding color attachment at the end of the subpass.

Sampled Image

A descriptor type that represents an image view, and supports filtered (sampled) and unfiltered

read-only acccess in a shader.

Sampler

An object that contains state that controls how sampled image data is sampled (or filtered) when

accessed in a shader. Also a descriptor type describing the object. Represented by a VkSampler

object.

Secondary Command Buffer

A command buffer that can be executed by a primary command buffer, and must not be

submitted directly to a queue.

Self-Dependency

A subpass dependency from a subpass to itself, i.e. with srcSubpass equal to dstSubpass. A self-

dependency is not automatically performed during a render pass instance, rather a subset of it

can be performed via vkCmdPipelineBarrier during the subpass.

Semaphore

A synchronization primitive that supports signal and wait operations, and can be used to

synchronize operations within a queue or across queues. Represented by a VkSemaphore object.

Shader

Instructions selected (via an entry point) from a shader module, which are executed in a shader

stage.

701

Shader Code

A stream of instructions used to describe the operation of a shader.

Shader Module

A collection of shader code, potentially including several functions and entry points, that is used

to create shaders in pipelines. Represented by a VkShaderModule object.

Shader Stage

A stage of the graphics or compute pipeline that executes shader code.

Side Effect

A store to memory or atomic operation on memory from a shader invocation.

Sparse Block

An element of a sparse resource that can be independently bound to memory. Sparse blocks of a

particular sparse resource have a corresponding size in bytes that they use in the bound

memory.

Sparse Image Block

A sparse block in a sparse partially-resident image. In addition to the sparse block size in bytes,

sparse image blocks have a corresponding width, height, and depth that define the dimensions

of these elements in units of texels or compressed texel blocks, the latter being used in case of

sparse images having a block-compressed format.

Sparse Unbound Texel

A texel read from a region of a sparse texture that does not have memory bound to it.

Static Use

An object in a shader is statically used by a shader entry point if any function in the entry point’s

call tree contains an instruction using the object. Static use is used to constrain the set of

descriptors used by a shader entry point.

Storage Buffer

A descriptor type that represents a buffer, and supports reads, writes, and atomics in a shader.

Storage Image

A descriptor type that represents an image view, and supports unfiltered loads, stores, and

atomics in a shader.

Storage Texel Buffer

A descriptor type that represents a buffer view, and supports unfiltered, formatted reads, writes,

and atomics in a shader.

Subpass

A phase of rendering within a render pass, that reads and writes a subset of the attachments.

Subpass Dependency

An execution and/or memory dependency between two subpasses described as part of render

702

pass creation, and automatically performed between subpasses in a render pass instance. A

subpass dependency limits the overlap of execution of the pair of subpasses, and can provide

guarantees of memory coherence between accesses in the subpasses.

Subpass Description

Lists of attachment indices for input attachments, color attachments, depth/stencil attachment,

resolve attachments, and preserve attachments used by the subpass in a render pass.

Subset (Self-Dependency)

A subset of a self-dependency is a pipeline barrier performed during the subpass of the self-

dependency, and whose stage masks and access masks each contain a subset of the bits set in the

identically named mask in the self-dependency.

Texel Coordinate System

One of three coordinate systems (normalized, unnormalized, integer) that define how texel

coordinates are interpreted in an image or a specific mipmap level of an image.

Uniform Texel Buffer

A descriptor type that represents a buffer view, and supports unfiltered, formatted, read-only

access in a shader.

Uniform Buffer

A descriptor type that represents a buffer, and supports read-only access in a shader.

Unnormalized

A value that is interpreted according to its conventional interpretation, and is not normalized.

User-Defined Variable Interface

A shader entry point’s variables with Input or Output storage class that are not built-in variables.

Vertex Input Attribute

A graphics pipeline resource that produces input values for the vertex shader by reading data

from a vertex input binding and converting it to the attribute’s format.

Vertex Input Binding

A graphics pipeline resource that is bound to a buffer and includes state that affects addressing

calculations within that buffer.

Vertex Input Interface

A vertex shader entry point’s variables with Input storage class, which receive values from

vertex input attributes.

Vertex Processing Stages

A set of shader stages that comprises the vertex shader, tessellation control shader, tessellation

evaluation shader, and geometry shader stages.

View Volume

A subspace in homogeneous coordinates, corresponding to post-projection x and y values

703

between -1 and +1, and z values between 0 and +1.

Viewport Transformation

A transformation from normalized device coordinates to framebuffer coordinates, based on a

viewport rectangle and depth range.

Visibility Operation

An operation that causes available values to become visible to specified memory accesses.

Visible

A state of values written to memory that allows them to be accessed by a set of operations.

704

Common Abbreviations

Abbreviations and acronyms are sometimes used in the Specification and the API where they are

considered clear and commonplace, and are defined here:

Src

Source

Dst

Destination

Min

Minimum

Max

Maximum

Rect

Rectangle

Info

Information

LOD

Level of Detail

ID

Identifier

UUID

Universally Unique Identifier

Op

Operation

R

Red color component

G

Green color component

B

Blue color component

A

Alpha color component

705

Prefixes

Prefixes are used in the API to denote specific semantic meaning of Vulkan names, or as a label to

avoid name clashes, and are explained here:

VK/Vk/vk

Vulkan namespace

All types, commands, enumerants and defines in this specification are prefixed with these two

characters.

PFN/pfn

Function Pointer

Denotes that a type is a function pointer, or that a variable is of a pointer type.

p

Pointer

Variable is a pointer.

vkCmd

Commands that record commands in command buffers

These API commands do not result in immediate processing on the device. Instead, they record

the requested action in a command buffer for execution when the command buffer is submitted

to a queue.

s

Structure

Used to denote the VK_STRUCTURE_TYPE* member of each structure in sType

706

Appendix F: Credits

Vulkan 1.0 is the result of contributions from many people and companies participating in the

Khronos Vulkan Working Group, as well as input from the Vulkan Advisory Panel.

Members of the Working Group, including the company that they represented at the time of their

contributions, are listed below. Some specific contributions made by individuals are listed together

with their name.

• Adam Jackson, Red Hat

• Adam Śmigielski, Mobica

• Alex Bourd, Qualcomm Technologies, Inc.

• Alexander Galazin, ARM

• Allen Hux, Intel

• Alon Or-bach, Samsung Electronics (WSI technical sub-group chair)

• Andrew Cox, Samsung Electronics

• Andrew Garrard, Samsung Electronics (format wrangler)

• Andrew Poole, Samsung Electronics

• Andrew Rafter, Samsung Electronics

• Andrew Richards, Codeplay Software Ltd.

• Andrew Woloszyn, Google

• Antoine Labour, Google

• Aras Pranckevičius, Unity

• Ashwin Kolhe, NVIDIA

• Ben Bowman, Imagination Technologies

• Benj Lipchak

• Bill Hollings, The Brenwill Workshop

• Bill Licea-Kane, Qualcomm Technologies, Inc.

• Brent E. Insko, Intel

• Brian Ellis, Qualcomm Technologies, Inc.

• Cass Everitt, Oculus VR

• Cemil Azizoglu, Canonical

• Chad Versace, Intel

• Chang-Hyo Yu, Samsung Electronics

• Chia-I Wu, LunarG

• Chris Frascati, Qualcomm Technologies, Inc.

• Christophe Riccio, Unity

707

• Cody Northrop, LunarG

• Courtney Goeltzenleuchter, LunarG

• Damien Leone, NVIDIA

• Dan Baker, Oxide Games

• Dan Ginsburg, Valve

• Daniel Johnston, Intel

• Daniel Koch, NVIDIA (Shader Interfaces; Features, Limits, and Formats)

• Daniel Rakos, AMD

• David Airlie, Red Hat

• David Neto, Google

• David Mao, AMD

• David Yu, Pixar

• Dominik Witczak, AMD

• Frank (LingJun) Chen, Qualcomm Technologies, Inc.

• Fred Liao, Mediatek

• Gabe Dagani, Freescale

• Graeme Leese, Broadcom

• Graham Connor, Imagination Technologies

• Graham Sellers, AMD

• Hwanyong Lee, Kyungpook National University

• Ian Elliott, LunarG

• Ian Romanick, Intel

• James Jones, NVIDIA

• James Hughes, Oculus VR

• Jan Hermes, Continental Corporation

• Jan-Harald Fredriksen, ARM

• Jason Ekstrand, Intel

• Jeff Bolz, NVIDIA (extensive contributions, exhaustive review and rewrites for technical

correctness)

• Jeff Juliano, NVIDIA

• Jeff Vigil, Qualcomm Technologies, Inc.

• Jens Owen, LunarG

• Jeremy Hayes, LunarG

• Jesse Barker, ARM

• Jesse Hall, Google

708

• Johannes van Waveren, Oculus VR

• John Kessenich, Google (SPIR-V and GLSL for Vulkan spec author)

• John McDonald, Valve

• Jon Ashburn, LunarG

• Jon Leech, Independent (XML toolchain, normative language, release wrangler)

• Jonas Gustavsson, Sony Mobile

• Jonathan Hamilton, Imagination Technologies

• Jungwoo Kim, Samsung Electronics

• Kenneth Benzie, Codeplay Software Ltd.

• Kerch Holt, NVIDIA (SPIR-V technical sub-group chair)

• Kristian Kristensen, Intel

• Krzysztof Iwanicki, Samsung Electronics

• Larry Seiler, Intel

• Lutz Latta, Lucasfilm

• Maria Rovatsou, Codeplay Software Ltd.

• Mark Callow

• Mark Lobodzinski, LunarG

• Mateusz Przybylski, Intel

• Mathias Heyer, NVIDIA

• Mathias Schott, NVIDIA

• Maxim Lukyanov, Samsung Electronics

• Maurice Ribble, Qualcomm Technologies, Inc.

• Michael Lentine, Google

• Michael Worcester, Imagination Technologies

• Michal Pietrasiuk, Intel

• Mika Isojarvi, Google

• Mike Stroyan, LunarG

• Minyoung Son, Samsung Electronics

• Mitch Singer, AMD

• Mythri Venugopal, Samsung Electronics

• Naveen Leekha, Google

• Neil Henning, Codeplay Software Ltd.

• Neil Trevett, NVIDIA

• Nick Penwarden, Epic Games

• Niklas Smedberg, Epic Games

709

• Norbert Nopper, Freescale

• Pat Brown, NVIDIA

• Patrick Doane, Blizzard Entertainment

• Peter Lohrmann, Valve

• Pierre Boudier, NVIDIA

• Pierre-Loup A. Griffais, Valve

• Piers Daniell, NVIDIA (dynamic state, copy commands, memory types)

• Piotr Bialecki, Intel

• Prabindh Sundareson, Samsung Electronics

• Pyry Haulos, Google (Vulkan conformance test subcommittee chair)

• Ray Smith, ARM

• Rob Stepinski, Transgaming

• Robert J. Simpson, Qualcomm Technologies, Inc.

• Rolando Caloca Olivares, Epic Games

• Roy Ju, Mediatek

• Rufus Hamede, Imagination Technologies

• Sean Ellis, ARM

• Sean Harmer, KDAB

• Shannon Woods, Google

• Slawomir Cygan, Intel

• Slawomir Grajewski, Intel

• Stefanus Du Toit, Google

• Steve Hill, Broadcom

• Steve Viggers, Core Avionics & Industrial Inc.

• Stuart Smith, Imagination Technologies

• Tim Foley, Intel

• Timo Suoranta, AMD

• Timothy Lottes, AMD

• Tobias Hector, Imagination Technologies (validity language and toolchain)

• Tobin Ehlis, LunarG

• Tom Olson, ARM (working group chair)

• Tomasz Kubale, Intel

• Tony Barbour, LunarG

• Wayne Lister, Imagination Technologies

• Yanjun Zhang, Vivante

710

• Zhenghong Wang, Mediatek

In addition to the Working Group, the Vulkan Advisory Panel members provided important real-

world usage information and advice that helped guide design decisions.

Administrative support to the Working Group was provided by members of Gold Standard Group,

including Andrew Riegel, Elizabeth Riegel, Glenn Fredericks, Kathleen Mattson and Michelle Clark.

Technical support was provided by James Riordon, webmaster of Khronos.org and OpenGL.org.

711

	Vulkan® 1.0.57 - A Specification
	Table of Contents
	Chapter 1. Introduction
	1.1. What is the Vulkan Graphics System?
	1.2. Filing Bug Reports
	1.3. Terminology
	1.4. Normative References

	Chapter 2. Fundamentals
	2.1. Architecture Model
	2.2. Execution Model
	2.3. Object Model
	2.4. Command Syntax and Duration
	2.5. Threading Behavior
	2.6. Errors
	2.7. Numeric Representation and Computation
	2.8. Fixed-Point Data Conversions
	2.9. API Version Numbers and Semantics
	2.10. Common Object Types

	Chapter 3. Initialization
	3.1. Command Function Pointers
	3.2. Instances

	Chapter 4. Devices and Queues
	4.1. Physical Devices
	4.2. Devices
	4.3. Queues

	Chapter 5. Command Buffers
	5.1. Command Buffer Lifecycle
	5.2. Command Pools
	5.3. Command Buffer Allocation and Management
	5.4. Command Buffer Recording
	5.5. Command Buffer Submission
	5.6. Queue Forward Progress
	5.7. Secondary Command Buffer Execution

	Chapter 6. Synchronization and Cache Control
	6.1. Execution and Memory Dependencies
	6.2. Implicit Synchronization Guarantees
	6.3. Fences
	6.4. Semaphores
	6.5. Events
	6.6. Pipeline Barriers
	6.7. Memory Barriers
	6.8. Wait Idle Operations
	6.9. Host Write Ordering Guarantees

	Chapter 7. Render Pass
	7.1. Render Pass Creation
	7.2. Render Pass Compatibility
	7.3. Framebuffers
	7.4. Render Pass Commands

	Chapter 8. Shaders
	8.1. Shader Modules
	8.2. Shader Execution
	8.3. Shader Memory Access Ordering
	8.4. Shader Inputs and Outputs
	8.5. Vertex Shaders
	8.6. Tessellation Control Shaders
	8.7. Tessellation Evaluation Shaders
	8.8. Geometry Shaders
	8.9. Fragment Shaders
	8.10. Compute Shaders
	8.11. Interpolation Decorations
	8.12. Static Use
	8.13. Invocation and Derivative Groups

	Chapter 9. Pipelines
	9.1. Compute Pipelines
	9.2. Graphics Pipelines
	9.3. Pipeline destruction
	9.4. Multiple Pipeline Creation
	9.5. Pipeline Derivatives
	9.6. Pipeline Cache
	9.7. Specialization Constants
	9.8. Pipeline Binding

	Chapter 10. Memory Allocation
	10.1. Host Memory
	10.2. Device Memory

	Chapter 11. Resource Creation
	11.1. Buffers
	11.2. Buffer Views
	11.3. Images
	11.4. Image Layouts
	11.5. Image Views
	11.6. Resource Memory Association
	11.7. Resource Sharing Mode
	11.8. Memory Aliasing

	Chapter 12. Samplers
	Chapter 13. Resource Descriptors
	13.1. Descriptor Types
	13.2. Descriptor Sets

	Chapter 14. Shader Interfaces
	14.1. Shader Input and Output Interfaces
	14.2. Vertex Input Interface
	14.3. Fragment Output Interface
	14.4. Fragment Input Attachment Interface
	14.5. Shader Resource Interface
	14.6. Built-In Variables

	Chapter 15. Image Operations
	15.1. Image Operations Overview
	15.2. Conversion Formulas
	15.3. Texel Input Operations
	15.4. Texel Output Operations
	15.5. Derivative Operations
	15.6. Normalized Texel Coordinate Operations
	15.7. Unnormalized Texel Coordinate Operations
	15.8. Image Sample Operations
	15.9. Image Operation Steps

	Chapter 16. Queries
	16.1. Query Pools
	16.2. Query Operation
	16.3. Occlusion Queries
	16.4. Pipeline Statistics Queries
	16.5. Timestamp Queries

	Chapter 17. Clear Commands
	17.1. Clearing Images Outside A Render Pass Instance
	17.2. Clearing Images Inside A Render Pass Instance
	17.3. Clear Values
	17.4. Filling Buffers
	17.5. Updating Buffers

	Chapter 18. Copy Commands
	18.1. Common Operation
	18.2. Copying Data Between Buffers
	18.3. Copying Data Between Images
	18.4. Copying Data Between Buffers and Images
	18.5. Image Copies with Scaling
	18.6. Resolving Multisample Images

	Chapter 19. Drawing Commands
	19.1. Primitive Topologies
	19.2. Primitive Order
	19.3. Programmable Primitive Shading

	Chapter 20. Fixed-Function Vertex Processing
	20.1. Vertex Attributes
	20.2. Vertex Input Description
	20.3. Example

	Chapter 21. Tessellation
	21.1. Tessellator
	21.2. Tessellator Patch Discard
	21.3. Tessellator Spacing
	21.4. Tessellation Primitive Ordering
	21.5. Triangle Tessellation
	21.6. Quad Tessellation
	21.7. Isoline Tessellation
	21.8. Tessellation Pipeline State

	Chapter 22. Geometry Shading
	22.1. Geometry Shader Input Primitives
	22.2. Geometry Shader Output Primitives
	22.3. Multiple Invocations of Geometry Shaders
	22.4. Geometry Shader Primitive Ordering

	Chapter 23. Fixed-Function Vertex Post-Processing
	23.1. Flat Shading
	23.2. Primitive Clipping
	23.3. Clipping Shader Outputs
	23.4. Coordinate Transformations
	23.5. Controlling the Viewport

	Chapter 24. Rasterization
	24.1. Discarding Primitives Before Rasterization
	24.2. Rasterization Order
	24.3. Multisampling
	24.4. Sample Shading
	24.5. Points
	24.6. Line Segments
	24.7. Polygons

	Chapter 25. Fragment Operations
	25.1. Early Per-Fragment Tests
	25.2. Scissor Test
	25.3. Sample Mask
	25.4. Early Fragment Test Mode
	25.5. Late Per-Fragment Tests
	25.6. Multisample Coverage
	25.7. Depth and Stencil Operations
	25.8. Depth Bounds Test
	25.9. Stencil Test
	25.10. Depth Test
	25.11. Sample Counting
	25.12. Coverage Reduction

	Chapter 26. The Framebuffer
	26.1. Blending
	26.2. Logical Operations
	26.3. Color Write Mask

	Chapter 27. Dispatching Commands
	Chapter 28. Sparse Resources
	28.1. Sparse Resource Features
	28.2. Sparse Buffers and Fully-Resident Images
	28.3. Sparse Partially-Resident Buffers
	28.4. Sparse Partially-Resident Images
	28.5. Sparse Memory Aliasing
	28.6. Sparse Resource Implementation Guidelines
	28.7. Sparse Resource API
	28.8. Examples

	Chapter 29. Extended Functionality
	29.1. Layers
	29.2. Extensions
	29.3. Extension Dependencies

	Chapter 30. Features, Limits, and Formats
	30.1. Features
	30.2. Limits
	30.3. Formats
	30.4. Additional Image Capabilities

	Chapter 31. Debugging
	Appendix A: Vulkan Environment for SPIR-V
	Required Versions and Formats
	Capabilities
	Validation Rules within a Module
	Precision and Operation of SPIR-V Instructions

	Appendix B: Compressed Image Formats
	Block-Compressed Image Formats
	ETC Compressed Image Formats
	ASTC Compressed Image Formats

	Appendix C: Layers & Extensions
	VK_KHR_sampler_mirror_clamp_to_edge

	Appendix D: API Boilerplate
	Structure Types
	Flag Types
	Macro Definitions in vulkan.h
	Platform-Specific Macro Definitions in vk_platform.h

	Appendix E: Invariance
	Repeatability
	Multi-pass Algorithms
	Invariance Rules
	Tessellation Invariance

	Glossary
	Common Abbreviations
	Prefixes
	Appendix F: Credits

