
RFC 9553

JSContact: A JSON Representation of Contact Data

Abstract

This specification defines a data model and JavaScript Object Notation (JSON) representation of

contact card information that can be used for data storage and exchange in address book or

directory applications. It aims to be an alternative to the vCard data format and to be

unambiguous, extendable, and simple to process. In contrast to the JSON-based jCard format, it is

not a direct mapping from the vCard data model and expands semantics where appropriate.

Stream:

RFC:

Category:

Published:

ISSN:

Authors:

Internet Engineering Task Force (IETF)

9553

Standards Track

March 2024

2070-1721

 R. Stepanek

Fastmail

M. Loffredo

IIT-CNR

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Further information on Internet

Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9553

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Stepanek & Loffredo Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9553
https://www.rfc-editor.org/info/rfc9553
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Motivation and Relation to vCard, jCard, and xCard

1.2. Notational Conventions

1.3. Data Type Notations

1.3.1. Objects and Properties

1.3.2. Type Signatures

1.3.3. Property Attributes

1.3.4. The @type Property

1.4. Common Data Types

1.4.1. Id

1.4.2. Int and UnsignedInt

1.4.3. PatchObject

1.4.4. Resource

1.4.5. UTCDateTime

1.5. Common Properties

1.5.1. contexts

1.5.2. extra

1.5.3. label

1.5.4. pref

1.5.5. phonetic

1.6. Internationalization

1.6.1. Free-Form Text

1.6.2. URIs

1.7. Validating JSContact

1.7.1. Case-Sensitivity

1.7.2. IANA-Registered Properties

1.7.3. Unknown Properties

5

6

6

6

7

7

8

8

9

9

9

9

10

11

11

11

11

12

12

12

13

13

13

14

14

14

14

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 2

1.7.4. Enumerated Values

1.8. Vendor-Specific Extensions

1.8.1. Vendor-Specific Properties

1.8.2. Vendor-Specific Values

1.9. Versioning

1.9.1. Version Format and Requirements

1.9.2. Current Version

2. Card

2.1. Metadata Properties

2.1.1. @type

2.1.2. version

2.1.3. created

2.1.4. kind

2.1.5. language

2.1.6. members

2.1.7. prodId

2.1.8. relatedTo

2.1.9. uid

2.1.10. updated

2.2. Name and Organization Properties

2.2.1. name

2.2.2. organizations

2.2.3. speakToAs

2.2.4. titles

2.3. Contact Properties

2.3.1. emails

2.3.2. onlineServices

2.3.3. phones

2.3.4. preferredLanguages

15

15

15

16

16

17

17

17

18

18

18

18

19

19

19

20

20

21

22

22

22

26

27

29

29

29

30

31

32

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 3

2.4. Calendaring and Scheduling Properties

2.4.1. calendars

2.4.2. schedulingAddresses

2.5. Address and Location Properties

2.5.1. addresses

2.6. Resource Properties

2.6.1. cryptoKeys

2.6.2. directories

2.6.3. links

2.6.4. media

2.7. Multilingual Properties

2.7.1. localizations

2.8. Additional Properties

2.8.1. anniversaries

2.8.2. keywords

2.8.3. notes

2.8.4. personalInfo

3. IANA Considerations

3.1. Media Type Registration

3.2. Creation of the JSContact Registry Group

3.3. Registry Policy and Change Procedures

3.3.1. Preliminary Community Review

3.3.2. Submit Request to IANA

3.3.3. Designated Expert Review

3.3.4. Change Procedures

3.4. Creation of the JSContact Version Registry

3.4.1. JSContact Version Registry Template

3.4.2. Initial Contents of the JSContact Version Registry

3.5. Creation of the JSContact Properties Registry

3.5.1. JSContact Properties Registry Template

33

33

34

34

34

39

39

40

41

41

42

42

44

44

45

46

46

48

48

49

49

50

50

50

50

51

51

51

51

51

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 4

3.5.2. Initial Contents of the JSContact Properties Registry

3.6. Creation of the JSContact Types Registry

3.6.1. JSContact Types Registry Template

3.6.2. Initial Contents of the JSContact Types Registry

3.7. Creation of the JSContact Enum Values Registry

3.7.1. JSContact Enum Values Registry Property Template

3.7.2. JSContact Enum Values Registry Value Template

3.7.3. Initial Contents of the JSContact Enum Values Registry

4. Security Considerations

4.1. JSON Parsing

4.2. URI Values

5. References

5.1. Normative References

5.2. Informative References

Authors' Addresses

52

58

58

58

60

60

61

61

68

69

69

70

70

71

73

1. Introduction

This document defines a data model for contact card data normally used in address book or

directory applications and services. It aims to be an alternative to the vCard data format

.

The key design considerations for this data model are as follows:

The data model and set of attributes should be mostly compatible with the model defined for

the vCard data format and extensions

. The specification should add new attributes or value types where appropriate.

Not all existing vCard definitions need an equivalent in JSContact, especially if the vCard

definition is considered to be obsolete or otherwise inappropriate. Conversion between the

data formats need not fully preserve semantic meaning.

The attributes of the card data represented must be described as simple key-value pairs,

reducing complexity of their representation.

The data model should avoid all ambiguities and make it difficult to make mistakes during

implementation.

[RFC6350]

•

[RFC6350] [RFC6473] [RFC6474] [RFC6715] [RFC6869]

[RFC8605]

•

•

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 5

Extensions, such as new properties and components, lead to a required update of

this document.

The representation of this data model is defined in the Internet JSON (I-JSON) format ,

which is a strict subset of the JSON data interchange format . Using JSON is mostly a

pragmatic choice: its widespread use makes JSContact easier to adopt, and the availability of

production-ready JSON implementations eliminates a whole category of parser-related

interoperability issues.

• MUST NOT

[RFC7493]

[RFC8259]

1.1. Motivation and Relation to vCard, jCard, and xCard

The vCard data format is an interchange format for contacts data between address

book service providers and vendors. However, this format has gone through multiple

specification iterations with only a subset of its deprecated being widely in

use. Consequently, products and services use an internal contact data model that is richer than

what they expose when serializing that information to vCard. In addition, service providers often

use a proprietary JSON representation of contact data in their APIs.

JSContact provides a standard JSON-based data model and representation of contact data as an

alternative to proprietary formats.

At the time of writing this document, several missing features in vCard were brought to the

attention of the authors such as social media contacts, gender pronouns, and others. This

highlights how vCard is not perceived as an evolving format and, consequently, hasn't been

updated for about ten years. JSContact addresses these unmet demands and defines new vCard

properties and parameters to allow interchanging them in both formats.

The xCard and jCard specifications define alternative representations for

vCard data in XML and JSON formats, respectively. Both explicitly aim to not change the

underlying data model. Accordingly, they are regarded as equal to vCard in the context of this

document.

[RFC6350]

version 3 [RFC2426]

[RFC6351] [RFC7095]

1.2. Notational Conventions

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

The ABNF definitions in this document use the notations of . ABNF rules not defined in

this document are defined in either (such as the ABNF for CRLF, WSP, DQUOTE,

VCHAR, ALPHA, and DIGIT) or .

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC5234]

[RFC5234]

[RFC6350]

1.3. Data Type Notations

This section introduces the notations and terminology used to define data types in JSContact.

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 6

The underlying format for JSContact is JSON, so its data types also build on JSON values. The

terms "object" and "array" as well as the four primitive types ("strings", "numbers", "booleans",

and "null") are to be interpreted as described in . All JSContact data

be valid according to the constraints given in . Unless otherwise noted, all

member names in JSON objects and all string values are case-sensitive. Within the context of

JSON objects, the term "key" is synonymous with "member name" as defined in

.

Section 1 of [RFC8259] MUST

I-JSON [RFC7493]

Section 1 of

[RFC8259]

qux:

1.3.1. Objects and Properties

JSContact defines data types for contact information such as addresses or names. This

information typically consists of multiple related elements; for example, a personal name and

surname together form a name. These related elements are organized in JSContact objects. A

JSContact object is a JSON object that has the following:

A unique type name registered in the IANA .

One or more object members for which the name and allowed value types are specified.

Such members are called "properties".

One property named @type with a string value that matches the type name of the JSContact

object. In general, this property does not need to be set explicitly as outlined in Section 1.3.4.

The following sections specify how to define JSContact object types. Sections 1.7 and 1.8 then

define the exact requirements for property names.

The next paragraph illustrates how a JSContact object is defined.

A Foo object has the following properties:

Number (mandatory). Defines the qux-ishness of this contact. The value be an

integer greater than 0 and less than 10.

Here, a JSContact object type named Foo is defined. In addition to its @type property, it has a

property named qux for which values be valid according to the definition of the Number

type. The property has one attribute, mandatory, which specifies that the property be

present for an instance of this JSContact object to be valid. Finally, a free-text description

describes the semantics and further restrictions.

1. "JSContact Types" registry (Section 3.6)

2.

3.

MUST

MUST

MUST

String:

Number:

Boolean:

A[B]:

1.3.2. Type Signatures

Type signatures are given for all JSON values and JSContact definitions in this document. The

following conventions are used:

The JSON string type.

The JSON number type.

The JSON boolean type.

A JSON object where all keys are of type A and all values are of type B.

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 7

https://www.rfc-editor.org/rfc/rfc8259#section-1
https://www.rfc-editor.org/rfc/rfc8259#section-1

A[]:

A|B:

* *:

A JSON array of values of type A.

The value is either of type A or of type B.

The type is undefined (the value could be any type, although permitted values may be

constrained by the context of this value).

Section 1.4 defines common data types, including signed or unsigned integers and dates.

mandatory:

optional:

default:

defaultType:

1.3.3. Property Attributes

Object properties may also have a set of attributes defined along with the type signature. These

have the following meanings:

The property be set for an instance of this object to be valid.

The property can, but need not, be set for an instance of this object to be valid.

This is followed by a JSON value. That value will be used for this property if it is

omitted.

This is followed by the name of a JSContact object type. A property value of

JSContact object type is expected to be of this named type, in case it omits the @type property.

MUST

@type:

1.3.4. The @type Property

String. Specifies the type of the object. It match the type name of the JSContact

object of which the JSON object is an instance of.

The purpose of the @type property is to help implementations identify which JSContact object

type a given JSON object represents. Implementations validate that JSON objects with this

property conform to the specification of the JSContact object type of that name.

In many cases, the @type property value is implied by where its object occurs in JSContact data.

Assuming that both A and B are JSContact object types:

An object that is set as the value for a property with type signature A have the @type

property set. If the @type property is not set, then its value is implied to be A by the property

definition.

An object that is set as the value for a property with type signature A|B (defaultType: A)

 have the @type property set if it is an instance of A. It have the @type property set

if it is an instance of B. If, instead, the defaultType attribute is not defined, then the @type

property also be set for A.

An object that is not the value of a property, such as the root of JSON data (directly or as a

member of an array), have the @type property set.

MUST

MUST

• MAY

•

MAY MUST

MUST

•

MUST

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 8

1.4. Common Data Types

In addition to the standard JSON data types, a couple of additional data types are common to the

definitions of JSContact objects and properties.

1.4.1. Id

Where Id is given as a data type, it means a String of at least 1 and a maximum of 255 octets in

size, and it only contain characters from the URL and Filename Safe base64url alphabet,

as defined in , excluding the pad character (=). This means the allowed

characters are the ASCII alphanumeric characters (A-Za-z0-9), hyphen (-), and underscore (_).

In many places in JSContact, a JSON map is used where the map keys are of type Id and the map

values are all the same type of object. This construction represents an unordered set of objects,

with the added advantage that each entry has a name (the corresponding map key). This allows

for more concise patching of objects and, when applicable, for the objects in question to be

referenced from other objects within the JSContact object. The map keys be preserved

across multiple versions of the JSContact object.

Unless otherwise specified for a particular property, there are no uniqueness constraints on an Id

value (other than, of course, the requirement that you cannot have two values with the same key

within a single JSON map). For example, two objects might use the same Ids in

their respective photos properties. Or within the same Card, the same Id could appear in the

emails and phones properties. These situations do not imply any semantic connections among

the objects.

MUST

Section 5 of [RFC4648]

MUST

Card (Section 2)

1.4.2. Int and UnsignedInt

Where Int is given as a data type, it means an integer in the range -253+1 <= value <= 253-1,

which is the safe range for integers stored in a floating-point double, represented as a JSON

Number.

Where UnsignedInt is given as a data type, it means an integer in the range 0 <= value <= 253-1

represented as a JSON Number.

1.4.3. PatchObject

A PatchObject is of type String[*] and represents an unordered set of patches on a JSON object.

Each key is a path represented in a subset of the JSON Pointer format . The paths have

an implicit leading /, so each key is prefixed with / before applying the JSON Pointer evaluation

algorithm.

A patch within a PatchObject is only valid if all the following conditions apply:

The pointer reference inside an array, but if the last reference token in the pointer is an

array index, then the patch value be null. The pointer use "-" as an

array index in any of its reference tokens (i.e., you insert/delete from an array, but

[RFC6901]

1. MAY

MUST NOT MUST NOT

MUST NOT

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 9

https://www.rfc-editor.org/rfc/rfc4648#section-5

you replace the contents of its existing members. To add or remove members, one needs

to replace the complete array value).

All reference tokens prior to the last (i.e., the value after the final slash) already exist

as values in the object being patched. If the last reference token is an array index, then a

member at this index already exist in the referenced array.

There be two patches in the PatchObject where the pointer of one is the prefix of

the pointer of the other, e.g., addresses/1/city and addresses.

The value for the patch be valid for the property being set (of the correct type and

obeying any other applicable restrictions), or if null, the property be optional.

The value associated with each pointer determines how to apply that patch:

If null, remove the property from the patched object. If the key is not present in the parent,

this is a no-op.

If non-null, set the value given as the value for this property (this may be a replacement or

addition to the object being patched).

A PatchObject does not define its own property. Instead, an @type property

in a patch be handled as any other patched property value.

Implementations reject a PatchObject in its entirety if any of its patches are invalid.

Implementations apply partial patches.

MAY

2. MUST

MUST

3. MUST NOT

4. MUST

MUST

•

•

@type (Section 1.3.4)

MUST

MUST

MUST NOT

@type:

kind:

uri:

mediaType:

1.4.4. Resource

The Resource data type defines a resource associated with the entity represented by the Card,

identified by a URI . Later in this document, several property definitions refer to the

Resource data type as the basis for their property-specific value types. The Resource data type

defines the properties that are common to all of them. Property definitions making use of

Resource define additional properties for their value types.

The @type property value be Resource; instead, it be the name of a concrete

resource type (see Section 2.6). A Resource object has the following properties.

String. Specifies the type of this resource object. The allowed value is defined in later

sections of this document for each concrete resource type (Section 2.6).

String (optional). The kind of the resource. The allowed values are defined in the

property definition that makes use of the Resource type. Some property definitions may

change this property from being optional to mandatory.

String (mandatory). The resource value. This be a URI as defined in

.

String (optional). Used for URI resource values. Provides the media type

of the resource identified by the URI.

[RFC3986]

MAY

MUST NOT MUST

MUST Section 3 of

[RFC3986]

[RFC2046]

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 10

https://www.rfc-editor.org/rfc/rfc3986#section-3

contexts:

pref:

label:

String[Boolean] (optional). The contexts in which to use this resource. Also see

Section 1.5.1.

UnsignedInt (optional). The preference of the resource in relation to other resources. Also

see Section 1.5.4.

String (optional). A custom label for the value. Also see Section 1.5.3.

1.4.5. UTCDateTime

UTCDateTime is a string in date-time format , with further restrictions that any letters

 be in uppercase and the time offset be the character Z. Fractional second values

 be included unless they are non-zero, and they have trailing zeros to ensure

there is only a single representation for each date-time.

For example, 2010-10-10T10:10:10.003Z is conformant, but 2010-10-10T10:10:10.000Z is

invalid; the correct encoding is 2010-10-10T10:10:10Z.

[RFC3339]

MUST MUST

MUST NOT MUST NOT

1.5. Common Properties

Most of the properties in this document are specific to a single JSContact object type. Such

properties are defined along with the respective object type. The properties in this section are

common to multiple data types and are defined here to avoid repetition. Note that these

properties only be set for a JSContact object if they are explicitly mentioned as allowable

for this object type.

MUST

1.5.1. contexts

Type: String[Boolean]

This property associates contact information with one or more contexts in which it should be

used. For example, someone might have distinct phone numbers for work and private contexts

and may set the desired context on the respective phone number in the

property.

This section defines common contexts. Additional contexts may be defined in the properties or

data types that make use of this property. The common context values

are:

private: the contact information that may be used in a private context.

work: the contact information that may be used in a professional context.

phones (Section 2.3.3)

enumerated (Section 1.7.4)

•

•

1.5.2. extra

extra is a reserved property name. Implementations set this property in a JSContact

object. Any JSContact object including a property with this name be considered invalid.

MUST NOT

MUST

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 11

The purpose of this reserved property name is to provide implementors with a name that is

certain to never occur as a property name in a JSContact object. Implementations might want to

map unknown or vendor-specific properties to a variable with this name, but this is

implementation-specific.

1.5.3. label

Type: String

This property allows associating contact data with user-defined labels. Such labels may be set for

phone numbers, email addresses, and resources. Typically, these labels are displayed along with

their associated contact data in graphical user interfaces. Note that succinct labels are best for

proper display on small graphical interfaces and screens.

1.5.4. pref

Type: UnsignedInt

This property allows defining a preference order for contact information. For example, a person

may have two email addresses and prefer to be contacted with one of them.

Its value be in the range of 1 to 100. Lower values correspond to a higher level of

preference, with 1 being most preferred. If no preference is set, then the contact information

 be interpreted as being least preferred.

Note that the preference is only defined in relation to contact information of the same type. For

example, the preference orders within emails and phone numbers are independent of each

other.

MUST

MUST

phonetic:

phoneticScript:

phoneticSystem:

1.5.5. phonetic

The phonetic property defines how to pronounce a value in the language indicated in the Card

 property or the language tag of its .

Exemplary uses of this property are defining how to pronounce Japanese names and romanizing

Mandarin or Cantonese name and address components. The properties are defined as follows:

String. Contains the phonetic representation of a value. Any script language subtag

in the Card property be ignored for use with the phonetic

property. If this property is set, then at least one of the phoneticScript or phoneticSystem

properties that relate to this value be set.

String. The script used in the value of the related phonetic property. This

 be a valid script subtag as defined in .

String. The phonetic system used in the related value of the phonetic

property. The values are:

ipa: denotes the .

jyut: denotes the Cantonese romanization system "Jyutping".

language (Section 2.1.5) localizations (Section 2.7.1)

language (Section 2.1.5) MUST

MUST

MUST Section 2.2.3 of [RFC5646]

enumerated (Section 1.7.4)

• International Phonetic Alphabet [IPA]

•

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 12

https://www.rfc-editor.org/rfc/rfc5646#section-2.2.3

piny: denotes the Standard Mandarin romanization system "Hanyu Pinyin".

The relation between the phoneticSystem, phoneticScript, and phonetic properties is type-

specific. This specification defines this relation in the and

 object types, respectively.

The following example illustrates the phonetic property for a :

•

Name (Section 2.2.1) Address (Section

2.5.1)

name (Section 2.2.1)

Figure 1: Example of a phonetic Property for the Name "John Smith" as Pronounced in the USA

"name": {

 "components": [{

 "kind": "given",

 "value": "John",

 "phonetic": "/ˈdʒɑːn/"
 }, {

 "kind": "surname",

 "value": "Smith",

 "phonetic": "/smɪθ/"
 }],

 "phoneticSystem": "ipa"

}

1.6. Internationalization

JSContact aims to be used for international contacts and address book data. Notably, text values

such as names and addresses are likely to cover a wide range of languages and cultures. This

section describes internationalization for free-form text values as well as Uniform Resource

Identifiers (URIs).

1.6.1. Free-Form Text

Properties having free-form text values contain any valid sequence of Unicode characters

encoded as a JSON string. Such values can contain unidirectional left-to-right and right-to-left

text, as well as bidirectional text using Unicode Directional Formatting Characters as described in

Section 2 of . Implementations setting bidirectional text make sure that each

property value complies with the requirements of the Unicode Bidirectional Algorithm.

Implementations assume that text values of adjacent properties are processed or

displayed as a combined string; for example, the values of a given name component and a

surname component may or may not be rendered together.

1.6.2. URIs

Several properties require their string value to be a URI as defined in .

Implementations make sure to use proper percent-encoding for URIs that cannot be

represented using unreserved URI characters. defines how to convert

Internationalized Resource Identifiers to URIs. JSContact makes no recommendation on how to

display URIs, but the WHATWG URL Living Standard (see "Internationalization and special

characters" (Section 4.8.3) of) provides guidance for URLs found in the context

of a web browser.

MAY

[UBiDi] MUST

MUST NOT

[RFC3986]

MUST

Section 3.1 of [RFC3987]

[WHATWG-URL]

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 13

https://www.rfc-editor.org/rfc/rfc3987#section-3.1

1.7. Validating JSContact

This specification distinguishes between three kinds of properties regarding validation: IANA-

registered properties and unknown properties, which are defined in this section, and vendor-

specific properties, which are defined in Section 1.8.1. A JSContact object is invalid if any of its

properties are invalid.

This document defines whether each property is mandatory or optional. A mandatory property

 be present for a JSContact object to be valid. An optional property does not need to be

present. The values of both required and optional properties adhere to the data type and

definition of that property.

MUST

MUST

1.7.1. Case-Sensitivity

All property names, object type names, and enumerated values are case-sensitive, unless

explicitly stated otherwise in their definitions. Implementations handle a JSContact object

as invalid if a type name, property name, or enumerated value only differs in case from one

defined for any JSContact version known to that implementation. This applies regardless of what

JSContact version the Card object defines in its property. Section 1.7.3

defines how to handle unknown properties.

MUST

version (Section 2.1.2)

1.7.2. IANA-Registered Properties

An IANA-registered property is any property that has been registered according to the IANA

property registry rules as outlined in Section 3. All properties defined in this specification,

including their object value types and enumerated values, are registered at IANA.

Implementations validate IANA-registered properties in JSContact data, unless they are

unknown to the implementation (Section 1.7.3). They reject invalid IANA-registered

properties. A property is invalid if its name matches the name of an IANA-registered property

but the value violates its definition according to the JSContact specification version defined in the

Card property.

IANA-registered property names contain US-ASCII control characters (U+0000 to

U+001F, U+007F), the COLON (U+003A), or the QUOTATION MARK (U+0022). They only contain

US-ASCII alphanumeric characters that match the ALPHA and DIGIT rules defined in

 or the COMMERCIAL AT (U+0040) character. IANA-registered property names

be notated in lower camel case.

MUST

MUST

version (Section 2.1.2)

MUST NOT

MUST

Appendix B.

1 of [RFC5234] MUST

1.7.3. Unknown Properties

Implementations may encounter JSContact data where a property name is unknown to that

implementation but the name adheres to the syntactic restrictions of IANA-registered property

names. Implementations make sure that such a name does not violate the case-sensitivity

rules defined in Section 1.7.1. If the property name is valid, then implementations

treat such properties as invalid. Instead, they preserve them in the JSContact object.

MUST

MUST NOT

MUST

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 14

https://www.rfc-editor.org/rfc/rfc5234#appendix-B.1
https://www.rfc-editor.org/rfc/rfc5234#appendix-B.1

Implementations that create or update JSContact data only set IANA-registered properties

or vendor-specific properties. Preserving properties that are unknown to the implementation is

to allow applications and services to interoperate without data loss, even if not all of them

implement the same set of JSContact extensions.

MUST

1.7.4. Enumerated Values

Several properties in this document restrict their allowed values to a list of String values. These

values are case-sensitive. If not noted otherwise for a specific property, the initial list of values

for such properties is registered at IANA in the .

Implementations only set IANA-registered or values for such

properties.

"JSContact Enum Values" registry (Section 3.7)

MUST vendor-specific (Section 1.8.2)

1.8. Vendor-Specific Extensions

Vendors may extend properties and values for experimentation or to store contacts data that is

only useful for a single service or application. Such extensions are not meant for interoperation.

If, instead, interoperation is desired, vendors are strongly encouraged to define and register new

properties, types, and values at IANA as defined in Section 3. Section 1.7.2 defines the naming

conventions for IANA-registered elements.

1.8.1. Vendor-Specific Properties

Vendor-specific property names start with a vendor-specific prefix followed by a name, as

produced by the v-extension ABNF below. The prefix and name together form the property

name. The vendor-specific prefix be a domain name under control of the service or

application that sets the property, but it need not resolve in the Domain Name System

. The prefix ietf.org and its subdomain names are reserved for IETF specifications.

The name contain the TILDE (U+007E) and SOLIDUS (U+002F) characters, as these

require special escaping when encoding a JSON Pointer for that property.

Vendor-specific properties be set in any JSContact object. Implementations preserve

vendor-specific properties in JSContact data, irrespective if they know their use. They

reject the property value as invalid, unless they are in control of the vendor-specific property as

outlined in the above paragraph.

The ABNF rule v-extension formally defines valid vendor-specific property names. Note that the

vendor prefix allows for more values than Internationalized Domain Names (IDNs) ;

therefore, JSContact implementations can simply validate property names without implementing

the full set of rules that apply to domain names.

MUST

MUST

[RFC1034]

[RFC1035]

MUST NOT

[RFC6901]

MAY MUST

MUST NOT

[RFC8499]

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 15

The value of vendor-specific properties can be any valid JSON value, and naming restrictions do

not apply to such values. Specifically, if the property value is a JSON object, then the keys of such

objects need not be named as vendor-specific properties, as illustrated in Figure 3:

Figure 2: ABNF Rules for Vendor-Specific Property Names

v-extension = v-prefix ":" v-name

v-prefix = v-label *("." v-label)

v-label = alnum-int / alnum-int *(alnum-int / "-") alnum-int

alnum-int = ALPHA / DIGIT / NON-ASCII

 ; see RFC 6350, Section 3.3

v-name = 1*(WSP / "!" / %x23-2e / %x30-7d / NON-ASCII)

 ; any characters except CTLs, DQUOTE, SOLIDUS, and TILDE

Figure 3: Examples of Vendor-Specific Properties

"example.com:foo": "bar",

"example.com:foo2": {

 "bar": "baz"

}

1.8.2. Vendor-Specific Values

Some JSContact IANA-registered properties allow their values to be vendor-specific. One such

example is the property, which enumerates its standard values but also

allows for arbitrary vendor-specific values. Such vendor-specific values be valid v-

extension values as defined in Section 1.8.1. The example in Figure 4 illustrates this:

Vendors are strongly encouraged to specify a new standard value once a vendor-specific one

turns out to also be useful for other systems.

kind (Section 2.1.4)

MUST

Figure 4: Example of a Vendor-Specific Value

"kind": "example.com:baz"

1.9. Versioning

Every instance of a JSContact indicates which JSContact version its IANA-

registered properties and values are based on. The version is indicated both in the

 property within the Card and in the parameter of the

JSContact MIME content type. All IANA-registered elements indicate the version at which they

were introduced or obsoleted.

Card (Section 2)

version

(Section 2.1.2) version (Section 3.1)

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 16

1.9.1. Version Format and Requirements

A JSContact version consists of a numeric major and minor version, separated by the FULL STOP

character (U+002E). Later versions are numerically higher than former versions, with the major

version being more significant than the minor version. A version value is produced by the

following ABNF:

Differing major version values indicate substantial differences in JSContact semantics and

format. Implementations be prepared for property definitions and other JSContact

elements that differ in a backwards-incompatible manner.

Differing minor version values indicate additions that enrich JSContact data but do not introduce

backwards-incompatible changes. Typically, these are new property enum values or properties

with a narrow semantic scope. A new minor version require implementations to

change their processing of JSContact data. Changing the major version number resets the minor

version number to zero.

Figure 5

jsversion = 1*DIGIT "." 1*DIGIT

MUST

MUST NOT

1.9.2. Current Version

This specification registers JSContact version value 1.0 (Table 1).

2. Card

This section defines the JSContact object type Card. A Card stores contact information, typically

that of a person, organization, or company.

Its media type is defined in Section 3.1.

Figure 6 shows a basic Card for the person "John Doe". As the object is the topmost object in the

JSON data, it has the @type property set according to the rules defined in Section 1.3.4.

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 17

Figure 6: Example of a Basic Card

{

 "@type": "Card",

 "version": "1.0",

 "uid": "22B2C7DF-9120-4969-8460-05956FE6B065",

 "kind": "individual",

 "name": {

 "components": [

 { "kind": "given", "value": "John" },

 { "kind": "surname", "value": "Doe" }

],

 "isOrdered": true

 }

}

2.1. Metadata Properties

This section defines properties about this instance of a Card such as its unique identifier, its

creation date, and how it relates to other Cards and other metadata information.

2.1.1. @type

Type: String (mandatory)

This be Card, if set.MUST

2.1.2. version

Type: String (mandatory)

This specifies the JSContact version used to define the Card. The value be one of the IANA-

registered JSContact Enum Values for the version property. Also see Section 1.9.2.

MUST

Figure 7: version Example

"version": "1.0"

2.1.3. created

Type: UTCDateTime (optional)

The date and time when the Card was created.

Figure 8: created Example

"created": "2022-09-30T14:35:10Z"

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 18

2.1.4. kind

Type: String (optional; default: individual)

The kind of the entity the Card represents.

The values are:

individual: a single person

group: a group of people or entities

org: an organization

location: a named location

device: a device such as an appliance, a computer, or a network element

application: a software application

enumerated (Section 1.7.4)

•

•

•

•

•

•

Figure 9: kind Example

"kind": "individual"

2.1.5. language

Type: String (optional)

This is the language tag, as defined in , that best describes the language used for text in

the Card, optionally including additional information such as the script. Note that values be

localized in the property.

[RFC5646]

MAY

localizations (Section 2.7.1)

Figure 10: language Example

"language": "de-AT"

2.1.6. members

Type: String[Boolean] (optional)

This identifies the set of Cards that are members of this group Card. Each key in the set is the uid

property value of the member, and each boolean value be true. If this property is set, then

the value of the kind property be group.

The opposite is not true. A group Card will usually contain the members property to specify the

members of the group, but it is not required to. A group Card without the members property can

be considered an abstract grouping or one whose members are known empirically (e.g., "IETF

Participants").

MUST

MUST

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 19

Figure 11: members Example

"kind": "group",

"name": {

 "full": "The Doe family"

},

"uid": "urn:uuid:ab4310aa-fa43-11e9-8f0b-362b9e155667",

"members": {

 "urn:uuid:03a0e51f-d1aa-4385-8a53-e29025acd8af": true,

 "urn:uuid:b8767877-b4a1-4c70-9acc-505d3819e519": true

}

2.1.7. prodId

Type: String (optional)

The identifier for the product that created the Card. If set, the value be at least one

character long.

MUST

Figure 12: prodId Example

"prodId": "ACME Contacts App version 1.23.5"

@type:

relation:

2.1.8. relatedTo

Type: String[Relation] (optional)

This relates the object to other Cards. It is represented as a map, where each key is the uid of the

related Card, and the value defines the relation. The Relation object has the following properties:

String. This be Relation, if set.

String[Boolean] (optional; default: empty Object). Describes how the linked object is

related to the linking object. The relation is defined as a set of relation types. The key in the

set defines the relation type; the value for each key in the set be true. The relationship

between the two objects is undefined if the set is empty.

The initial list of relation types matches the IANA-registered

 parameter values of the vCard RELATED property ():

acquaintance

agent

child

co-resident

co-worker

colleague

contact

MUST

MUST

enumerated (Section 1.7.4) TYPE

[IANA-vCard] Section 6.6.6 of [RFC6350]

•

•

•

•

•

•

•

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 20

https://www.rfc-editor.org/rfc/rfc6350#section-6.6.6

crush

date

emergency

friend

kin

me

met

muse

neighbor

parent

sibling

spouse

sweetheart

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 13: relatedTo Example

"relatedTo": {

 "urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6": {

 "relation": {

 "friend": true

 }

 },

 "8cacdfb7d1ffdb59@example.com": {

 "relation": {}

 }

}

2.1.9. uid

Type: String (mandatory)

An identifier that is used to associate the object as the same across different systems, address

books, and views. The value be a URN , but for compatibility with , it

 also be a URI or free-text value. The value of the URN be in the uuid

namespace . As of this writing, a of the Universally Unique Identifier

(UUID) Standards Track document is in progress and will likely introduce new UUID

versions and best practices to generate global unique identifiers. Implementors follow

any recommendations described there. Until then, implementations generate identifiers

using the random or pseudorandom UUID version described in .

SHOULD [RFC8141] [RFC6350]

MAY [RFC3986] SHOULD

[RFC4122] revision [UUID]

[RFC4122]

SHOULD

SHOULD

Section 4.4 of [RFC4122]

Figure 14: uid Example

"uid": "urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6"

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 21

https://www.rfc-editor.org/rfc/rfc4122#section-4.4

2.1.10. updated

Type: UTCDateTime (optional)

The date and time when the data in the Card was last modified.

Figure 15: updated Example

"updated": "2021-10-31T22:27:10Z"

2.2. Name and Organization Properties

This section defines properties that name the entity represented by the Card and its related

organizations and roles. It also describes how to refer to the entity represented by the Card in

spoken or written language.

@type:

components:

2.2.1. name

Type: Name (optional)

The name of the entity represented by the Card. This can be any type of name, e.g., it can, but

need not, be the legal name of a person.

2.2.1.1. Name Object

A Name object has the following properties:

String. This be Name, if set.

NameComponent[] (optional). The making up this

name. This property be set if the full property is not set; otherwise, it be set.

The component list have at least one entry having a different kind than separator.

Name components be ordered such that when their values are joined as a String, a

valid full name of the entity is produced. If so, implementations set the isOrdered

property value to true.

If the name components are ordered, then the defaultSeparator property and name

components of kind separator give guidance on what characters to insert between

components, but implementations are free to choose any others. When lacking a separator,

inserting a single space character in between the name component values is a good choice.

If, instead, the name components follow no particular order, then the isOrdered property

value be false, the components property contain a NameComponent of kind

separator, and the defaultSeparator property be set.

Figure 16 shows an example for the name "Vincent van Gogh". Note how a single name

component value may consist of multiple words.

MUST

components (Section 2.2.1.2)

MUST SHOULD

MUST

SHOULD

MUST

MUST MUST NOT

MUST NOT

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 22

isOrdered:

defaultSeparator:

full:

sortAs:

Figure 17 illustrates a name with a second surname such as a Spanish name. Additional

examples are shown in Figures 19 and 39.

Boolean (optional; default: false). Indicates if the name component sequence in the

components property is ordered.

String (optional). The default separator to insert between name component

values when concatenating all name component values to a single String. Also see the

definition of the separator kind for the object. This

property be set if the Name isOrdered property value is false or if the

components property is not set.

String (optional). The full name representation of the Name. This property be set if

the components property is not set.

String[String] (optional). Defines how the name lexicographically sorts in relation to

other names when compared by a name component type. The key in the map defines the

name component type. The value for that key defines the verbatim string to compare when

sorting by the name component type. Absence of a key indicates that the name component

Figure 16: Example of a Surname with Two Words

"name": {

 "components": [

 { "kind": "given", "value": "Vincent" },

 { "kind": "surname", "value": "van Gogh" }

],

 "isOrdered": true

}

Figure 17: Example of a Second Surname

"name": {

 "components": [

 { "kind": "given", "value": "Diego" },

 { "kind": "surname", "value": "Rivera" },

 { "kind": "surname2", "value": "Barrientos" }

],

 "isOrdered": true

}

NameComponent (Section 2.2.1.2)

MUST NOT

MUST

Figure 18: full Example

"full": "Mr. John Q. Public, Esq."

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 23

phoneticScript:

phoneticSystem:

type be considered during sort. Sorting by that missing name component type,

or if the sortAs property is not set, is implementation-specific. This property be set

if the components property is not set.

Each key in the map be a valid name component type value as defined for the kind

property of the NameComponent object (see below). For each key in the map, there exist

at least one NameComponent object that has the type in the components property of the

name.

Figure 19 illustrates the use of sortAs. The property value indicates that the middle name

followed by both surnames should be used when sorting the name by surname. The absence

of middle indicates that the middle name on its own should be disregarded during sort. Even

though the name only contains one name component for the given name, the sortAs property

still explicitly defines how to sort by the given name; otherwise, sorting by it would be

undefined.

String (optional). The script used in the value of the NameComponent

phonetic property. See Section 1.5.5 for more information and Figure 20 for an example.

String (optional). The phonetic system used in the NameComponent phonetic

property. See Section 1.5.5 for more information and Figure 20 for an example.

SHOULD NOT

MUST NOT

MUST

MUST

Figure 19: sortAs Example

"name": {

 "components": [

 { "kind": "given", "value": "Robert" },

 { "kind": "given2", "value": "Pau" },

 { "kind": "surname", "value": "Shou Chang" }

],

 "sortAs": {

 "surname": "Pau Shou Chang",

 "given": "Robert"

 },

 "isOrdered": true

}

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 24

Figure 20: phonetic and localizations Example

{

 "@type": "Card",

 "language": "zh-Hant",

 "name": {

 "components": [

 { "kind": "surname", "value": "孫" },

 { "kind": "given", "value": "中山" },

 { "kind": "given2", "value": "文" },

 { "kind": "given2", "value": "逸仙" }

]

 },

 "localizations": {

 "yue": {

 "name/phoneticSystem": "jyut",

 "name/phoneticScript": "Latn",

 "name/components/0/phonetic": "syun1",

 "name/components/1/phonetic": "zung1saan1",

 "name/components/2/phonetic": "man4",

 "name/components/3/phonetic": "jat6sin1"

 }

 }

}

@type:

value:

kind:

2.2.1.2. NameComponent

A NameComponent object has the following properties:

String. This be NameComponent, if set.

String (mandatory). The value of the name component. This can be composed of one or

multiple words such as "Poe" or "van Gogh".

String (mandatory). The kind of the name component. The

values are:

title: an honorific title or prefix, e.g., "Mr.", "Ms.", or "Dr.".

given: a given name, also known as "first name" or "personal name".

given2: a name that appears between the given and surname such as a middle name or

patronymic name.

surname: a surname, also known as "last name" or "family name".

surname2: a secondary surname (used in some cultures), also known as "maternal

surname".

credential: a credential, also known as "accreditation qualifier" or "honorific suffix",

e.g., "B.A.", "Esq.".

generation: a generation marker or qualifier, e.g., "Jr." or "III".

MUST

enumerated (Section 1.7.4)

•

•

•

•

•

•

•

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 25

phonetic:

separator: a formatting separator between two ordered name non-separator

components. The value property of the component includes the verbatim separator, for

example, a hyphen character or even an empty string. This value has higher precedence

than the defaultSeparator property of the Name. Implementations insert two

consecutive separator components; instead, they insert a single separator

component with the combined value. This component kind be set if the Name

isOrdered property value is false.

String (optional). Defines how to pronounce the name component. If this property is

set, then at least one of the Name object properties, phoneticSystem or phoneticScript,

 be set. Also see Section 1.5.5.

•

MUST NOT

SHOULD

MUST NOT

MUST

@type:

name:

contexts:

pref:

2.2.1.3. nicknames

Type: Id[Nickname] (optional)

The nicknames of the entity represented by the Card. A Nickname object has the following

properties:

String. This be Nickname, if set.

String (mandatory). The nickname.

String[Boolean] (optional). The contexts in which to use the nickname. Also see

Section 1.5.1.

UnsignedInt (optional). The preference of the nickname in relation to other nicknames.

Also see Section 1.5.4.

MUST

Figure 21: nicknames Example

"nicknames": {

 "k391": {

 "name": "Johnny"

 }

}

@type:

name:

2.2.2. organizations

Type: Id[Organization] (optional)

The company or organization names and units associated with the Card. An Organization object

has the following properties, of which at least one of the name and units properties be set:

String. This be Organization, if set.

String (optional). The name of the organization.

MUST

MUST

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 26

units:

sortAs:

contexts:

@type:

name:

sortAs:

OrgUnit[] (optional). A list of organizational units, ordered as descending by hierarchy

(e.g., a geographic or functional division sorts before a department within that division). If set,

the list contain at least one entry.

String (optional). Defines how the organization name lexicographically sorts in relation

to other organizations when compared by the name. The value defines the verbatim string

value to compare. In absence of this property, the name property value be used for

comparison.

String[Boolean] (optional). The contexts in which association with the organization

apply. For example, membership in a choir may only apply in a private context. Also see

Section 1.5.1.

An OrgUnit object has the following properties:

String. This be OrgUnit, if set.

String (mandatory). The name of the organizational unit.

String (optional). Defines how the organization unit name lexicographically sorts in

relation to other organizational units of the same level when compared by the name. The

level is defined by the array index of the organizational unit in the units property of the

Organization object. The property value defines the verbatim string value to compare. In

absence of this property, the name property value be used for comparison.

MUST

MAY

MUST

MAY

Figure 22: organizations Example

"organizations": {

 "o1": {

 "name": "ABC, Inc.",

 "units": [

 { "name": "North American Division" },

 { "name": "Marketing" }

],

 "sortAs": "ABC"

 }

}

@type:

2.2.3. speakToAs

Type: SpeakToAs (optional)

Provides information on how to address, speak to, or refer to the entity that is represented by the

Card. A SpeakToAs object has the following properties, of which at least one of the

grammaticalGender and pronouns properties be set:

String. This be SpeakToAs, if set.

MUST

MUST

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 27

grammaticalGender:

pronouns:

@type:

pronouns:

contexts:

pref:

String (optional). Defines which grammatical gender to use in salutations

and other grammatical constructs. For example, the German language distinguishes by

grammatical gender in salutations such as "Sehr geehrte" (feminine) and "Sehr geehrter"

(masculine). The values are:

animate

common

feminine

inanimate

masculine

neuter

Note that the grammatical gender does not allow inferring the gender identities or assigned

sex of the contact.

Id[Pronouns] (optional). Defines the pronouns that the contact chooses to use for

themselves.

A Pronouns object has the following properties:

String. This be Pronouns, if set.

String (mandatory). Defines the pronouns. Any value or form is allowed. Examples

in English include she/her and they/them/theirs. The value be overridden in the

 property.

String[Boolean] (optional). The contexts in which to use the pronouns. Also see

Section 1.5.1.

UnsignedInt (optional). The preference of the pronouns in relation to other pronouns in

the same context. Also see Section 1.5.4.

enumerated (Section 1.7.4)

•

•

•

•

•

•

MUST

MAY

localizations (Section 2.7.1)

Figure 23: speakToAs Example

"speakToAs": {

 "grammaticalGender": "neuter",

 "pronouns": {

 "k19": {

 "pronouns": "they/them",

 "pref": 2

 },

 "k32": {

 "pronouns": "xe/xir",

 "pref": 1

 }

 }

}

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 28

@type:

name:

kind:

organizationId:

2.2.4. titles

Type: Id[Title] (optional)

The job titles or functional positions of the entity represented by the Card. A Title object has the

following properties:

String. This be Title, if set.

String (mandatory). The title or role name of the entity represented by the Card.

String (optional; default: title). Describes the organizational or situational kind of the

title. Some organizations and individuals distinguish between titles as organizational

positions and roles as more temporary assignments such as in project management.

The values are:

title

role

Id (optional). The identifier of the organization in which this title is held.

MUST

enumerated (Section 1.7.4)

•

•

Figure 24: titles Example

"titles": {

 "le9": {

 "kind": "title",

 "name": "Research Scientist"

 },

 "k2": {

 "kind": "role",

 "name": "Project Leader",

 "organizationId": "o2"

 }

},

"organizations": {

 "o2": {

 "name": "ABC, Inc."

 }

}

2.3. Contact Properties

This section defines how properties contact the entity represented by the Card.

2.3.1. emails

Type: Id[EmailAddress] (optional)

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 29

@type:

address:

contexts:

pref:

label:

The email addresses in which to contact the entity represented by the Card. An EmailAddress

object has the following properties:

String. This be EmailAddress, if set.

String (mandatory). The email address. This be an addr-spec value as defined in

.

String[Boolean] (optional). The contexts in which to use this email address. Also see

Section 1.5.1.

UnsignedInt (optional). The preference of the email address in relation to other email

addresses. Also see Section 1.5.4.

String (optional). A custom label for the value. Also see Section 1.5.3.

MUST

MUST

Section 3.4.1 of [RFC5322]

Figure 25: emails Example

"emails": {

 "e1": {

 "contexts": {

 "work": true

 },

 "address": "jqpublic@xyz.example.com"

 },

 "e2": {

 "address": "jane_doe@example.com",

 "pref": 1

 }

}

@type:

service:

uri:

2.3.2. onlineServices

Type: Id[OnlineService] (optional)

The online services that are associated with the entity represented by the Card. This can be

messaging services, social media profiles, and other. An OnlineService object has the following

properties, of which at least the uri or user property be set:

String. This be OnlineService, if set.

String (optional). The name of the online service or protocol. The name be

capitalized the same as on the service's website, app, or publishing material, but names

be considered equal if they match case-insensitively. Examples are GitHub, Kakao, and

Mastodon.

String (optional). Identifies the entity represented by the Card at the online service. This

 be a URI as defined in .

MUST

MUST

MAY

MUST

MUST Section 3 of [RFC3986]

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 30

https://www.rfc-editor.org/rfc/rfc5322#section-3.4.1
https://www.rfc-editor.org/rfc/rfc3986#section-3

user:

contexts:

pref:

label:

String (optional). Names the entity represented by the Card at the online service. Any

free-text value is allowed. The service property be set.

String[Boolean] (optional). The contexts in which to use the service. Also see Section

1.5.1.

UnsignedInt (optional). The preference of the service in relation to other services. Also

see Section 1.5.4.

String (optional). A custom label for the value. Also see Section 1.5.3.

SHOULD

Figure 26: onlineServices Example

"onlineServices": {

 "x1": {

 "uri": "xmpp:alice@example.com"

 },

 "x2": {

 "service": "Mastodon",

 "user": "@alice@example2.com",

 "uri": "https://example2.com/@alice"

 }

}

@type:

number:

features:

2.3.3. phones

Type: Id[Phone] (optional)

The phone numbers in which to contact the entity represented by the Card. A Phone object has

the following properties:

String. This be Phone, if set.

String (mandatory). The phone number as either a URI or free text. Typical URI

schemes are tel or sip , but any URI scheme is allowed.

String[Boolean] (optional). The set of contact features that the phone number may

be used for. The set is represented as an object, with each key being a method type. The

boolean value be true. The method type values are:

mobile: the number for a mobile phone.

voice: the number for calling by voice.

text: the number that supports text messages (SMS).

video: the number that supports video conferencing.

main-number: the main phone number such as the number of the front desk at a

company, as opposed to a direct-dial number of an individual employee.

textphone: the number is for a device for people with hearing or speech difficulties.

fax: the number for sending faxes.

MUST

[RFC3966] [RFC3261]

MUST enumerated (Section 1.7.4)

•

•

•

•

•

•

•

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 31

contexts:

pref:

label:

pager: the number for a pager or beeper.

String[Boolean] (optional). The contexts in which to use the number. Also see

Section 1.5.1.

UnsignedInt (optional). The preference of the number in relation to other numbers. Also

see Section 1.5.4.

String (optional). A custom label for the value. Also see Section 1.5.3.

•

Figure 27: phones Example

"phones": {

 "tel0": {

 "contexts": {

 "private": true

 },

 "features": {

 "voice": true

 },

 "number": "tel:+1-555-555-5555;ext=5555",

 "pref": 1

 },

 "tel3": {

 "contexts": {

 "work": true

 },

 "number": "tel:+1-201-555-0123"

 }

}

@type:

language:

contexts:

pref:

2.3.4. preferredLanguages

Type : Id[LanguagePref] (optional)

Defines the preferred languages for contacting the entity associated with the Card.

A LanguagePref object has the following properties:

String. This be LanguagePref, if set.

String (mandatory). The preferred language. This be a language tag as defined

in .

String[Boolean] (optional). Defines the contexts in which to use the language. Also

see Section 1.5.1.

UnsignedInt (optional). Defines the preference of the language in relation to other

languages of the same contexts. Also see Section 1.5.4.

MUST

MUST

[RFC5646]

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 32

Figure 28: preferredLanguages Example

"preferredLanguages": {

 "l1": {

 "language": "en",

 "contexts": {

 "work": true

 },

 "pref": 1

 },

 "l2": {

 "language": "fr",

 "contexts": {

 "work": true

 },

 "pref": 2

 },

 "l3": {

 "language": "fr",

 "contexts": {

 "private": true

 }

 }

}

2.4. Calendaring and Scheduling Properties

This section defines properties for scheduling calendar events with the entity represented by the

Card.

2.4.1. calendars

Type: Id[Calendar] (optional)

These are resources for calendaring such as using calendars to look up free-busy information for

the entity represented by the Card. A Calendar object has all properties of the

 data type, with the following additional definitions:

The @type property value be Calendar, if set.

The kind property is mandatory. Its values are:

calendar: The resource is a calendar that contains entries such as calendar events or

tasks.

freeBusy: The resource allows for free-busy lookups, for example, to schedule group

events.

Resource (Section

1.4.4)

• MUST

• enumerated (Section 1.7.4)

◦

◦

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 33

Figure 29: calendars Example

"calendars": {

 "calA": {

 "kind": "calendar",

 "uri": "webcal://calendar.example.com/calA.ics"

 },

 "project-a": {

 "kind": "freeBusy",

 "uri": "https://calendar.example.com/busy/project-a"

 }

}

@type:

uri:

contexts:

pref:

label:

2.4.2. schedulingAddresses

Type: Id[SchedulingAddress] (optional)

The scheduling addresses by which the entity may receive calendar scheduling invitations. A

SchedulingAddress object has the following properties:

String. This be SchedulingAddress, if set.

String (mandatory). The address to use for calendar scheduling with the contact. This

 be a URI as defined in .

String[Boolean] (optional). The contexts in which to use the scheduling address.

Also see Section 1.5.1.

UnsignedInt (optional). The preference of the scheduling address in relation to other

scheduling addresses. Also see Section 1.5.4.

String (optional). A custom label for the scheduling address. Also see Section 1.5.3.

MUST

MUST Section 3 of [RFC3986]

Figure 30: schedulingAddresses Example

"schedulingAddresses": {

 "sched1": {

 "uri": "mailto:janedoe@example.com"

 }

}

2.5. Address and Location Properties

This section defines properties for postal addresses and geographical locations associated with

the entity represented by the Card.

2.5.1. addresses

Type: Id[Address] (optional)

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 34

https://www.rfc-editor.org/rfc/rfc3986#section-3

@type:

components:

isOrdered:

countryCode:

coordinates:

timeZone:

contexts:

full:

A map of address identifiers to Address objects, containing physical locations.

2.5.1.1. Address Object

An Address object has the following properties, of which at least one of components, coordinates,

countryCode, full or timeZone be set:

String. This be Address, if set.

AddressComponent[] (optional). The that make up

the address. The component list have at least one entry that has a kind other than

separator.

Address components be ordered such that when their values are joined as a String, a

valid full address is produced. If so, implementations set the isOrdered property value

to true.

If the address components are ordered, then the defaultSeparator property and address

components of kind separator give guidance on what characters to insert between

components, but implementations are free to choose any others. When lacking a separator,

inserting a single space character in between address component values is a good choice.

If, instead, the address components follow no particular order, then the isOrdered property

value be false, the components property contain an AddressComponent of

kind separator, and the defaultSeparator property be set.

Boolean (optional; default: false). Indicates if the address component sequence in

the components property is ordered.

String (optional). The Alpha-2 country code .

String (optional). A "geo:" URI for the address.

String (optional). Identifies the time zone the address is located in. This be a

time zone name registered in IANA's .

String[Boolean] (optional). The contexts of the address information. The boolean

value be true. In addition to the common contexts (Section 1.5.1), allowed key values

are:

billing: an address to be used for billing.

delivery: an address to be used for delivering physical items.

String (optional). The full address, including street, region, or country. The purpose of this

property is to define an address, even if the individual address components are not known.

MUST

MUST

components (Section 2.5.1.2)

MUST

SHOULD

MUST

MUST MUST NOT

MUST NOT

[ISO.3166-1]

[RFC5870]

MUST

Time Zone Database [IANA-TZ]

MUST

•

•

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 35

defaultSeparator:

pref:

phoneticScript:

phoneticSystem:

String (optional). The default separator to insert between address

component values when concatenating all address component values to a single String. Also

see the definition of the separator kind for the object.

This property be set if the Address isOrdered property value is false or if the

components property is not set.

UnsignedInt (optional). The preference of the address in relation to other addresses. Also

see Section 1.5.4.

String (optional). The script used in the value of the AddressComponent

phonetic property. Also see Section 1.5.5.

String (optional). The phonetic system used in the AddressComponent

phonetic property. Also see Section 1.5.5.

The following example illustrates the use of the address property. Additional examples are

shown in Section 2.5.1.3.

AddressComponent (Section 2.5.1.2)

MUST NOT

Figure 31: Example of the Address "54321 Oak St, Reston, VA 20190, USA"

"addresses": {

 "k23": {

 "contexts": {

 "work": true

 },

 "components": [

 { "kind": "number", "value": "54321" },

 { "kind": "separator", "value": " " },

 { "kind": "name", "value": "Oak St" },

 { "kind": "locality", "value": "Reston" },

 { "kind": "region", "value": "VA" },

 { "kind": "separator", "value": " " },

 { "kind": "postcode", "value": "20190" },

 { "kind": "country", "value": "USA" }

],

 "countryCode": "US",

 "defaultSeparator": ", ",

 "isOrdered": true

 }

}

@type:

value:

2.5.1.2. AddressComponent Object

An AddressComponent object has the following properties:

String. This be AddressComponent, if set.

String (mandatory). The value of the address component.

MUST

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 36

kind:

phonetic:

String (mandatory). The kind of the address component. The

values are:

room: the room, suite number, or identifier.

apartment: the extension designation such as the apartment number, unit, or box

number.

floor: the floor or level the address is located on.

building: the building, tower, or condominium the address is located in.

number: the street number, e.g., "123". This value is not restricted to numeric values and

can include any value such as number ranges ("112-10"), grid style ("39.2 RD"),

alphanumerics ("N6W23001"), or fractionals ("123 1/2").

name: the street name.

block: the block name or number.

subdistrict: the subdistrict, ward, or other subunit of a district.

district: the district name.

locality: the municipality, city, town, village, post town, or other locality.

region: the administrative area such as province, state, prefecture, county, or canton.

postcode: the postal code, post code, ZIP code, or other short code associated with the

address by the relevant country's postal system.

country: the country name.

direction: the cardinal direction or quadrant, e.g., "north".

landmark: the publicly known prominent feature that can substitute the street name and

number, e.g., "White House" or "Taj Mahal".

postOfficeBox: the post office box number or identifier.

separator: a formatting separator between two ordered address non-separator

components. The value property of the component includes the verbatim separator, for

example, a hyphen character or even an empty string. This value has higher precedence

than the defaultSeparator property of the Address. Implementations insert

two consecutive separator components; instead, they insert a single separator

component with the combined value. This component kind be set if the

Address isOrdered property value is false.

String (optional). Defines how to pronounce the name component. If this property is

set, then at least one of the Address object phoneticSystem or phoneticScript properties

 be set. Also see Section 1.5.5.

enumerated (Section 1.7.4)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

MUST NOT

SHOULD

MUST NOT

MUST

2.5.1.3. Address Examples

Examples of addresses are shown below; also see Figure 31.

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 37

The following example illustrates the use of an address in Tokyo and its localization (Section

2.7.1) in Japanese.

Figure 32: Example of the Address "46, 1 Sukhumvit 51 Alley, Khlong Tan Nuea, Watthana, Bangkok

10110, Thailand"

"addresses": {

 "k25": {

 "components": [

 { "kind": "number", "value": "46" },

 { "kind": "name", "value": "1 Sukhumvit 51 Alley" },

 { "kind": "subdistrict", "value": "Khlong Tan Nuea" },

 { "kind": "district", "value": " Watthana" },

 { "kind": "locality", "value": "Bangkok" },

 { "kind": "country", "value": "Thailand" },

 { "kind": "postcode", "value": "10110" }

],

 "defaultSeparator": ", ",

 "isOrdered": true

 }

}

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 38

Figure 33: Example of an Address in Tokyo and Its Localization in Japanese

"addresses": {

 "k26": {

 "components": [

 { "kind": "block", "value": "2-7" },

 { "kind": "separator", "value": "-" },

 { "kind": "number", "value": "2" },

 { "kind": "separator", "value": " " },

 { "kind": "district", "value": "Marunouchi" },

 { "kind": "locality", "value": "Chiyoda-ku" },

 { "kind": "region", "value": "Tokyo" },

 { "kind": "separator", "value": " " },

 { "kind": "postcode", "value": "100-8994" }

],

 "defaultSeparator": ", ",

 "full": "2-7-2 Marunouchi, Chiyoda-ku, Tokyo 100-8994",

 "isOrdered": true

 }

},

"localizations": {

 "jp": {

 "addresses/k26": {

 "components": [

 { "kind": "region", "value": "東京都" },

 { "kind": "locality", "value": "千代田区" },

 { "kind": "district", "value": "丸ノ内" },

 { "kind": "block", "value": "2-7" },

 { "kind": "separator", "value": "-" },

 { "kind": "number", "value": "2" },

 { "kind": "postcode", "value": "〒100-8994" }

],

 "defaultSeparator": "",

 "full": "〒100-8994東京都千代田区丸ノ内2-7-2",

 "isOrdered": true

 }

 }

}

2.6. Resource Properties

This section defines properties for digital resources associated with the entity represented by the

Card.

2.6.1. cryptoKeys

Type: Id[CryptoKey] (optional)

These are cryptographic resources such as public keys and certificates associated with the entity

represented by the Card. A CryptoKey object has all properties of the

data type, with the following additional definition:

The @type property value be CryptoKey, if set.

Resource (Section 1.4.4)

• MUST

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 39

The following example shows how to refer to an external cryptographic resource.

The following example shows how to embed key data in the CryptoKey. The key data is depicted

in multiple lines only for demonstration purposes.

Figure 34: Example of cryptoKeys with External Data

"cryptoKeys": {

 "mykey1": {

 "uri": "https://www.example.com/keys/jdoe.cer"

 }

}

Figure 35: Example of cryptoKeys with Embedded Data

"cryptoKeys": {

 "mykey2": {

 "uri": "data:application/pgp-keys;base64,LS0tLS1CRUdJTiBSU0EgUFVC

 TElDIEtFWS0tLS0tCk1JSUJDZ0tDQVFFQSt4R1ovd2N6OXVnRnBQMDdOc

 3BvNlUxN2wwWWhGaUZweHhVNHBUazNMaWZ6OVIzenNJc3UKRVJ3dGE3K2

 ZXSWZ4T28yMDhldHQvamhza2lWb2RTRXQzUUJHaDRYQmlweVdvcEt3Wjk

 zSEhhRFZaQUFMaS8yQQoreFRCdFdkRW83WEdVdWpLRHZDMi9hWkt1a2Zq

 cE9pVUk4QWhMQWZqbWxjRC9VWjFRUGgwbUhzZ2xSTkNtcEN3Cm13U1hBO

 VZObWh6K1BpQitEbWw0V1duS1cvVkhvMnVqVFh4cTcrZWZNVTRIMmZueT

 NTZTNLWU9zRlBGR1oxVE4KUVNZbEZ1U2hXckhQdGlMbVVkUG9QNkNWMm1

 NTDF0aytsN0RJSXFYclFoTFVLREFDZU01cm9NeDBrTGhVV0I4UAorMHVq

 MUNObE5ONEpSWmxDN3hGZnFpTWJGUlU5WjRONll3SURBUUFCCi0tLS0tR

 U5EIFJTQSBQVUJMSUMgS0VZLS0tLS0K"

 }

}

2.6.2. directories

Type: Id[Directory] (optional)

These are directory service resources such as entries in a directory or organizational directories

for lookup. A Directory object has all properties of the data type, with the

following additional definitions:

The @type property value be Directory, if set.

The kind property is mandatory. Its values are:

directory: the resource is a directory service that the entity represented by the Card is a

part of. This typically is an organizational directory that also contains associated entities,

e.g., co-workers and management in a company directory.

entry: the resource is a directory entry of the entity represented by the Card. In contrast to

the directory type, this is the specific URI for the entity within a directory.

In addition, the Directory object has the following property:

Resource (Section 1.4.4)

• MUST

• enumerated (Section 1.7.4)

◦

◦

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 40

listAs: UnsignedInt (optional). Defines the position of the directory resource in the list of all

Directory objects having the same kind in the Card. If set, the listAs value be higher

than zero. Multiple directory resources have the same listAs property value or none.

Sorting such entries is implementation-specific.

MUST

MAY

Figure 36: directories Example

"directories": {

 "dir1": {

 "kind": "entry",

 "uri": "https://dir.example.com/addrbook/jdoe/Jean%20Dupont.vcf"

 },

 "dir2": {

 "kind": "directory",

 "uri": "ldap://ldap.example/o=Example%20Tech,ou=Engineering",

 "pref": 1

 }

2.6.3. links

Type: Id[Link] (optional)

These are links to resources that do not fit any of the other use-case-specific resource properties.

A Link object has all properties of the data type, with the following

additional definitions:

The @type property value be Link, if set.

The kind property is optional. Its values are:

contact: the resource is a URI by which the entity represented by the Card may be

contacted; this includes web forms or other media that require user interaction.

Resource (Section 1.4.4)

• MUST

• enumerated (Section 1.7.4)

◦

Figure 37: links Example

"links": {

 "link3": {

 "kind": "contact",

 "uri": "mailto:contact@example.com",

 "pref": 1

 }

}

2.6.4. media

Type: Id[Media] (optional)

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 41

These are media resources such as photographs, avatars, or sounds that are associated with the

entity represented by the Card. A Media object has all properties of the

data type, with the following additional definitions:

The @type property value be Media, if set.

The kind property is mandatory. Its values are:

photo: the resource is a photograph or avatar.

sound: the resource is audio media, e.g., to specify the proper pronunciation of the name

property contents.

logo: the resource is a graphic image or logo associated with the entity represented by the

Card.

Resource (Section 1.4.4)

• MUST

• enumerated (Section 1.7.4)

◦

◦

◦

Figure 38: media Example

"media": {

 "res45": {

 "kind": "sound",

 "uri": "CID:JOHNQ.part8.19960229T080000.xyzMail@example.com"

 },

 "res47": {

 "kind": "logo",

 "uri": "https://www.example.com/pub/logos/abccorp.jpg"

 },

 "res1": {

 "kind": "photo",

 "uri": "..."

 }

}

2.7. Multilingual Properties

This section defines properties for localizing the content of the Card in human languages.

2.7.1. localizations

Type: String[PatchObject] (optional)

This localizes property values to languages (other than the main language) in the Card.

Localizations provide language-specific alternatives for existing property values and

 add new properties.

The keys in the localizations property object are language tags . The values are patch

objects that localize the Card in the respective language tag. The paths in the PatchObject are

relative to the Card that includes the localizations property. A patch target the

localizations property.

Conceptually, a Card is localized as follows:

Determine the language tag in which the Card should be localized.

SHOULD

NOT

[RFC5646]

MUST NOT

•

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 42

If the localizations property includes a key for that language, obtain the PatchObject value. If

there is no such key, stop.

Create a copy of the Card, but do not copy the localizations property.

Apply all patches in the PatchObject to the copy of the Card.

Optionally, set the language property in the copy of the Card.

Use the patched copy of the Card as the localized variant of the original Card.

A patch in the PatchObject may contain any value type. Its value be a valid value according

to the definition of the patched property.

Figure 39 localizes the name property by completely replacing its contents in Ukrainian language

with Cyrillic script.

Figure 40 localizes the title name by patching inside the titles property. All properties, except

the name property in the Title object, are left as is.

•

•

•

•

•

MUST

Figure 39: Example of Localizing a Top-Level Property

{

 "name": {

 "components": [

 { "kind": "title", "value": "Mr." },

 { "kind": "given", "value": "Ivan" },

 { "kind": "given2", "value": "Petrovich" },

 { "kind": "surname", "value": "Vasiliev" }

]

 },

 "localizations": {

 "uk-Cyrl": {

 "name": {

 "components": [

 { "kind": "title", "value": "г-н" },

 { "kind": "given", "value": "Иван" },

 { "kind": "given2", "value": "Петрович" },

 { "kind": "surname", "value": "Васильев" }

]

 }

 }

 }

}

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 43

Figure 40: Example of Localizing a Nested Property

"name": {

 "full": "Gabriel García Márquez"

},

"titles": {

 "t1": {

 "kind": "title",

 "name": "novelist"

 }

},

"localizations": {

 "es": {

 "titles/t1/name": "autor"

 }

}

2.8. Additional Properties

This section defines properties for which none of the previous sections are appropriate.

@type:

kind:

date:

place:

2.8.1. anniversaries

Type: Id[Anniversary] (optional)

These are memorable dates and events for the entity represented by the Card. An Anniversary

object has the following properties:

String. This be Anniversary, if set.

String (mandatory). Specifies the kind of anniversary. The

values are:

birth: a birthday anniversary

death: a deathday anniversary

wedding: a wedding day anniversary

PartialDate|Timestamp (mandatory; defaultType: PartialDate). The date of the

anniversary in the Gregorian calendar. This be either a whole or partial calendar date

or a complete UTC timestamp (see the definition of the Timestamp and PartialDate object

types below).

Address (optional). An address associated with this anniversary, e.g., the place of birth or

death.

A PartialDate object represents a complete or partial calendar date in the Gregorian calendar. It

represents a complete date, a year, a month in a year, or a day in a month. It has the following

properties, of which at least year or month and day be set:

MUST

enumerated (Section 1.7.4)

•

•

•

MUST

MUST

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 44

@type:

year:

month:

day:

calendarScale:

@type:

utc:

String. This be PartialDate, if set.

UnsignedInt (optional). The calendar year.

UnsignedInt (optional). The calendar month, represented as the integers 1 <= month <=

12. If this property is set, then either year or day be set.

UnsignedInt (optional). The calendar month day, represented as the integers 1 <= day <=

31, depending on the validity within the month and year. If this property is set, then month

 be set.

String (optional). The calendar system in which this date occurs, in lowercase.

This be either a calendar system name registered as a Common Locale Data Repository

(CLDR) or a vendor-specific value. The year, month, and day still be

represented in the Gregorian calendar. Note that the year property might be required to

convert the date between the Gregorian calendar and the respective calendar system.

A Timestamp object has the following properties:

String. This be Timestamp, if set.

UTCDateTime (mandatory). Specifies the point in time in UTC time.

Figure 41 illustrates anniversaries with partial dates and a timestamp. Note how the @type

property is set for the Timestamp object value according to the rules defined in Section 1.3.4.

MUST

MUST

MUST

MUST

[RFC7529] MUST

MUST

Figure 41: anniversaries Example

"anniversaries": {

 "k8": {

 "kind": "birth",

 "date": {

 "year": 1953,

 "month": 4,

 "day": 15

 }

 },

 "k9": {

 "kind": "death",

 "date": {

 "@type": "Timestamp",

 "utc": "2019-10-15T23:10:00Z"

 },

 "place": {

 "full": "4445 Tree Street\nNew England, ND 58647\nUSA"

 }

 }

}

2.8.2. keywords

Type: String[Boolean] (optional)

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 45

A set of free-text keywords, also known as tags. The set is represented as an object, with each key

being a keyword. The boolean value be true.MUST

Figure 42: keywords Example

"keywords": {

 "internet": true,

 "IETF": true

}

@type:

note:

created:

author:

@type:

name:

uri:

2.8.3. notes

Type: Id[Note] (optional)

Free-text notes that are associated with the Card. A Note object has the following properties:

String. This be Note, if set.

String (mandatory). The free-text value of this note.

UTCDateTime (optional). The date and time when this note was created.

Author (optional). The author of this note.

An Author object has the following properties, of which at least one property other than @type

 be set:

String. This be Author, if set.

String (optional). The name of this author.

String (optional). A URI value that identifies the author.

MUST

MUST

MUST

Figure 43: notes Example

"notes": {

 "n1": {

 "note": "Open office hours are 1600 to 1715 EST, Mon-Fri",

 "created": "2022-11-23T15:01:32Z",

 "author": {

 "name": "John"

 }

 }

}

2.8.4. personalInfo

Type: Id[PersonalInfo] (optional)

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 46

@type:

kind:

value:

level:

listAs:

label:

Defines personal information about the entity represented by the Card. A PersonalInfo object has

the following properties:

String. This be PersonalInfo, if set.

String (mandatory). Specifies the kind of personal information. The

 values are:

expertise: a field of expertise or a credential

hobby: a hobby

interest: an interest

String (mandatory). The actual information.

String (optional). Indicates the level of expertise or engagement in hobby or interest. The

 values are:

high

medium

low

UnsignedInt (optional). Defines the position of the personal information in the list of all

PersonalInfo objects that have the same kind in the Card. If set, the listAs value be

higher than zero. Multiple personal information entries have the same listAs property

value or none. Sorting such entries is implementation-specific.

String (optional). A custom label. See Section 1.5.3.

MUST

enumerated (Section

1.7.4)

•

•

•

enumerated (Section 1.7.4)

•

•

•

MUST

MAY

Figure 44: personalInfo Example

"personalInfo": {

 "pi2": {

 "kind": "expertise",

 "value": "chemistry",

 "level": "high"

 },

 "pi1": {

 "kind": "hobby",

 "value": "reading",

 "level": "high"

 },

 "pi6": {

 "kind": "interest",

 "value": "r&b music",

 "level": "medium"

 }

}

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 47

3. IANA Considerations

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):

File extensions(s):

Macintosh file type code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

3.1. Media Type Registration

This document defines a media type for use with JSContact data formatted in JSON.

application

jscontact+json

None

version

This parameter conveys the version of the JSContact data in the body part. It occur

more than once. If this parameter is set, then the values of all JSContact

properties in the body part match the parameter value.

This is the same as the encoding considerations of application/json, as

specified in .

See Section 4 of RFC 9553.

While JSContact is designed to avoid ambiguities as much as

possible, when converting objects from other contact formats to/from JSContact, it is possible

that differing representations for the same logical data or ambiguities in interpretation might

arise. The semantic equivalence of two JSContact objects may be determined differently by

different applications, for example, where URL values differ in case between the two objects.

RFC 9553

Applications that currently make use of the text/vCard

media type can use this as an alternative.

A JSON Pointer fragment identifier may be used, as defined

in .

N/A

N/A

N/A

calsify@ietf.org

COMMON

N/A

See the "Authors' Addresses" section of RFC 9553.

MUST NOT

version (Table 2)

MUST

Section 11 of [RFC8259]

[RFC6901], Section 6

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 48

https://www.rfc-editor.org/rfc/rfc8259#section-11
https://www.rfc-editor.org/rfc/rfc6901#section-6

Change controller: IETF

3.2. Creation of the JSContact Registry Group

IANA has created the "JSContact" registry group. The new registry definitions in the following

sections all belong to that group.

3.3. Registry Policy and Change Procedures

Registry assignments that introduce changes require the

JSContact major version to change; other changes only require a change to the minor version.

The registry policy for assignments that require the JSContact major version to change is

Standards Action (). The registry policy for other assignments is

Specification Required ().

The designated expert (DE) decides if a major or minor version change is required and assigns

the new version to the . Version numbers increment by

one, and a major version change resets the minor version to zero. An assignment may apply

multiple changes and to more than one registry at once, in which case a single version change is

sufficient. If the registry policy is Specification Required, then the DE may decide that it is enough

to document the new assignment in the Description item of the respective registry.

A registration have an intended usage of common, reserved, or obsolete.

A common usage denotes an item with shared semantics and syntax across systems. Up-to-

date systems expect such items to occur in JSContact data.

A reserved usage reserves an item in the registry without assigning semantics to avoid

name collisions with future extensions or protocol use. Implementations expect or

add items with such names outside the protocols or extensions that use them; otherwise, any

such JSContact data is invalid.

An obsolete usage denotes an item that is no longer expected to be added by up-to-date

systems. A new assignment has probably been defined, covering the obsolete item's

semantics. Implementations expect such items to occur in JSContact data up to the

"Until Version" registry field, inclusively. They add such items for any version after

which the item got obsolete; otherwise, any such JSContact data is invalid.

The intended usage of registry items may change between versions, but the designated expert

must carefully consider the impact on existing implementations and standards before doing so.

The registration procedure is not a formal standards process but rather an administrative

procedure intended to allow community comments and to check whether it is coherent without

excessive time delay. It is designed to encourage vendors to document and register new items

they add for use cases not covered by the original specification, leading to increased

interoperability.

backwards-incompatible (Section 1.9)

[RFC8126], Section 4.9

[RFC8126], Section 4.6

"JSContact Version" registry (Section 3.4)

MUST

•

MUST

•

MUST NOT

•

MUST

MUST NOT

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 49

https://www.rfc-editor.org/rfc/rfc8126#section-4.9
https://www.rfc-editor.org/rfc/rfc8126#section-4.6

3.3.1. Preliminary Community Review

Notice of a potential new registration be sent to the Calext WG mailing list

<calsify@ietf.org> for review. This mailing list is appropriate for soliciting community feedback

on a proposed registry assignment.

The intent of the public posting to this list is to solicit comments and feedback on the choice of

the item name or value, the unambiguity of its description, and a review of any interoperability

or security considerations. The submitter may submit a revised registration proposal or abandon

the registration completely at any time.

MUST

3.3.2. Submit Request to IANA

Registration requests can be sent to IANA <iana@iana.org>.

3.3.3. Designated Expert Review

The primary concern of the DE is preventing name collisions and encouraging the submitter to

document security and privacy considerations.

A new type name, property name, or enumerated value differ only in case from an

already-registered name or value.

For a common-use registration, the DE is expected to confirm that suitable documentation is

available to ensure interoperability. The DE should also verify that the new assignment does not

conflict with work that is active or already published within the IETF.

The DE will either approve or deny the registration request and publish a notice of the decision

to the Calext WG mailing list or its successor, as well as inform IANA. A denial notice must be

justified by an explanation, and in the cases where it is possible, concrete suggestions on how the

request can be modified to become acceptable should be provided.

MUST NOT

3.3.4. Change Procedures

Once a JSContact registry group item has been published by IANA, the Change Controller may

request a change to its definition. The same procedure that would be appropriate for the original

registration request is used to process a change request.

JSContact registrations do not get deleted; instead, items that are no longer believed appropriate

for use are declared obsolete by a change to their "Intended Usage" field; such items will be

clearly marked in the IANA registry.

Significant changes to a JSContact registry item's definition should be requested only when there

are serious omissions or errors in the published specification, as such changes may cause

interoperability issues. When review is required, a change request may be denied if it renders

entities that were valid under the previous definition invalid under the new definition.

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 50

3.4. Creation of the JSContact Version Registry

IANA has created the "JSContact Version" registry. The purpose of this new registry is to define

the allowed value range of JSContact major and minor version numbers.

The registry entries sort numerically in ascending order by the "Major Version" column.

The registry process is outlined in Section 3.3.

Major Version:

Highest Minor Version:

3.4.1. JSContact Version Registry Template

The numeric value of a JSContact major version number. It be a positive

integer.

The maximum numeric value of a JSContact minor version for the given

major version. It be zero or a positive integer. All numbers less than or equal to this

value are valid minor version values for the given major version.

MUST

MUST

3.4.2. Initial Contents of the JSContact Version Registry

The following table lists the initial valid major and minor version number ranges.

Major Version Highest Minor Version Reference

1 0 RFC 9553

Table 1: JSContact Version Registry

3.5. Creation of the JSContact Properties Registry

IANA has created the "JSContact Properties" registry. The purpose of this new registry is to allow

interoperability of extensions to JSContact objects.

The registry entries sort alphabetically in ascending order by the following columns: "Property

Name" first, "Property Context" second, and "Since Version" third. Equal entries sort in any order.

The registry process for a new property is outlined in Section 3.3.

Property Name:

3.5.1. JSContact Properties Registry Template

The name of the property. The property name already be registered

for any of the object types listed in the "Property Context" field of this registration. Other

object types have already registered a different property with the same name; however,

the same name only be used when the semantics are analogous.

MUST NOT

MAY

MUST

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 51

Property Type:

Property Context:

Intended Usage:

Since Version:

Until Version:

Change Controller:

Reference or Description:

For properties with intended usage other than "reserved", this is the type of this

property, using type signatures as specified in Section 1.3.2. The property type be

registered in the "JSContact Types" registry. For reserved property names, the value MUST be

the verbatim string "not applicable".

A comma-separated list of JSContact object types (Section 3.6.2) that contain

the property. For reserved property names, the value MAY be the verbatim string "not

applicable".

May be "common", "reserved", or "obsolete".

The JSContact version on which the property definition is based. The version

 be one of the allowed values of the version property in the "JSContact Enum Values"

registry (see Table 1).

The JSContact version after which the property was obsoleted; therefore, it

 be used in later versions. The Until Version value either be set or be one

of the allowed values of the version property in the "JSContact Enum Values" registry (see

Table 1).

This is who may request a change to the entry's definition (IETF for RFCs

from the IETF stream).

A brief description or RFC number and section reference where the

property is specified. This must include references to all RFC documents where this property

is introduced or updated. For reserved property names, the reference or description be

omitted.

MUST

MUST

MUST

NOT MUST NOT MUST

MAY

3.5.2. Initial Contents of the JSContact Properties Registry

The following table lists the initial common usage entries of the "JSContact Properties" registry. For

all properties, the Since Version is 1.0, the Until Version is not set, the Change Controller is IETF,

and RFC section references are for RFC 9553.

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 52

Property Name Property Type Property Context Ref

@type String Address,

AddressComponent,

Anniversary,

Author, Card,

Calendar,

CryptoKey,

Directory,

EmailAddress,

LanguagePref, Link,

Media, Name,

NameComponent,

Nickname, Note,

OnlineService,

Organization,

OrgUnit,

PartialDate,

PersonalInfo,

Phone, Pronouns,

Relation,

SchedulingAddress,

SpeakToAs,

Timestamp, Title

Sections 2.5.1, 2.8.1, 2.1.1, 2.4.1, 2.6.1, 2.6.2, 2.3.1, 2.3.4, 2.6.3, 2.6.4, 2.2.1, 2.2.1.3, 2.8.3, 2.3.2, 2.2.2, 2.8.4, 2.3.3, 2.2.3,

2.1.8, 2.4.2, 2.2.4

address String EmailAddress Section 2.3.1

addresses Id[Address] Card Section 2.5.1

anniversaries Id[Anniversary] Card Section 2.8.1

author Author Note Section 2.8.3

calendars Id[Calendar] Card Section 2.4.1

calendarScale String PartialDate Section 2.8.1

components AddressComponent[] Address Section 2.5.1

components NameComponent[] Name Section 2.2.1

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 53

Property Name Property Type Property Context Ref

contexts String[Boolean] Address, Calendar,

CryptoKey,

Directory,

EmailAddress,

LanguagePref, Link,

Media, Nickname,

OnlineService,

Organization,

Phone, Pronouns,

SchedulingAddress

Sections 1.4.4, 1.5.1, 2.5.1, 2.4.1, 2.6.1, 2.6.2, 2.3.1, 2.3.4, 2.6.3, 2.6.4, 2.2.1.3, 2.3.2, 2.2.2, 2.3.3, 2.2.3, 2.4.2

coordinates String Address Section 2.5.1

countryCode String Address Section 2.5.1

created UTCDateTime Card, Note Sections 2.1.3, 2.8.3

date PartialDate|

Timestamp

Anniversary Section 2.8.1

day UnsignedInt PartialDate Section 2.8.1

defaultSeparator String Address, Name Sections 2.5.1, 2.2.1

directories Id[Directory] Card Section 2.6.2

emails Id[EmailAddress] Card Section 2.3.1

features String[Boolean] Phone Section 2.3.3

full String Address, Name Sections 2.5.1, 2.2.1

grammaticalGender String SpeakToAs Section 2.2.3

isOrdered Boolean Address, Name Sections 2.5.1, 2.2.1

keywords String[Boolean] Card Section 2.8.2

kind String AddressComponent,

Anniversary,

Calendar, Card,

CryptoKey,

Directory, Link,

Media,

NameComponent,

PersonalInfo, Title

Sections 2.5.1, 2.8.1, 2.4.1, 2.1.4, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.2.1, 2.8.4, 2.2.4

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 54

Property Name Property Type Property Context Ref

label String Calendar,

CryptoKey,

Directory,

EmailAddress, Link,

Media,

OnlineService,

PersonalInfo,

Phone,

SchedulingAddress

Sections 1.4.4, 1.5.3, 2.4.1, 2.6.1, 2.6.2, 2.3.1, 2.6.3, 2.6.4, 2.3.2, 2.8.4, 2.3.3, 2.4.2

language String Card, LanguagePref Sections 2.1.5, 2.3.4

level String PersonalInfo Section 2.8.4

links Id[Link] Card Section 2.6.3

listAs UnsignedInt Directory,

PersonalInfo

Sections 2.6.2, 2.8.4

localizations String[PatchObject] Card Section 2.7.1

media Id[Media] Card Section 2.6.4

mediaType String Calendar,

CryptoKey,

Directory, Link,

Media

Sections 1.4.4, 2.4.1, 2.6.1, 2.6.2, 2.6.3, 2.6.4

members String[Boolean] Card Section 2.1.6

month UnsignedInt PartialDate Section 2.8.1

name Name Card Section 2.2.1

name String Author, Nickname,

Organization,

OrgUnit, Title

Sections 2.8.3, 2.2.1.3, 2.2.2, 2.2.4

nicknames Id[Nickname] Card Section 2.2.1.3

note String Note Section 2.8.3

notes Id[Note] Card Section 2.8.3

number String Phone Section 2.3.3

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 55

Property Name Property Type Property Context Ref

onlineServices Id[OnlineService] Card Section 2.3.2

organizationId String Title Section 2.2.4

organizations Id[Organization] Card Section 2.2.2

personalInfo Id[PersonalInfo] Card Section 2.8.4

phones Id[Phone] Card Section 2.3.3

phonetic String AddressComponent,

NameComponent

Sections 2.5.1.2, 2.2.1.2

phoneticScript String Address, Name Sections 2.2.1, 2.5.1

phoneticSystem String Address, Name Sections 2.2.1, 2.5.1

place Address Anniversary Section 2.8.1

pref UnsignedInt Address, Calendar,

CryptoKey,

Directory,

EmailAddress,

LanguagePref, Link,

Media, Nickname,

OnlineService,

Phone, Pronouns,

SchedulingAddress

Sections 1.4.4, 1.5.4, 2.5.1, 2.4.1, 2.6.1, 2.6.2, 2.3.1, 2.3.4, 2.6.3, 2.6.4, 2.2.1.3, 2.3.2, 2.3.3, 2.2.3, 2.4.2

preferredLanguages String[LanguagePref] Card Section 2.3.4

prodId String Card Section 2.1.7

pronouns Id[Pronouns] SpeakToAs Section 2.2.3

relatedTo String[Relation] Card Section 2.1.8

relation String[Boolean] Relation Section 2.1.8

schedulingAddresses Id[SchedulingAddress] Card Section 2.4.2

service String OnlineService Section 2.3.2

sortAs String[String] Name Section 2.2.1

sortAs String Organization,

OrgUnit

Section 2.2.2

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 56

The following table lists the initial reserved usage entries of the "JSContact Properties" registry.

For this property, the Change Controller is IETF, and the RFC section reference is for RFC 9553.

Property Name Property Type Property Context Ref

speakToAs SpeakToAs Card Section 2.2.3

timeZone String Address Section 2.5.1

titles Id[Title] Card Section 2.2.4

uid String Card Section 2.1.9

units OrgUnit[] Organization Section 2.2.2

updated UTCDateTime Card Section 2.1.10

uri String Author, Calendar,

CryptoKey,

Directory, Link,

Media,

OnlineService,

SchedulingAddress

Sections 1.4.4, 2.8.3, 2.4.1, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.3.2, 2.4.2

user String OnlineService Section 2.3.2

utc UTCDateTime Timestamp Section 2.8.1

value String AddressComponent,

NameComponent,

PersonalInfo

Sections 2.5.1, 2.2.1, 2.8.4

version String Card Section 2.1.2

year UnsignedInt PartialDate Section 2.8.1

Table 2: JSContact Properties with "common" Usage

Property

Name

Property

Type

Property

Context

Reference/

Description

Intended

Usage

extra not

applicable

not applicable Section 1.5.2 reserved

Table 3: JSContact Properties with "reserved" Usage

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 57

3.6. Creation of the JSContact Types Registry

IANA has created the "JSContact Types" registry. The purpose of this new registry is to avoid

name collisions for JSContact type names and provide a complete reference for all data types

used for JSContact property values.

The registry entries sort alphabetically in ascending order by the "Type Name" column. Equal

entries sort in any order.

The registry process for a new type is outlined in Section 3.3.

Type Name:

Intended Usage:

Since Version:

Until Version:

Change Controller:

Reference or Description:

3.6.1. JSContact Types Registry Template

The name of the type.

May be "common", "reserved", or "obsolete".

The JSContact version on which this type definition is based. The version

be one of the allowed values of the version property in the "JSContact Enum Values" registry

(see Table 1).

The JSContact version after which the type definition was obsoleted; therefore, it

 be used in later versions. The Until Version value either be set or

be one of the allowed values of the version property in the "JSContact Enum Values" registry

(see Table 1).

This is who may request a change to the entry's definition (IETF for RFCs

from the IETF stream).

A brief description or RFC number and section reference where the

Type is specified. For reserved type names, the reference or description be omitted.

MUST

MUST NOT MUST NOT MUST

MAY

3.6.2. Initial Contents of the JSContact Types Registry

The following table lists the initial common usage entries in the "JSContact Types" registry. For all

of these types, the Since Version is 1.0, the Until Version is not set, the Change Controller is IETF,

and RFC section references are for RFC 9553.

Type Name Reference or Description

Address Section 2.5.1

AddressComponent Section 2.5.1

Anniversary Section 2.8.1

Author Section 2.8.3

Boolean Section 1.3.2

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 58

Type Name Reference or Description

Calendar Section 2.4.1

Card Section 2

CryptoKey Section 2.6.1

Directory Section 2.6.2

EmailAddress Section 2.3.1

Id Section 1.4.1

Int Section 1.4.2

LanguagePref Section 2.3.4

Link Section 2.6.3

Media Section 2.6.4

Name Section 2.2.1

NameComponent Section 2.2.1

Nickname Section 2.2.1.3

Note Section 2.8.3

Number Section 1.3.2

OnlineService Section 2.3.2

Organization Section 2.2.2

OrgUnit Section 2.2.2

PartialDate Section 2.8.1

PatchObject Section 1.4.3

PersonalInfo Section 2.8.4

Phone Section 2.3.3

Pronouns Section 2.2.3

Relation Section 2.1.8

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 59

The following table lists the initial reserved usage entry of the "JSContact Types" registry. For

this type, the version is 1.0, the Change Controller is IETF, and the RFC section reference is for

RFC 9553.

Type Name Reference or Description

SchedulingAddress Section 2.4.2

SpeakToAs Section 2.2.3

String Section 1.3.2

Timestamp Section 2.8.1

Title Section 2.2.4

UnsignedInt Section 1.4.2

UTCDateTime Section 1.4.5

Table 4: JSContact Types with "common" Usage

Type Name Reference or Description

Resource Section 1.4.4

Table 5: JSContact Types with "reserved"

Usage

3.7. Creation of the JSContact Enum Values Registry

IANA has created the "JSContact Enum Values" registry. The purpose of the new registry is to

allow interoperable extension of semantics for JSContact properties with enumerable values.

Each such property will have a subregistry of allowed values.

The registry entries sort alphabetically in ascending order by the following columns: "Property

Name" first, "Property Context" second, and "Since Version" third. The enum values sort

alphabetically in ascending order. Equal entries sort in any order.

The registry process for a new enum value or adding a new enumerable property is outlined in

Section 3.3.

Property Name:

3.7.1. JSContact Enum Values Registry Property Template

This template is for adding a subregistry for a new enumerable property to the "JSContact Enum

Values" registry.

The name(s) of the property or properties where these values may be used.

This be registered in the "JSContact Properties" registry. MUST

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 60

Context:

Since Version:

Until Version:

Change Controller:

Initial Contents:

The list of allowed object types where the property or properties may appear, as

registered in the "JSContact Properties" registry. This disambiguates where there may be two

distinct properties with the same name in different contexts.

The JSContact version on which the enum value definition is based. The version

 be one of the allowed values of the version property in the "JSContact Enum Values"

registry (see Table 1).

The JSContact version after which the enum value definition was obsoleted;

therefore, the enum value definition be used in later versions. The Until Version

value either be set or be one of the allowed values of the version property in

the "JSContact Enum Values" registry (see Table 1).

This is who may request a change to the entry's definition (IETF for RFCs

from the IETF stream).

The initial list of defined values for the enum, using the template defined in

Section 3.7.2. A subregistry will be created with these values for this property name/context

tuple.

MUST

MUST NOT

MUST NOT MUST

Enum Value:

Since Version:

Until Version:

Reference or Description:

3.7.2. JSContact Enum Values Registry Value Template

This template is for adding a new enum value to a subregistry in the "JSContact Enum Values"

registry.

The verbatim value of the enum.

The JSContact version on which the enum value definition is based. The version

 be one of the allowed values of the version property in the "JSContact Enum Values"

registry (see Table 1).

The JSContact version after which the enum value was obsoleted; therefore, the

enum value be used in later versions. The Until Version value either be

set or be one of the allowed values of the version property in the "JSContact Enum

Values" registry (see Table 1).

A brief description or RFC number and section reference for the

semantics of the value.

MUST

MUST NOT MUST NOT

MUST

Property Name:

Context:

Initial Contents:

3.7.3. Initial Contents of the JSContact Enum Values Registry

For all entries in each subregistry created in this section, the Since Version is 1.0, the Until

Version is not set, the Change Controller is IETF, and RFC section references are for RFC 9553.

contexts

Address

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 61

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

contexts

Calendar, CryptoKey, Directory, EmailAddress, LanguagePref, Link, Media,

Nickname, OnlineService, Organization, Phone, Pronouns,

SchedulingAddress

features

Phone

Enum Value Reference or Description

billing Section 2.5.1

delivery Section 2.5.1

private Section 1.5.1

work Section 1.5.1

Table 6: JSContact Enum Values for contexts

(Context: Address)

Enum Value Reference or Description

private Section 1.5.1

work Section 1.5.1

Table 7: JSContact Enum Values for contexts

(Context: Calendar, CryptoKey, Directory,

EmailAddress, LanguagePref, Link, Media,

Nickname, OnlineService, Organization, Phone,

Pronouns, SchedulingAddress)

Enum Value Reference or Description

fax Section 2.3.3

main-number Section 2.3.3

mobile Section 2.3.3

pager Section 2.3.3

text Section 2.3.3

textphone Section 2.3.3

video Section 2.3.3

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 62

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

grammaticalGender

SpeakToAs

kind

AddressComponent

Enum Value Reference or Description

voice Section 2.3.3

Table 8: JSContact Enum Values for features

(Context: Phone)

Enum Value Reference or Description

animate Section 2.2.3

common Section 2.2.3

feminine Section 2.2.3

inanimate Section 2.2.3

masculine Section 2.2.3

neuter Section 2.2.3

Table 9: JSContact Enum Values for

grammaticalGender (Context: SpeakToAs)

Enum Value Reference or Description

apartment Section 2.5.1

block Section 2.5.1

building Section 2.5.1

country Section 2.5.1

direction Section 2.5.1

district Section 2.5.1

floor Section 2.5.1

landmark Section 2.5.1

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 63

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

kind

Anniversary

kind

Calendar

Enum Value Reference or Description

locality Section 2.5.1

name Section 2.5.1

number Section 2.5.1

postcode Section 2.5.1

postOfficeBox Section 2.5.1

region Section 2.5.1

room Section 2.5.1

separator Section 2.5.1

subdistrict Section 2.5.1

Table 10: JSContact Enum Values for kind

(Context: AddressComponent)

Enum Value Reference or Description

birth Section 2.8.1

death Section 2.8.1

wedding Section 2.8.1

Table 11: JSContact Enum Values for kind

(Context: Anniversary)

Enum Value Reference or Description

calendar Section 2.4.1

freeBusy Section 2.4.1

Table 12: JSContact Enum Values for kind

(Context: Calendar)

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 64

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

kind

Card

kind

Directory

kind

Link

kind

Media

Enum Value Reference or Description

application Section 2.1.4

device Section 2.1.4

group Section 2.1.4

individual Section 2.1.4

location Section 2.1.4

org Section 2.1.4

Table 13: JSContact Enum Values for kind

(Context: Card)

Enum Value Reference or Description

directory Section 2.6.2

entry Section 2.6.2

Table 14: JSContact Enum Values for kind

(Context: Directory)

Enum Value Reference or Description

contact Section 2.6.3

Table 15: JSContact Enum Values for kind

(Context: Link)

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 65

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

kind

NameComponent

kind

PersonalInfo

Enum Value Reference or Description

logo Section 2.6.4

photo Section 2.6.4

sound Section 2.6.4

Table 16: JSContact Enum Values for kind

(Context: Media)

Enum Value Reference or Description

credential Section 2.2.1

generation Section 2.2.1

given Section 2.2.1

given2 Section 2.2.1

separator Section 2.2.1

surname Section 2.2.1

surname2 Section 2.2.1

title Section 2.2.1

Table 17: JSContact Enum Values for kind

(Context: NameComponent)

Enum Value Reference or Description

expertise Section 2.8.4

hobby Section 2.8.4

interest Section 2.8.4

Table 18: JSContact Enum Values for kind

(Context: PersonalInfo)

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 66

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

kind

Title

level

PersonalInfo

phoneticSystem

Address, Name

relation

Relation

Enum Value Reference or Description

role Section 2.2.4

title Section 2.2.4

Table 19: JSContact Enum Values for kind

(Context: Title)

Enum Value Reference or Description

high Section 2.8.4

low Section 2.8.4

medium Section 2.8.4

Table 20: JSContact Enum Values for level

(Context: PersonalInfo)

Enum Value Reference or Description

ipa Section 1.5.5

jyut Section 1.5.5

piny Section 1.5.5

Table 21: JSContact Enum Values for

phoneticSystem (Context: Address, Name)

Enum Value Reference or Description

acquaintance Section 2.1.8

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 67

Enum Value Reference or Description

agent Section 2.1.8

child Section 2.1.8

colleague Section 2.1.8

contact Section 2.1.8

co-resident Section 2.1.8

co-worker Section 2.1.8

crush Section 2.1.8

date Section 2.1.8

emergency Section 2.1.8

friend Section 2.1.8

kin Section 2.1.8

me Section 2.1.8

met Section 2.1.8

muse Section 2.1.8

neighbor Section 2.1.8

parent Section 2.1.8

sibling Section 2.1.8

spouse Section 2.1.8

sweetheart Section 2.1.8

Table 22: JSContact Enum Values for relation

(Context: Relation)

4. Security Considerations

Contact information is very privacy sensitive. It can reveal the identity, location, credentials

information, employment status, interests and hobbies, and social network of a user. Its

transmission and storage must be done carefully to protect it from possible threats such as

eavesdropping, replay, message insertion, deletion, modification, and on-path attacks.

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 68

The data being stored and transmitted may be used in systems with real-world consequences.

For example, a malicious actor might provide JSContact data that uses the name of another

person but insert their contact details to impersonate the unknown victim. Such systems must be

careful to authenticate all data they receive to prevent them from being subverted and ensure

the change comes from an authorized entity.

This document only defines the data format; such considerations are primarily the concern of

the API or method of storage and transmission of such files.

4.1. JSON Parsing

The security considerations of apply to the use of JSON as the data interchange format.

As for any serialization format, parsers need to thoroughly check the syntax of the supplied data.

JSON uses opening and closing brackets for several types and structures, and it is possible that

the end of the supplied data will be reached when scanning for a matching closing bracket; this is

an error condition, and implementations need to stop scanning at the end of the supplied data.

JSON also uses a string encoding with some escape sequences to encode special characters within

a string. Care is needed when processing these escape sequences to ensure that they are fully

formed before the special processing is triggered, with special care taken when the escape

sequences appear adjacent to other (non-escaped) special characters or adjacent to the end of

data (as in the previous paragraph).

If parsing JSON into a non-textual structured data format, implementations may need to allocate

storage to hold JSON string elements. Since JSON does not use explicit string lengths, the risk of

denial of service due to resource exhaustion is small, but implementations may still wish to place

limits on the size of allocations they are willing to make in any given context, to avoid untrusted

data causing excessive memory allocation.

[RFC8259]

4.2. URI Values

Several JSContact properties contain URIs as values, and processing these properties requires

extra care. discusses security risks related to URIs.

Fetching remote resources carries inherent risks. Connections must only be allowed on well-

known ports, using allowed protocols (generally, just HTTP/HTTPS on their default ports). The

URL must be resolved externally and not allowed to access internal resources. Connecting to an

external source reveals IP (and therefore often location) information.

A maliciously constructed JSContact object may contain a very large number of URIs. In the case

of published address books with a large number of subscribers, such objects could be widely

distributed. Implementations should be careful to limit the automatic fetching of linked

resources to reduce the risk of this being an amplification vector for a denial-of-service attack.

Section 7 of [RFC3986]

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 69

https://www.rfc-editor.org/rfc/rfc3986#section-7

[IANA-TZ]

[IANA-vCard]

[ISO.3166-1]

[RFC1034]

[RFC1035]

[RFC2046]

[RFC2119]

[RFC2426]

[RFC3339]

[RFC4122]

[RFC4648]

[RFC5234]

[RFC5322]

5. References

5.1. Normative References

, , .

, , .

,

,

, August 2020.

, , , ,

, November 1987, .

, , ,

, , November 1987,

.

 and ,

, , , November 1996,

.

, , ,

, , March 1997,

.

 and , , ,

, September 1998, .

 and , ,

, , July 2002,

.

, , and ,

, , , July 2005,

.

, , ,

, October 2006, .

 and ,

, , , , January 2008,

.

, , , ,

October 2008, .

IANA "Time Zone Database" <https://www.iana.org/time-zones>

IANA "vCard Elements" <https://www.iana.org/assignments/vcard-elements>

International Organization for Standardization "Codes for the representation of

names of countries and their subdivisions -- Part 1: Country codes" ISO

3166-1:2020

Mockapetris, P. "Domain names - concepts and facilities" STD 13 RFC 1034 DOI

10.17487/RFC1034 <https://www.rfc-editor.org/info/rfc1034>

Mockapetris, P. "Domain names - implementation and specification" STD 13

RFC 1035 DOI 10.17487/RFC1035 <https://www.rfc-editor.org/

info/rfc1035>

Freed, N. N. Borenstein "Multipurpose Internet Mail Extensions (MIME)

Part Two: Media Types" RFC 2046 DOI 10.17487/RFC2046

<https://www.rfc-editor.org/info/rfc2046>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Dawson, F. T. Howes "vCard MIME Directory Profile" RFC 2426 DOI

10.17487/RFC2426 <https://www.rfc-editor.org/info/rfc2426>

Klyne, G. C. Newman "Date and Time on the Internet: Timestamps" RFC

3339 DOI 10.17487/RFC3339 <https://www.rfc-editor.org/info/

rfc3339>

Leach, P. Mealling, M. R. Salz "A Universally Unique IDentifier (UUID) URN

Namespace" RFC 4122 DOI 10.17487/RFC4122 <https://www.rfc-

editor.org/info/rfc4122>

Josefsson, S. "The Base16, Base32, and Base64 Data Encodings" RFC 4648 DOI

10.17487/RFC4648 <https://www.rfc-editor.org/info/rfc4648>

Crocker, D., Ed. P. Overell "Augmented BNF for Syntax Specifications:

ABNF" STD 68 RFC 5234 DOI 10.17487/RFC5234 <https://

www.rfc-editor.org/info/rfc5234>

Resnick, P., Ed. "Internet Message Format" RFC 5322 DOI 10.17487/RFC5322

<https://www.rfc-editor.org/info/rfc5322>

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 70

https://www.iana.org/time-zones
https://www.iana.org/assignments/vcard-elements
https://www.rfc-editor.org/info/rfc1034
https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2426
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5322

[RFC5646]

[RFC5870]

[RFC6350]

[RFC6901]

[RFC7493]

[RFC7529]

[RFC8126]

[RFC8141]

[RFC8174]

[RFC8259]

[IPA]

[RFC3261]

[RFC3966]

 and , , ,

, , September 2009,

.

 and ,

, , , June 2010,

.

, , , ,

August 2011, .

, , and ,

, , , April 2013,

.

, , , ,

March 2015, .

 and ,

, ,

, May 2015, .

, , and ,

, , , , June

2017, .

 and , , ,

, April 2017, .

, ,

, , , May 2017,

.

, ,

, , , December 2017,

.

5.2. Informative References

, ,

.

, , , , , ,

, and , , ,

, June 2002, .

, , ,

, December 2004, .

Phillips, A., Ed. M. Davis, Ed. "Tags for Identifying Languages" BCP 47 RFC

5646 DOI 10.17487/RFC5646 <https://www.rfc-editor.org/info/

rfc5646>

Mayrhofer, A. C. Spanring "A Uniform Resource Identifier for Geographic

Locations ('geo' URI)" RFC 5870 DOI 10.17487/RFC5870 <https://

www.rfc-editor.org/info/rfc5870>

Perreault, S. "vCard Format Specification" RFC 6350 DOI 10.17487/RFC6350

<https://www.rfc-editor.org/info/rfc6350>

Bryan, P., Ed. Zyp, K. M. Nottingham, Ed. "JavaScript Object Notation

(JSON) Pointer" RFC 6901 DOI 10.17487/RFC6901 <https://www.rfc-

editor.org/info/rfc6901>

Bray, T., Ed. "The I-JSON Message Format" RFC 7493 DOI 10.17487/RFC7493

<https://www.rfc-editor.org/info/rfc7493>

Daboo, C. G. Yakushev "Non-Gregorian Recurrence Rules in the Internet

Calendaring and Scheduling Core Object Specification (iCalendar)" RFC 7529

DOI 10.17487/RFC7529 <https://www.rfc-editor.org/info/rfc7529>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA

Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Saint-Andre, P. J. Klensin "Uniform Resource Names (URNs)" RFC 8141 DOI

10.17487/RFC8141 <https://www.rfc-editor.org/info/rfc8141>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"

STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-

editor.org/info/rfc8259>

IPA "International Phonetic Alphabet" <https://

www.internationalphoneticalphabet.org/>

Rosenberg, J. Schulzrinne, H. Camarillo, G. Johnston, A. Peterson, J. Sparks, R.

Handley, M. E. Schooler "SIP: Session Initiation Protocol" RFC 3261 DOI

10.17487/RFC3261 <https://www.rfc-editor.org/info/rfc3261>

Schulzrinne, H. "The tel URI for Telephone Numbers" RFC 3966 DOI 10.17487/

RFC3966 <https://www.rfc-editor.org/info/rfc3966>

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 71

https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc5870
https://www.rfc-editor.org/info/rfc5870
https://www.rfc-editor.org/info/rfc6350
https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc7493
https://www.rfc-editor.org/info/rfc7529
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8141
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.internationalphoneticalphabet.org/
https://www.internationalphoneticalphabet.org/
https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc3966

[RFC3986]

[RFC3987]

[RFC6351]

[RFC6473]

[RFC6474]

[RFC6715]

[RFC6869]

[RFC7095]

[RFC8499]

[RFC8605]

[UBiDi]

[UUID]

[WHATWG-URL]

, , and ,

, , , , January 2005,

.

 and , ,

, , January 2005,

.

, , ,

, August 2011, .

, , , ,

December 2011, .

 and ,

, , , December 2011,

.

, , and ,

, , , August 2012,

.

, , and , , ,

, February 2013, .

, , ,

, January 2014, .

, , and , , ,

, , January 2019,

.

 and ,

, , ,

May 2019, .

,

, , , August 2023,

.

, , and ,

, , , 6

November 2023,

.

, , January 2024,

.

Berners-Lee, T. Fielding, R. L. Masinter "Uniform Resource Identifier (URI):

Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986

<https://www.rfc-editor.org/info/rfc3986>

Duerst, M. M. Suignard "Internationalized Resource Identifiers (IRIs)" RFC

3987 DOI 10.17487/RFC3987 <https://www.rfc-editor.org/info/

rfc3987>

Perreault, S. "xCard: vCard XML Representation" RFC 6351 DOI 10.17487/

RFC6351 <https://www.rfc-editor.org/info/rfc6351>

Saint-Andre, P. "vCard KIND:application" RFC 6473 DOI 10.17487/RFC6473

<https://www.rfc-editor.org/info/rfc6473>

Li, K. B. Leiba "vCard Format Extensions: Place of Birth, Place and Date of

Death" RFC 6474 DOI 10.17487/RFC6474 <https://www.rfc-

editor.org/info/rfc6474>

Cauchie, D. Leiba, B. K. Li "vCard Format Extensions: Representing vCard

Extensions Defined by the Open Mobile Alliance (OMA) Converged Address Book

(CAB) Group" RFC 6715 DOI 10.17487/RFC6715 <https://www.rfc-

editor.org/info/rfc6715>

Salgueiro, G. Clarke, J. P. Saint-Andre "vCard KIND:device" RFC 6869 DOI

10.17487/RFC6869 <https://www.rfc-editor.org/info/rfc6869>

Kewisch, P. "jCard: The JSON Format for vCard" RFC 7095 DOI 10.17487/

RFC7095 <https://www.rfc-editor.org/info/rfc7095>

Hoffman, P. Sullivan, A. K. Fujiwara "DNS Terminology" BCP 219 RFC

8499 DOI 10.17487/RFC8499 <https://www.rfc-editor.org/info/

rfc8499>

Hollenbeck, S. R. Carney "vCard Format Extensions: ICANN Extensions for

the Registration Data Access Protocol (RDAP)" RFC 8605 DOI 10.17487/RFC8605

<https://www.rfc-editor.org/info/rfc8605>

The Unicode Consortium "Unicode Standard Annex #9: Unicode Bidirectional

Algorithm" Revision 48 Unicode 15.1.0 <https://www.unicode.org/

reports/tr9/>

Davis, K. R. Peabody, B. G. P. Leach "Universally Unique IDentifiers

(UUID)" Work in Progress Internet-Draft, draft-ietf-uuidrev-rfc4122bis-14

<https://datatracker.ietf.org/doc/html/draft-ietf-uuidrev-

rfc4122bis-14>

WHATWG "URL Living Standard" <https://

url.spec.whatwg.org>

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 72

https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3987
https://www.rfc-editor.org/info/rfc3987
https://www.rfc-editor.org/info/rfc6351
https://www.rfc-editor.org/info/rfc6473
https://www.rfc-editor.org/info/rfc6474
https://www.rfc-editor.org/info/rfc6474
https://www.rfc-editor.org/info/rfc6715
https://www.rfc-editor.org/info/rfc6715
https://www.rfc-editor.org/info/rfc6869
https://www.rfc-editor.org/info/rfc7095
https://www.rfc-editor.org/info/rfc8499
https://www.rfc-editor.org/info/rfc8499
https://www.rfc-editor.org/info/rfc8605
https://www.unicode.org/reports/tr9/
https://www.unicode.org/reports/tr9/
https://datatracker.ietf.org/doc/html/draft-ietf-uuidrev-rfc4122bis-14
https://datatracker.ietf.org/doc/html/draft-ietf-uuidrev-rfc4122bis-14
https://url.spec.whatwg.org
https://url.spec.whatwg.org

Authors' Addresses

Robert Stepanek

Fastmail

PO Box 234

Collins St. West

 Melbourne VIC 8007

Australia

 rsto@fastmailteam.com Email:

Mario Loffredo

IIT-CNR

Via Moruzzi, 1

 56124 Pisa

Italy

 mario.loffredo@iit.cnr.it Email:

RFC 9553 JSContact March 2024

Stepanek & Loffredo Standards Track Page 73

mailto:rsto@fastmailteam.com
mailto:mario.loffredo@iit.cnr.it

	RFC 9553
	JSContact: A JSON Representation of Contact Data
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Motivation and Relation to vCard, jCard, and xCard
	1.2. Notational Conventions
	1.3. Data Type Notations
	1.3.1. Objects and Properties
	1.3.2. Type Signatures
	1.3.3. Property Attributes
	1.3.4. The @type Property

	1.4. Common Data Types
	1.4.1. Id
	1.4.2. Int and UnsignedInt
	1.4.3. PatchObject
	1.4.4. Resource
	1.4.5. UTCDateTime

	1.5. Common Properties
	1.5.1. contexts
	1.5.2. extra
	1.5.3. label
	1.5.4. pref
	1.5.5. phonetic

	1.6. Internationalization
	1.6.1. Free-Form Text
	1.6.2. URIs

	1.7. Validating JSContact
	1.7.1. Case-Sensitivity
	1.7.2. IANA-Registered Properties
	1.7.3. Unknown Properties
	1.7.4. Enumerated Values

	1.8. Vendor-Specific Extensions
	1.8.1. Vendor-Specific Properties
	1.8.2. Vendor-Specific Values

	1.9. Versioning
	1.9.1. Version Format and Requirements
	1.9.2. Current Version

	2. Card
	2.1. Metadata Properties
	2.1.1. @type
	2.1.2. version
	2.1.3. created
	2.1.4. kind
	2.1.5. language
	2.1.6. members
	2.1.7. prodId
	2.1.8. relatedTo
	2.1.9. uid
	2.1.10. updated

	2.2. Name and Organization Properties
	2.2.1. name
	2.2.1.1. Name Object
	2.2.1.2. NameComponent
	2.2.1.3. nicknames

	2.2.2. organizations
	2.2.3. speakToAs
	2.2.4. titles

	2.3. Contact Properties
	2.3.1. emails
	2.3.2. onlineServices
	2.3.3. phones
	2.3.4. preferredLanguages

	2.4. Calendaring and Scheduling Properties
	2.4.1. calendars
	2.4.2. schedulingAddresses

	2.5. Address and Location Properties
	2.5.1. addresses
	2.5.1.1. Address Object
	2.5.1.2. AddressComponent Object
	2.5.1.3. Address Examples

	2.6. Resource Properties
	2.6.1. cryptoKeys
	2.6.2. directories
	2.6.3. links
	2.6.4. media

	2.7. Multilingual Properties
	2.7.1. localizations

	2.8. Additional Properties
	2.8.1. anniversaries
	2.8.2. keywords
	2.8.3. notes
	2.8.4. personalInfo

	3. IANA Considerations
	3.1. Media Type Registration
	3.2. Creation of the JSContact Registry Group
	3.3. Registry Policy and Change Procedures
	3.3.1. Preliminary Community Review
	3.3.2. Submit Request to IANA
	3.3.3. Designated Expert Review
	3.3.4. Change Procedures

	3.4. Creation of the JSContact Version Registry
	3.4.1. JSContact Version Registry Template
	3.4.2. Initial Contents of the JSContact Version Registry

	3.5. Creation of the JSContact Properties Registry
	3.5.1. JSContact Properties Registry Template
	3.5.2. Initial Contents of the JSContact Properties Registry

	3.6. Creation of the JSContact Types Registry
	3.6.1. JSContact Types Registry Template
	3.6.2. Initial Contents of the JSContact Types Registry

	3.7. Creation of the JSContact Enum Values Registry
	3.7.1. JSContact Enum Values Registry Property Template
	3.7.2. JSContact Enum Values Registry Value Template
	3.7.3. Initial Contents of the JSContact Enum Values Registry

	4. Security Considerations
	4.1. JSON Parsing
	4.2. URI Values

	5. References
	5.1. Normative References
	5.2. Informative References

	Authors' Addresses

