
RFC 9768
More Accurate Explicit Congestion Notification
(AccECN) Feedback in TCP

Abstract
Explicit Congestion Notification (ECN) is a mechanism by which network nodes can mark IP
packets instead of dropping them to indicate incipient congestion to the endpoints. Receivers
with an ECN-capable transport protocol feed back this information to the sender. ECN was
originally specified for TCP in such a way that only one feedback signal can be transmitted per
Round-Trip Time (RTT). More recently defined TCP mechanisms like Congestion Exposure
(ConEx), Data Center TCP (DCTCP), or Low Latency, Low Loss, and Scalable Throughput (L4S)
need more Accurate ECN (AccECN) feedback information whenever more than one marking is
received in one RTT. This document updates the original ECN specification defined in RFC 3168
by specifying a scheme that provides more than one feedback signal per RTT in the TCP header.
Given TCP header space is scarce, it allocates a reserved header bit previously assigned to the
ECN-nonce. It also overloads the two existing ECN flags in the TCP header. The resulting extra
space is additionally exploited to feed back the IP ECN field received during the TCP connection
establishment. Supplementary feedback information can optionally be provided in two new TCP
Option alternatives, which are never used on the TCP SYN. The document also specifies the
treatment of this updated TCP wire protocol by middleboxes.

Stream: Internet Engineering Task Force (IETF)
RFC: 9768
Updates: 3168
Category: Standards Track
Published: October 2025
ISSN: 2070-1721
Authors: B. Briscoe

Independent
M. Kühlewind
Ericsson

R. Scheffenegger
NetApp

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9768

Briscoe, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9768
https://www.rfc-editor.org/rfc/rfc3168
https://www.rfc-editor.org/info/rfc9768

Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

This document may contain material from IETF Documents or IETF Contributions published or
made publicly available before November 10, 2008. The person(s) controlling the copyright in
some of this material may not have granted the IETF Trust the right to allow modifications of
such material outside the IETF Standards Process. Without obtaining an adequate license from
the person(s) controlling the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may not be created outside the
IETF Standards Process, except to format it for publication as an RFC or to translate it into
languages other than English.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Document Roadmap

1.2. Goals

1.3. Terminology

1.4. Recap of Existing ECN Feedback in IP/TCP

2. AccECN Protocol Overview and Rationale

2.1. Capability Negotiation

2.2. Feedback Mechanism

2.3. Delayed ACKs and Resilience Against ACK Loss

2.4. Feedback Metrics

2.5. Generic (Mechanistic) Reflector

3. AccECN Protocol Specification

3.1. Negotiating to Use AccECN

3.1.1. Negotiation During the TCP Three-Way Handshake

4

6

6

6

7

8

9

10

10

11

11

12

12

12

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 2

https://trustee.ietf.org/license-info

3.1.2. Backward Compatibility

3.1.3. Forward Compatibility

3.1.4. Multiple SYNs or SYN/ACKs

3.1.4.1. Retransmitted SYNs

3.1.4.2. Retransmitted SYN/ACKs

3.1.5. Implications of AccECN Mode

3.2. AccECN Feedback

3.2.1. Initialization of Feedback Counters

3.2.2. The ACE Field

3.2.2.1. ACE Field on the ACK of the SYN/ACK

3.2.2.2. Encoding and Decoding Feedback in the ACE Field

3.2.2.3. Testing for Mangling of the IP/ECN Field

3.2.2.4. Testing for Zeroing of the ACE Field

3.2.2.5. Safety Against Ambiguity of the ACE Field

3.2.3. The AccECN Option

3.2.3.1. Encoding and Decoding Feedback in the AccECN Option Fields

3.2.3.2. Path Traversal of the AccECN Option

3.2.3.3. Usage of the AccECN TCP Option

3.3. AccECN Compliance Requirements for TCP Proxies, Offload Engines, and Other
Middleboxes

3.3.1. Requirements for TCP Proxies

3.3.2. Requirements for Transparent Middleboxes and TCP Normalizers

3.3.3. Requirements for TCP ACK Filtering

3.3.4. Requirements for TCP Segmentation Offload and Large Receive Offload

4. Updates to RFC 3168

5. Interaction with TCP Variants

5.1. Compatibility with SYN Cookies

5.2. Compatibility with TCP Experiments and Common TCP Options

5.3. Compatibility with Feedback Integrity Mechanisms

6. Summary: Protocol Properties

13

15

15

15

17

17

20

21

21

22

24

25

27

28

30

32

32

35

37

37

37

38

38

40

41

41

41

42

43

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 3

7. IANA Considerations

8. Security and Privacy Considerations

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Example Algorithms

A.1. Example Algorithm to Encode/Decode the AccECN Option

A.2. Example Algorithm for Safety Against Long Sequences of ACK Loss

A.2.1. Safety Algorithm Without the AccECN Option

A.2.2. Safety Algorithm with the AccECN Option

A.3. Example Algorithm to Estimate Marked Bytes from Marked Packets

A.4. Example Algorithm to Count Not-ECT Bytes

Appendix B. Rationale for Usage of TCP Header Flags

B.1. Three TCP Header Flags in the SYN-SYN/ACK Handshake

B.2. Four Codepoints in the SYN/ACK

B.3. Space for Future Evolution

Acknowledgements

Authors' Addresses

44

45

46

46

47

49

49

50

51

53

54

54

55

55

56

56

57

58

1. Introduction
Explicit Congestion Notification (ECN) is a mechanism by which network nodes can
mark IP packets instead of dropping them to indicate incipient congestion to the endpoints.
Receivers with an ECN-capable transport protocol feed back this information to the sender. In
RFC 3168, ECN was specified for TCP in such a way that only one feedback signal could be
transmitted per Round-Trip Time (RTT). This is sufficient for congestion control schemes like
Reno and CUBIC , as those schemes reduce their congestion window by a
fixed factor if congestion occurs within an RTT independent of the number of received
congestion markings. More recently defined mechanisms like Congestion Exposure (ConEx

), DCTCP , and L4S need to know when more than one marking is
received in one RTT, which is information that cannot be provided by the feedback scheme as
specified in . This document specifies an update to the ECN feedback scheme of RFC
3168 that provides more accurate information and could be used by these and potentially other
future TCP extensions, while still also supporting the pre-existing TCP congestion controllers that

[RFC3168]

[RFC6582] [RFC9438]

[RFC7713] [RFC8257] [RFC9330]

[RFC3168]

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 4

use just one feedback signal per round. Congestion control is the term the IETF uses to describe
data rate management. It is the algorithm that a sender uses to optimize its sending rate so that
it transmits data as fast as the network can carry it, but no faster. A fuller description of the
motivation for this specification is given in the associated requirements document .

This document specifies a Standards Track scheme for ECN feedback in the TCP header to
provide more than one feedback signal per RTT. It is called the more "Accurate ECN feedback"
scheme, or AccECN for short. This document updates RFC 3168 with respect to negotiation and
use of the feedback scheme for TCP. All aspects of RFC 3168 other than the TCP feedback scheme
and its negotiation remain unchanged by this specification. In particular, the definition of ECN at
the IP layer is unaffected. Section 4 details the aspects of RFC 3168 that are updated by this
document.

This document uses the term "Classic ECN feedback" when it needs to distinguish the TCP/ECN
feedback scheme defined in from the AccECN TCP feedback scheme. AccECN is
intended to offer a complete replacement for Classic TCP/ECN feedback, not a fork in the design
of TCP. AccECN feedback complements TCP's loss feedback and it can coexist alongside hosts
using Classic TCP/ECN feedback. So its applicability is intended to include the public Internet as
well as private IP networks such as data centres (and even any non-IP networks over which TCP
is used), whether or not any nodes on the path support ECN, of whatever flavour.

AccECN feedback overloads the two existing ECN flags in the TCP header and allocates the
currently reserved flag (previously called NS) in the TCP header to be used as one 3-bit counter
field for feeding back the number of packets marked as congestion experienced (CE). Given the
new definitions of these three bits, both ends have to support the new wire protocol before it
can be used. Therefore, during the TCP handshake, the two ends use these three bits in the TCP
header to negotiate the most advanced feedback protocol that they can both support, in a way
that is backward compatible with .

AccECN is solely a change to the TCP wire protocol; it covers the negotiation and signaling of
more Accurate ECN feedback from a TCP Data Receiver to a Data Sender. It is completely
independent of how TCP might respond to congestion feedback, which is out of scope, but
ultimately the motivation for Accurate ECN feedback. Like Classic ECN feedback, AccECN can be
used by standard Reno or CUBIC congestion control to respond to the
existence of at least one congestion notification within a round trip. Or, unlike Reno or CUBIC,
AccECN can be used to respond to the extent of congestion notification over a round trip, as for
example DCTCP does in controlled environments . For congestion response, this
specification refers to the original ECN specification adopted in 2001 , as updated by
the more relaxed rules introduced in 2018 to allow ECN experiments , namely: a TCP-
based Low Latency Low Loss Scalable (L4S) congestion control ; or Alternative Backoff
with ECN (ABE) .

Section 5.2 explains how AccECN is compatible with current commonly used TCP Options, and a
number of current experimental modifications to TCP, as well as SYN cookies.

[RFC7560]

[RFC3168]

[RFC3168]

[RFC5681] [RFC9438]

[RFC8257]
[RFC3168]
[RFC8311]

[RFC9330]
[RFC8511]

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 5

1.1. Document Roadmap
The following introductory section outlines the goals of AccECN (Section 1.2). Then, terminology
is defined (Section 1.3) and a recap of existing prerequisite technology is given (Section 1.4).

Section 2 gives an informative overview of the AccECN protocol. Then Section 3 gives the
normative protocol specification, and Section 3.3 collects requirements for proxies, offload
engines, and other middleboxes. Section 4 clarifies which aspects of RFC 3168 are updated by
AccECN. Section 5 assesses the interaction of AccECN with commonly used variants of TCP,
whether they are standardized or not. Then Section 6 summarizes the features and properties of
AccECN.

Section 7 summarizes the protocol fields and numbers that IANA assigned, and Section 8 points
to the aspects of the protocol that will be of interest to the security community.

Appendix A gives pseudocode examples for the various algorithms that AccECN uses, and
Appendix B explains why AccECN uses flags in the main TCP header and quantifies the space left
for future use.

1.2. Goals
 enumerates requirements that a candidate feedback scheme needs to satisfy, under

the headings: resilience, timeliness, integrity, accuracy (including ordering and lack of bias),
complexity, overhead, and compatibility (both backward and forward). It recognizes that a
perfect scheme that fully satisfies all the requirements is unlikely and trade-offs between
requirements are likely. Section 6 considers the properties of AccECN against these requirements
and discusses the trade-offs.

The requirements document recognizes that a protocol as ubiquitous as TCP needs to be able to
serve as-yet-unspecified requirements. Therefore, an AccECN receiver acts as a generic
(mechanistic) reflector of congestion information with the aim that new sender behaviours can
be deployed unilaterally (see Section 2.5) in the future.

[RFC7560]

Accurate ECN feedback:

Classic ECN:

Classic ECN feedback:

ACK:

Pure ACK:

1.3. Terminology

The more Accurate ECN feedback scheme is called AccECN for short.

The ECN protocol specified in .

The feedback aspect of the ECN protocol specified in ,
including generation, encoding, transmission and decoding of feedback, but not the Data
Sender's subsequent response to that feedback.

A TCP acknowledgement, with or without a data payload (ACK=1).

A TCP acknowledgement without a data payload.

[RFC3168]

[RFC3168]

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 6

Acceptable packet / segment:

TCP Client:

TCP Server:

Three-way handshake:

Data Receiver:

Data Sender:

A packet or segment that passes the acceptability tests in
 and , or that has passed other tests with equivalent protection.

The TCP stack that originates a connection (the initiator).

The TCP stack that responds to a connection request (the listener).

The procedure used to establish a TCP connection as described in the
TCP protocol specification .

The endpoint of a TCP half-connection that receives data and sends AccECN
feedback.

The endpoint of a TCP half-connection that sends data and receives AccECN
feedback.

In a mild abuse of terminology, this document sometimes refers to 'TCP packets' instead of 'TCP
segments'.

The key words " ", " ", " ", " ", " ", " ", "
", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

[RFC9293] [RFC5961]

[RFC9293]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

1.4. Recap of Existing ECN Feedback in IP/TCP
Explicit Congestion Notification (ECN) can be split into two parts conceptionally. In
the forward direction, alongside the data stream, it uses a 2-bit field in the IP header. This is
referred to as IP ECN later on. This signal carried in the IP (Layer 3) header is exposed to
network devices and may be modified when such a device starts to experience congestion (see
Table 1). The second part is the feedback mechanism, by which the original data sender is
notified of the current congestion state of the intermediate path. That returned signal is carried
in a protocol-specific manner, and is not to be modified by intermediate network devices. While
ECN is in active use for protocols such as QUIC , SCTP , RTP , and
Remote Direct Memory Access over Converged Ethernet , this document only concerns
itself with the specific implementation for the TCP protocol.

Once ECN has been negotiated for a transport layer connection, the Data Sender for either half-
connection can set two possible codepoints (ECT(0) or ECT(1)) in the IP header of a data packet to
indicate an ECN-capable transport (ECT). If the ECN codepoint is 0b00, the packet is considered
to have been sent by a Not ECN-capable Transport (Not-ECT). When a network node experiences
congestion, it will occasionally either drop or mark a packet, with the choice depending on the
packet's ECN codepoint. If the codepoint is Not-ECT, only drop is appropriate. If the codepoint is
ECT(0) or ECT(1), the node can mark the packet by setting the ECN codepoint to 0b11, which is
termed 'Congestion Experienced' (CE), or loosely a 'congestion mark'. Table 1 summarises these
codepoints.

[RFC3168]

[RFC9000] [RFC9260] [RFC6679]
[RoCEv2]

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 7

In the TCP header, the first two bits in byte 14 (the TCP header flags at bit offsets 8 and 9 labelled
Congestion Window Reduced (CWR) and Explicit Congestion notification Echo (ECE) in Figure 1)
are defined as flags for the use of Classic ECN . A TCP Client indicates that it supports
Classic ECN feedback by setting (CWR,ECE) = (1,1) in the SYN, and an ECN-enabled TCP Server
confirms Classic ECN support by setting (CWR,ECE) = (0,1) in the SYN/ACK. On reception of a CE-
marked packet at the IP layer, the Data Receiver for that half-connection starts to set the Echo
Congestion Experienced (ECE) flag continuously in the TCP header of ACKs, which gives the
signal resilience to loss or reordering of ACKs. The Data Sender for the same half-connection
confirms that it has received at least one ECE signal by responding with the CWR flag, which
allows the Data Receiver to stop repeating the ECN-Echo flag. This always leads to a full RTT of
ACKs with ECE set. Thus Classic ECN cannot feed back any additional CE markings arriving
within this RTT.

The last bit in byte 13 of the TCP header (the TCP header flag at bit offset 7 in Figure 1) was
defined as the Nonce Sum (NS) for the ECN-nonce . In the absence of widespread
deployment, RFC 3540 was reclassified as Historic and the respective flag was marked
as "Reserved", which made this TCP flag available for use by AccECN instead.

IP ECN Codepoint Codepoint Name Description

0b00 Not-ECT Not ECN-Capable Transport

0b01 ECT(1) ECN-Capable Transport (1)

0b10 ECT(0) ECN-Capable Transport (0)

0b11 CE Congestion Experienced

Table 1: The ECN Field in the IP Header

[RFC3168]

[RFC3540]
[RFC8311]

Figure 1: TCP Header Flags as Defined Before the Nonce Sum Flag Reverted to Reserved

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
		N	C	E	U	A	P	R	S	F
Header Length	Reserved	S	W	C	R	C	S	S	Y	I
			R	E	G	K	H	T	N	N
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

2. AccECN Protocol Overview and Rationale
This section provides an informative overview of the AccECN protocol that is normatively
specified in Section 3.

Like the general TCP approach, the Data Receiver of each TCP half-connection sends AccECN
feedback to the Data Sender on TCP acknowledgements, reusing data packets of the other half-
connection whenever possible.

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 8

The AccECN protocol has had to be designed in two parts:

an essential feedback part that reuses the TCP-ECN header bits for the Data Receiver to feed
back the number of packets arriving with CE in the IP ECN field. This provides more
accuracy than Classic ECN feedback, but limited resilience against ACK loss.
a supplementary feedback part using one of two new alternative AccECN TCP Options that
provide additional feedback on the number of payload bytes that arrive marked with each of
the three ECN codepoints in the IP ECN field (not just CE marks). See the BCP on Byte and
Packet Congestion Notification for the rationale determining that conveying
congested payload bytes should be preferred over just providing feedback about congested
packets. This also provides greater resilience against ACK loss than the essential feedback,
but it is currently more likely to suffer from middlebox interference.

The two part design was necessary, given limitations on the space available for TCP Options and
given the possibility that certain incorrectly designed middleboxes might prevent TCP from
using any new options.

The essential feedback part overloads the previous definition of the three flags in the TCP header
that had been assigned for use by Classic ECN. This design choice deliberately allows AccECN
peers to replace the Classic ECN feedback protocol, rather than leaving Classic ECN feedback
intact and adding more accurate feedback separately because:

this efficiently reuses scarce TCP header space, given TCP Option space is approaching
saturation;
a single upgrade path for the TCP protocol is preferable to a fork in the design that modifies
the TCP header to convey all ECN feedback;
otherwise, Classic and Accurate ECN feedback could give conflicting feedback about the
same segment, which could open up new security concerns and make implementations
unnecessarily complex;
middleboxes are more likely to faithfully forward the TCP ECN flags than newly defined
areas of the TCP header.

AccECN is designed to work even if the supplementary feedback part is removed or zeroed out,
as long as the essential feedback part gets through.

2.1. Capability Negotiation
AccECN changes the wire protocol of the main TCP header; therefore, it can only be used if both
endpoints have been upgraded to understand it. The TCP Client signals support for AccECN on
the initial SYN of a connection, and the TCP Server signals whether it supports AccECN on the
SYN/ACK. The TCP flags on the SYN that the TCP Client uses to signal AccECN support have been
carefully chosen so that a TCP Server will interpret them as a request to support the most recent
variant of ECN feedback that it supports. Then the TCP Client falls back to the same variant of
ECN feedback.

•

•

[RFC7141]

•

•

•

•

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 9

An AccECN TCP Client does not send an AccECN Option on the SYN as SYN option space is
limited. The TCP Server sends an AccECN Option on the SYN/ACK, and the TCP Client sends one
on the first ACK to test whether the network path forwards these options correctly.

2.2. Feedback Mechanism
A Data Receiver maintains four counters initialized at the start of the half-connection. Three
count the number of arriving payload bytes marked CE, ECT(1), and ECT(0) in the IP ECN field.
These byte counters reflect only the TCP payload length, excluding the TCP header and TCP
Options. The fourth counter counts the number of packets arriving marked with a CE codepoint
(including control packets without payload if they are CE-marked).

The Data Sender maintains four equivalent counters for the half-connection, and the AccECN
protocol is designed to ensure they will match the values in the Data Receiver's counters, albeit
after a little delay.

Each ACK carries the three least significant bits (LSBs) of the packet-based CE counter using the
ECN bits in the TCP header, now renamed the Accurate ECN (ACE) field (see Figure 3). The 24
LSBs of some or all of the byte counters can be optionally carried in an AccECN Option. For
efficient use of limited option space, two alternative forms of the AccECN Option are specified
with the fields in the opposite order to each other.

2.3. Delayed ACKs and Resilience Against ACK Loss
With both the ACE and the AccECN Option mechanisms, the Data Receiver continually repeats
the current LSBs of each of its respective counters. There is no need to acknowledge these
continually repeated counters, so the CWR mechanism of is no longer used. Even if
some ACKs are lost, the Data Sender ought to be able to infer how much to increment its own
counters, even if the protocol field has wrapped.

The 3-bit ACE field can wrap fairly frequently. Therefore, even if it appears to have incremented
by one (say), the field might have actually cycled completely and then incremented by one. The
Data Receiver is not allowed to delay sending an ACK to such an extent that the ACE field would
cycle. However, ACKs received at the Data Sender could still cycle because a whole sequence of
ACKs carrying intervening values of the field might all be lost or delayed in transit.

The fields in an AccECN Option are larger, but they will increment in larger steps because they
count bytes not packets. Nonetheless, their size has been chosen such that a whole cycle of the
field would never occur between ACKs unless there has been an infeasibly long sequence of ACK
losses. Therefore, provided that an AccECN Option is available, it can be treated as a dependable
feedback channel.

If an AccECN Option is not available, e.g., it is being stripped by a middlebox, the AccECN
protocol will only feed back information on CE markings (using the ACE field). Although not
ideal, this will be sufficient, because it is envisaged that neither ECT(0) nor ECT(1) will ever

[RFC3168]

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 10

indicate more severe congestion than CE, even though future uses for ECT(0) or ECT(1) are still
unclear . Because the 3-bit ACE field is so small, when it is the only field available, the
Data Sender has to interpret it assuming the most likely wrap, but with a degree of conservatism.

Certain specified events trigger the Data Receiver to include an AccECN Option on an ACK. The
rules are designed to ensure that the order in which different markings arrive at the receiver is
communicated to the sender (as long as options are reaching the sender and as long as there is
no ACK loss). Implementations are encouraged to send an AccECN Option more frequently, but
this is left up to the implementer.

2.4. Feedback Metrics
The CE packet counter in the ACE field and the CE byte counter in AccECN Options both provide
feedback on received CE marks. The CE packet counter includes control packets that do not have
payload data, while the CE byte counter solely includes marked payload bytes. If both are
present, the byte counter in an AccECN Option will provide the more accurate information
needed for modern congestion control and policing schemes, such as L4S, DCTCP, or ConEx. If
AccECN Options are stripped, a simple algorithm to estimate the number of marked bytes from
the ACE field is given in Appendix A.3.

The AccECN design has been generalized so that it ought to be able to support possible future
uses of the experimental ECT(1) codepoint other than the L4S experiment , such as a
lower severity or a more instant congestion signal than CE.

Feedback in bytes is provided to protect against the receiver or a middlebox using attacks
similar to 'ACK-Division' to artificially inflate the congestion window, which is why
now recommends that TCP counts acknowledge bytes not packets.

[RFC8311]

[RFC9330]

[RFC5681]

2.5. Generic (Mechanistic) Reflector
The ACE field provides feedback about CE markings in the IP ECN field of both data and control
packets. According to , the Data Sender is meant to set the IP ECN field of control
packets to Not-ECT. However, mechanisms in certain private networks (e.g., data centres) set
control packets to be ECN-capable because they are precisely the packets that performance
depends on most.

For this reason, AccECN is designed to be a generic reflector of whatever ECN markings it sees,
whether or not they are compliant with a current standard. Then as standards evolve, Data
Senders can upgrade unilaterally without any need for receivers to upgrade too.

It is also useful to be able to rely on generic reflection behaviour when senders need to test for
unexpected interference with markings (for instance Sections 3.2.2.3, 3.2.2.4, and 3.2.3.2 of the
present document and paragraph 2 of).

[RFC3168]

Section 20.2 of [RFC3168]

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 11

https://www.rfc-editor.org/rfc/rfc3168#section-20.2

The initial SYN and SYN/ACK are the most critical control packets, so AccECN feeds back their IP
ECN fields. Although RFC 3168 prohibits ECN-capable SYNs and SYN/ACKs, providing feedback of
ECN marking on the SYN and SYN/ACK supports future scenarios in which SYNs might be ECN-
enabled (without prejudging whether they ought to be). For instance, updates this
aspect of RFC 3168 to allow experimentation with ECN-capable TCP control packets.

Even if the TCP Client (or Server) has set the SYN (or SYN/ACK) to Not-ECT in compliance with
RFC 3168, feedback on the state of the IP ECN field when it arrives at the receiver could still be
useful, because middleboxes have been known to overwrite the IP ECN field as if it is still part of
the old Type of Service (ToS) field . For example, if a TCP Client has set the SYN to
Not-ECT, but receives feedback that the IP ECN field on the SYN arrived with a different
codepoint, it can detect such middlebox interference. Previously, neither end knew what IP ECN
field the other sent. So, if a TCP Server received ECT or CE on a SYN, it could not know whether it
was invalid because only the TCP Client knew whether it originally marked the SYN as Not-ECT
(or ECT). Therefore, prior to AccECN, the Server's only safe course of action in this example was
to disable ECN for the connection. Instead, the AccECN protocol allows the Server and Client to
feed back the ECN field received on the SYN and SYN/ACK to their peer, which now has all the
information to decide whether the connection has to fall back from supporting ECN (or not).

[RFC8311]

[Mandalari18]

3. AccECN Protocol Specification

3.1. Negotiating to Use AccECN

3.1.1. Negotiation During the TCP Three-Way Handshake

Given the ECN-nonce has been reclassified as Historic , the TCP flag that was
previously called NS (Nonce Sum) is renamed as the AE (Accurate ECN) flag (the TCP header flag
at bit offset 7 in Figure 2). See the IANA Considerations in Section 7.

During the TCP three-way handshake at the start of a connection, to request more Accurate ECN
feedback the TCP Client (host A) set the TCP flags (AE,CWR,ECE) = (1,1,1) in the initial SYN
segment.

If a TCP Server (host B) that is AccECN-enabled receives a SYN with the above three flags set, it
 set both its half-connections into AccECN mode. Then it set the AE, CWR, and ECE

TCP flags on the SYN/ACK to the combination in the top block of Table 2 that feeds back the IP
ECN field that arrived on the SYN. This applies whether or not the Server itself supports setting
the IP ECN field on a SYN or SYN/ACK (see Section 2.5 for rationale).

[RFC3540] [RFC8311]

Figure 2: The New Definition of the TCP Header Flags During the TCP Three-Way Handshake

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
		A	C	E	U	A	P	R	S	F
Header Length	Reserved	E	W	C	R	C	S	S	Y	I
			R	E	G	K	H	T	N	N
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

MUST

MUST MUST

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 12

When the TCP Server returns any of the four combinations in the top block of Table 2, it
confirms that it supports AccECN. The TCP Server set one of these four combinations
of flags on the SYN/ACK unless the preceding SYN requested support for AccECN as above.

Once a TCP Client (A) has sent the above SYN to declare that it supports AccECN, and once it has
received the above SYN/ACK segment that confirms that the TCP Server supports AccECN, the
TCP Client set both its half-connections into AccECN mode. The TCP Client enter
AccECN mode (or any feedback mode) before it has received the first SYN/ACK.

Once in AccECN mode, a TCP Client or Server has the rights and obligations to participate in the
ECN protocol defined in Section 3.1.5.

The procedures for retransmission of SYNs or SYN/ACKs are given in Section 3.1.4.

It is that the AccECN protocol be implemented alongside Selective
Acknowledgement (SACK) . If SACK is implemented with AccECN, Duplicate Selective
Acknowledgement (D-SACK) also be implemented.

MUST NOT

MUST MUST NOT

RECOMMENDED
[RFC2018]

[RFC2883] MUST

AccECN:

Nonce:

ECN:

No ECN:

3.1.2. Backward Compatibility

The three flags set to 1 to indicate AccECN support on the SYN has been carefully chosen to
enable natural fall-back to prior stages in the evolution of ECN. Table 2 tabulates all the
negotiation possibilities for ECN-related capabilities that involve at least one AccECN-capable
host. The entries in the first two columns have been abbreviated, as follows:

Supports more Accurate ECN feedback (the present specification).

Supports ECN-nonce feedback .

Supports 'Classic' ECN feedback .

Not ECN-capable. Implicit congestion notification using packet drop.

[RFC3540]

[RFC3168]

Host A Host B SYN
A->B

AE CWR ECE

SYN/ACK
B->A

AE CWR ECE

Feedback Mode
of Host A

AccECN
AccECN
AccECN
AccECN

AccECN
AccECN
AccECN
AccECN

1 1 1
1 1 1
1 1 1
1 1 1

0 1 0
0 1 1
1 0 0
1 1 0

AccECN (Not-ECT SYN)
AccECN (ECT1 on SYN)
AccECN (ECT0 on SYN)
AccECN (CE on SYN)

AccECN
AccECN
AccECN

Nonce
ECN
No ECN

1 1 1
1 1 1
1 1 1

1 0 1
0 0 1
0 0 0

(Reserved)
Classic ECN
Not ECN

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 13

Table 2 is divided into blocks, with each block separated by an empty row.

The top block shows the case already described in Section 3.1 where both endpoints support
AccECN and how the TCP Server (B) indicates congestion feedback.
The second block shows the cases where the TCP Client (A) supports AccECN but the TCP
Server (B) supports some earlier variant of TCP feedback, as indicated in its SYN/ACK.
Therefore, as soon as an AccECN-capable TCP Client (A) receives the SYN/ACK shown, it
set both its half-connections into the feedback mode shown in the rightmost column. If the
TCP Client has set itself into Classic ECN feedback mode, it comply with .

An AccECN implementation has no need to recognize or support the Server response
labelled 'Nonce' or ECN-nonce feedback more generally , as RFC 3540 has been
reclassified as Historic . AccECN is compatible with alternative ECN feedback
integrity approaches to the nonce (see Section 5.3). The SYN/ACK labelled 'Nonce' with
(AE,CWR,ECE) = (1,0,1) is reserved for future use. A TCP Client (A) that receives such a SYN/
ACK follows the procedure for forward compatibility given in Section 3.1.3.

The third block shows the cases where the TCP Server (B) supports AccECN but the TCP
Client (A) supports some earlier variant of TCP feedback, as indicated in its SYN.

When an AccECN-enabled TCP Server (B) receives a SYN with (AE,CWR,ECE) = (0,1,1), it
do one of the following:

set both its half-connections into the Classic ECN feedback mode and return a SYN/ACK
with (AE,CWR,ECE) = (0,0,1) as shown. Then it comply with .
set both its half-connections into Not ECN mode and return a SYN/ACK with (AE,CWR,ECE)
= (0,0,0), then continue with ECN disabled. This latter case is unlikely to be desirable, but it
is allowed as a possibility, e.g., for minimal TCP implementations.

When an AccECN-enabled TCP Server (B) receives a SYN with (AE,CWR,ECE) = (0,0,0), it
set both its half-connections into the Not ECN feedback mode, return a SYN/ACK with
(AE,CWR,ECE) = (0,0,0) as shown, and continue with ECN disabled.

Host A Host B SYN
A->B

AE CWR ECE

SYN/ACK
B->A

AE CWR ECE

Feedback Mode
of Host A

Nonce
ECN
No ECN

AccECN
AccECN
AccECN

0 1 1
0 1 1
0 0 0

0 0 1
0 0 1
0 0 0

Classic ECN
Classic ECN
Not ECN

AccECN Broken 1 1 1 1 1 1 Not ECN

Table 2: ECN Capability Negotiation Between Client (A) and Server (B)

1.

2.

MUST

MUST [RFC3168]

[RFC3540]
[RFC8311]

3.

MUST

◦
MUST [RFC3168]

◦

MUST

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 14

Simultaneous Open:

In-window SYN during TIME-WAIT:

The fourth block displays a combination labelled 'Broken'. Some older TCP Server
implementations incorrectly set the TCP-ECN flags in the SYN/ACK by reflecting those in the
SYN. Such broken TCP Servers (B) cannot support ECN; so as soon as an AccECN-capable TCP
Client (A) receives such a broken SYN/ACK, it fall back to Not ECN mode for both its
half-connections and continue with ECN disabled.

The following additional rules do not fit the structure of the table, but they complement it:

An originating AccECN Host (A), having sent a SYN with (AE,CWR,ECE) =
(1,1,1), might receive another SYN from host B. Host A then enter the same feedback
mode as it would have entered had it been a responding host and received the same SYN.
Then host A send the same SYN/ACK as it would have sent had it been a responding
host.

Many TCP implementations create a new TCP connection if
they receive an in-window SYN packet during TIME-WAIT state. When a TCP host enters
TIME-WAIT or CLOSED state, it ought to ignore any previous state about the negotiation of
AccECN for that connection and renegotiate the feedback mode according to Table 2.

4.

MUST

MUST

MUST

3.1.3. Forward Compatibility

If a TCP Server that implements AccECN receives a SYN with the three TCP header flags
(AE,CWR,ECE) set to any combination other than (0,0,0), (0,1,1), or (1,1,1) and it does not have
logic specific to such a combination, the Server negotiate the use of AccECN as if the three
flags had been set to (1,1,1). However, an AccECN Client implementation send a SYN
with any combination other than the three listed.

If a TCP Client sent a SYN requesting AccECN feedback with (AE,CWR,ECE) = (1,1,1) and then
receives a SYN/ACK with the currently reserved combination (AE,CWR,ECE) = (1,0,1) but it does
not have logic specific to such a combination, the Client enable AccECN mode as if the SYN/
ACK confirmed that the Server supported AccECN and as if it fed back that the IP ECN field on
the SYN had arrived unchanged. However, an AccECN Server implementation send a
SYN/ACK with this combination (AE,CWR,ECE) = (1,0,1).

For the avoidance of doubt, the behaviour described in the present specification
applies whether or not the three remaining reserved TCP header flags are zero.

All of these requirements ensure that future uses of all the Reserved combinations on a SYN or
SYN/ACK (see Table 2) can rely on consistent behaviour from the installed base of AccECN
implementations. See Appendix B.3 for related discussion.

MUST
MUST NOT

MUST

MUST NOT

3.1.4. Multiple SYNs or SYN/ACKs

3.1.4.1. Retransmitted SYNs
If the sender of an AccECN SYN (the TCP Client) times out before receiving the SYN/ACK, it

 attempt to negotiate the use of AccECN at least one more time by continuing to set all
three TCP ECN flags (AE,CWR,ECE) = (1,1,1) on the first retransmitted SYN (using the usual
SHOULD

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 15

retransmission timeouts). If this first retransmission also fails to be acknowledged, in
deployment scenarios where AccECN path traversal might be problematic, the TCP Client

 send subsequent retransmissions of the SYN with the three TCP-ECN flags cleared
(AE,CWR,ECE) = (0,0,0). Such a retransmitted SYN use the same initial sequence number
(ISN) as the original SYN.

Retrying once before fall-back adds delay in the case where a middlebox drops an AccECN (or
ECN) SYN deliberately. However, recent measurements imply that a drop is less
likely to be due to middlebox interference than other intermittent causes of loss, e.g., congestion,
wireless transmission loss, etc.

Implementers use other fall-back strategies if they are found to be more effective (e.g.,
attempting to negotiate AccECN on the SYN only once or more than twice (most appropriate
during high levels of congestion)).

Further it might make sense to also remove any other new or experimental fields or options on
the SYN in case a middlebox might be blocking them, although the required behaviour will
depend on the specification of the other option(s) and any attempt to coordinate fall-back
between different modules of the stack. For instance, if taking part in an experiment
that allows ECT on a SYN, it would be advisable to have a fall-back strategy that tries use of
AccECN without setting ETC on SYN.

Whichever fall-back strategy is used, the TCP initiator cache failed connection attempts.
If it does, it give up attempting to negotiate AccECN on the SYN of subsequent
connection attempts until it is clear that the blockage is persistently and specifically due to
AccECN. The cache needs to be arranged to expire so that the initiator will infrequently attempt
to check whether the problem has been resolved.

All fall-back strategies will need to follow all the normative rules in Section 3.1.5, which concern
behaviour when SYNs or SYN/ACKs negotiating different types of feedback have been sent
within the same connection, including the possibility that they arrive out of order. As examples,
the following non-normative bullets call out those rules from Section 3.1.5 that apply to the
above fall-back strategies:

Once the TCP Client has sent SYNs with (AE,CWR,ECE) = (1,1,1) and with (AE,CWR,ECE) =
(0,0,0), it might eventually receive a SYN/ACK from the Server in response to one, the other,
or both, and possibly reordered.
Such a TCP Client enters the feedback mode appropriate to the first SYN/ACK it receives
according to Table 2, and it does not switch to a different mode, whatever other SYN/ACKs it
might receive or send.
If a TCP Client has entered AccECN mode but then subsequently sends a SYN or receives a
SYN/ACK with (AE,CWR,ECE) = (0,0,0), it is still allowed to set ECT on packets for the rest of
the connection. Note that this rule is different than that of a Server in an equivalent position
(Section 3.1.5 explains).

SHOULD
MUST

[Mandalari18]

MAY

[RFC8311]

SHOULD
SHOULD NOT

•

•

•

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 16

Having entered AccECN mode, in general a TCP Client commits to respond to any incoming
congestion feedback, whether or not it sets ECT on outgoing packets (for rationale and some
exceptions see Section 3.2.2.3, Section 3.2.2.4).
Having entered AccECN mode, a TCP Client commits to using AccECN to feed back the IP ECN
field in incoming packets for the rest of the connection, as specified in Section 3.2, even if it
is not itself setting ECT on outgoing packets.

•

•

3.1.4.2. Retransmitted SYN/ACKs
A TCP Server might send multiple SYN/ACKs indicating different feedback modes. For instance,
when falling back to sending a SYN/ACK with (AE,CWR,ECE) = (0,0,0) after previous AccECN SYN/
ACKs have timed out (Section 3.2.3.2.2); or to acknowledge different retransmissions of the SYN
(Section 3.1.4.1).

All fall-back strategies will need to follow all the normative rules in Section 3.1.5, which concern
behaviour when SYNs or SYN/ACKs negotiating different types of feedback are sent within the
same connection, including the possibility that they arrive out of order. As examples, the
following non-normative bullets call out those rules from Section 3.1.5 that apply to the above
fall-back strategies:

An AccECN-capable TCP Server enters the feedback mode appropriate to the first SYN it
receives using Table 2, and it does not switch to a different mode, whatever other SYNs it
might receive and whatever SYN/ACKs it might send.
If a TCP Server in AccECN mode receives a SYN with (AE,CWR,ECE) = (0,0,0), it preferably
acknowledges it first using an AccECN SYN/ACK, but it can retry using a SYN/ACK with
(AE,CWR,ECE) = (0,0,0).
If a TCP Server in AccECN mode sends multiple AccECN SYN/ACKs, it uses the TCP-ECN flags
in each SYN/ACK to feed back the IP ECN field on the latest SYN to have arrived.
If a TCP Server enters AccECN mode and then subsequently sends a SYN/ACK or receives a
SYN with (AE,CWR,ECE) = (0,0,0), it is prohibited from setting ECT on any packet for the rest
of the connection.
Having entered AccECN mode, in general a TCP Server commits to respond to any incoming
congestion feedback, whether or not it sets ECT on outgoing packets (for rationale and some
exceptions see Sections 3.2.2.3, 3.2.2.4).
Having entered AccECN mode, a TCP Server commits to using AccECN to feed back the IP
ECN field in incoming packets for the rest of the connection, as specified in Section 3.2, even
if it is not itself setting ECT on outgoing packets.

•

•

•

•

•

•

3.1.5. Implications of AccECN Mode

Section 3.1.1 describes the only ways that a host can enter AccECN mode, whether as a Client or
as a Server.

An implementation that supports AccECN has the rights and obligations concerning the use of
ECN defined below, which update those in . This section uses the
following definitions:

Section 6.1.1 of [RFC3168]

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 17

https://www.rfc-editor.org/rfc/rfc3168#section-6.1.1

'During the handshake':

'Valid SYN':

The connection states prior to synchronization.

A SYN that has the same port numbers and the same ISN as the SYN that first
caused the Server to open the connection. An 'Acceptable' packet is defined in Section 1.3.

Handling SYNs or SYN/ACKs of multiple types (e.g., fall-back):

Any implementation that supports AccECN:

 switch into a different feedback mode than the one it first entered according to
Table 2, no matter whether it subsequently receives valid SYNs or Acceptable SYN/ACKs of
different types;

 ignore the TCP-ECN flags in SYNs or SYN/ACKs that are received after the
implementation reaches the ESTABLISHED state, in line with the general TCP approach

;

Reason: Reaching ESTABLISHED state implies that at least one SYN and one SYN/ACK have
successfully been delivered. And all the rules for handshake fall-back are designed to
work based on those packets that successfully traverse the path, whatever other
handshake packets are lost or delayed.

 send a 'Classic' ECN-setup SYN with (AE,CWR,ECE) = (0,1,1) and a SYN
with (AE,CWR,ECE) = (1,1,1) requesting AccECN feedback within the same connection;

 send a 'Classic' ECN-setup SYN/ACK with (AE,CWR,ECE) = (0,0,1) and a
SYN/ACK agreeing to use AccECN feedback within the same connection;

 reset the connection with a RST packet, if it receives a 'Classic' ECN-setup SYN with
(AE,CWR,ECE) = (0,1,1) and a SYN requesting AccECN feedback during the same handshake;

 reset the connection with a RST packet, if it receives 'Classic' ECN-setup SYN/ACK
with (AE,CWR,ECE) = (0,0,1) and a SYN/ACK agreeing to use AccECN feedback during the
same handshake.

The last four rules are necessary because, if one peer were to negotiate the feedback mode
in two different types of handshake, it would not be possible for the other peer to know for
certain which handshake packet(s) the other end had eventually received or in which order
it received them. So, in the absence of these rules, the two peers could end up using different
ECN feedback modes without knowing it.

A host in AccECN mode that is feeding back the IP ECN field on a SYN or SYN/ACK:

 feed back the IP ECN field on the latest valid SYN or acceptable SYN/ACK to arrive.

A TCP Server already in AccECN mode:

 acknowledge a valid SYN arriving with (AE,CWR,ECE) = (0,0,0) by emitting an
AccECN SYN/ACK (with the appropriate combination of TCP-ECN flags to feed back the IP
ECN field of this latest SYN);

 acknowledge a valid SYN arriving with (AE,CWR,ECE) = (0,0,0) by sending a SYN/ACK
with (AE,CWR,ECE) = (0,0,0).

•

◦ MUST NOT

◦ SHOULD

[RFC9293]

◦ MUST NOT [RFC3168]

◦ MUST NOT [RFC3168]

◦ MUST

◦ MUST

•

◦ MUST

•

◦ SHOULD

◦ MAY

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 18

Rationale: When a SYN arrives with (AE,CWR,ECE) = (0,0,0) at a TCP Server that is already in
AccECN mode, it implies that the TCP Client had probably not received the previous AccECN
SYN/ACK emitted by the TCP Server. Therefore, the first bullet recommends attempting at
least one more AccECN SYN/ACK. Nonetheless, the second bullet recognizes that the Server
might eventually need to fall back to a non-ECN SYN/ACK. In either case, the TCP Server
remains in AccECN feedback mode (according to the earlier requirement not to switch
modes).

An AccECN-capable TCP Server already in Not ECN mode:

 respond to any subsequent valid SYN using a SYN/ACK with (AE,CWR,ECE) =
(0,0,0), even if the SYN is offering to negotiate Classic ECN or AccECN feedback mode.

Rationale: There would be no point in the Server offering any type of ECN feedback,
because the Client will not be using ECN. However, there is no interoperability reason to
make this rule mandatory.

If for any reason a host is not willing to provide ECN feedback on a particular TCP connection, it
 clear the AE, CWR, and ECE flags in all SYN and/or SYN/ACK packets that it sends.

Sending ECT:

Any implementation that supports AccECN:

 set ECT if it is in Not ECN feedback mode.

A Data Sender in AccECN mode:

 set an ECT codepoint in the IP header of packets to indicate to the network that
the transport is capable and willing to participate in ECN for this packet;

 not set ECT on any packet (for instance if it has reason to believe such a packet would
be blocked).

A TCP Server in AccECN mode:

 set ECT on any packet for the rest of the connection, if it has received or sent at
least one valid SYN or Acceptable SYN/ACK with (AE,CWR,ECE) = (0,0,0) during the
handshake.

This rule solely applies to a Server because, when a Server enters AccECN mode, it doesn't
know for sure whether the Client will end up in AccECN mode. But when a Client enters
AccECN mode, it can be certain that the Server is already in AccECN feedback mode.

Congestion response:

A host in AccECN mode:

is obliged to respond appropriately to AccECN feedback that indicates there were ECN
marks on packets it had previously sent, where 'appropriately' is defined in

 and updated by Sections 2.1 and 4.1 of ;

•

◦ SHOULD

SHOULD

•

◦ MUST NOT

◦ SHOULD

◦ MAY

◦ MUST NOT

•

◦
Section 6.1 of

[RFC3168] [RFC8311]

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 19

https://www.rfc-editor.org/rfc/rfc3168#section-6.1
https://www.rfc-editor.org/rfc/rfc8311#section-2.1
https://www.rfc-editor.org/rfc/rfc8311#section-4.1

is still obliged to respond appropriately to congestion feedback, even when it is solely
sending non-ECN-capable packets (for rationale, some examples and some exceptions see
Sections 3.2.2.3 and 3.2.2.4);
is still obliged to respond appropriately to congestion feedback, even if it has sent or
received a SYN or SYN/ACK packet with (AE,CWR,ECE) = (0,0,0) during the handshake;

 set CWR to indicate that it has received and responded to indications of
congestion.

For the avoidance of doubt, this is unlike an RFC 3168 data sender and this does not
preclude the Data Sender from setting the bits of the ACE counter field, which includes an
overloaded use of the same bit.

Receiving ECT:

A host in AccECN mode:

 feed back the information in the IP ECN field of incoming packets using Accurate
ECN feedback, as specified in Section 3.2.

For the avoidance of doubt, this requirement stands even if the AccECN host has also sent
or received a SYN or SYN/ACK with (AE,CWR,ECE) = (0,0,0). Reason: Such a SYN or SYN/ACK
implies some form of packet mangling might be present. Even if the remote peer is not
setting ECT, it could still be set erroneously by packet mangling at the IP layer (see Section
3.2.2.3). In such cases, the Data Sender is best placed to decide whether ECN markings are
valid, but it can only do that if the Data Receiver mechanistically feeds back any ECN
markings. This approach will not lead to TCP Options being generated unnecessarily if the
recommended simple scheme in Section 3.2.3.3 is used, because no byte counters will
change if no packets are set to ECT.

 use reception of packets with ECT set in the IP ECN field as an implicit signal
that the peer is ECN-capable.

Reason: ECT at the IP layer does not explicitly confirm the peer has the correct ECN
feedback logic, because the packets could have been mangled at the IP layer.

◦

◦

◦ MUST NOT

•

◦ MUST

◦ MUST NOT

3.2. AccECN Feedback
Each Data Receiver of each half-connection maintains four counters, r.cep, r.ceb, r.e0b, and
r.e1b:

The Data Receiver increment the CE packet counter (r.cep), for every Acceptable
packet that it receives with the CE code point in the IP ECN field, including CE-marked
control packets and retransmissions but excluding CE on SYN packets (SYN=1; ACK=0).
A Data Receiver that supports sending of AccECN TCP Options increment the r.ceb,
r.e0b, or r.e1b byte counters by the number of TCP payload octets in Acceptable packets
marked with the CE, ECT(0), and ECT(1) codepoint in their IP ECN field, including any
payload octets on control packets and retransmissions, but not including any payload octets
on SYN packets (SYN=1; ACK=0).

• MUST

• MUST

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 20

Each Data Sender of each half-connection maintains four counters, s.cep, s.ceb, s.e0b, and s.e1b,
intended to track the equivalent counters at the Data Receiver.

A Data Receiver feeds back the CE packet counter using the Accurate ECN (ACE) field, as
explained in Section 3.2.2. And it optionally feeds back all the byte counters using the AccECN
TCP Option, as specified in Section 3.2.3.

Whenever a Data Receiver feeds back the value of any counter, it report the most recent
value, no matter whether it is in a pure ACK, or an ACK piggybacked on a packet used by the
other half-connection, whether a new payload data or a retransmission. Therefore, the feedback
piggybacked on a retransmitted packet is unlikely to be the same as the feedback on the original
packet.

MUST

3.2.1. Initialization of Feedback Counters

When a host first enters AccECN mode, in its role as a Data Receiver, it initializes its counters to
r.cep = 5, r.e0b = r.e1b = 1, and r.ceb = 0.

Non-zero initial values are used to support a stateless handshake (see Section 5.1) and to be
distinct from cases where the fields are incorrectly zeroed (e.g., by middleboxes -- see Section
3.2.3.2.4).

When a host enters AccECN mode, in its role as a Data Sender, it initializes its counters to s.cep =
5, s.e0b = s.e1b = 1, and s.ceb = 0.

3.2.2. The ACE Field

After AccECN has been negotiated on the SYN and SYN/ACK, both hosts overload the three TCP
flags (AE, CWR, and ECE) in the main TCP header as one 3-bit field. Then the field is given a new
name, ACE, as shown in Figure 3.

The original definition of these three flags in the TCP header, including the addition of support
for the ECN-nonce, is shown for comparison in Figure 1. This specification does not rename
these three TCP flags to ACE unconditionally; it merely overloads them with another name and
definition once an AccECN connection has been established.

With one exception (Section 3.2.2.1), a host with both of its half-connections in AccECN mode
 interpret the AE, CWR, and ECE flags as the 3-bit ACE counter on a segment with the SYN

flag cleared (SYN=0). On such a packet, a Data Receiver encode the 3 least significant bits of
its r.cep counter into the ACE field that it feeds back to the Data Sender. The least significant bit

Figure 3: Definition of the ACE Field Within Bytes 13 and 14 of the TCP Header (When AccECN Has
Been Negotiated and SYN=0).

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
			U	A	P	R	S	F
Header Length	Reserved	ACE	R	C	S	S	Y	I
			G	K	H	T	N	N
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

MUST
MUST

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 21

is at bit offset 9 in Figure 3. A host interpret the three flags as a 3-bit ACE field on any
segment with SYN=1 (whether ACK is 0 or 1), or if AccECN negotiation is incomplete or has not
succeeded.

Both parts of each of these conditions are equally important. For instance, even if AccECN
negotiation has been successful, the ACE field is not defined on any segments with SYN=1 (e.g., a
retransmission of an unacknowledged SYN/ACK, or when both ends send SYN/ACKs after AccECN
support has been successfully negotiated during a simultaneous open).

MUST NOT

3.2.2.1. ACE Field on the ACK of the SYN/ACK
A TCP Client (A) in AccECN mode feed back which of the 4 possible values of the IP ECN
field was on the SYN/ACK by writing it into the ACE field of a pure ACK with no SACK blocks
using the binary encoding in Table 3 (which is the same as that used on the SYN/ACK in Table 2).
This shall be called the "handshake encoding" of the ACE field, and it is the only exception to the
rule that the ACE field carries the 3 least significant bits of the r.cep counter on packets with
SYN=0.

Normally, a TCP Client acknowledges a SYN/ACK with an ACK that satisfies the above conditions
anyway (SYN=0, no data, no SACK blocks). If an AccECN TCP Client intends to acknowledge the
SYN/ACK with a packet that does not satisfy these conditions (e.g., it has data to include on the
ACK), it first send a pure ACK that does satisfy these conditions (see Section 5.2), so that
it can feed back which of the four values of the IP ECN field arrived on the SYN/ACK. A valid
exception to this " " would be where the implementation will only be used in an
environment where mangling of the ECN field is unlikely.

The TCP Client also use the handshake encoding for the pure ACK of any retransmitted
SYN/ACK that confirms that the TCP Server supports AccECN. If the final ACK of the handshake
does not arrive before its retransmission timer expires, the procedure that the TCP Server will
follow is given in Section 3.1.4.2.

MUST

SHOULD

SHOULD

MUST

IP ECN Codepoint on SYN/
ACK

ACE on Pure ACK of SYN/
ACK

r.cep of TCP Client in AccECN
Mode

Not-ECT 0b010 5

ECT(1) 0b011 5

ECT(0) 0b100 5

CE 0b110 6

Table 3: The Encoding of the ACE Field in the ACK of the SYN-ACK to Reflect the SYN-ACK's IP ECN
Field

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 22

Note 1:

When an AccECN Server in SYN-RCVD state receives a pure ACK with SYN=0 and no SACK blocks,
it infer the meaning of each possible value of the ACE field from Table 4 instead of treating
the ACE field as a counter. As a result, an AccECN Server set s.cep to the respective value,
also shown in Table 4.

Given this encoding of the ACE field on the ACK of a SYN/ACK is exceptional, an AccECN Server
using large receive offload (LRO) might prefer to disable LRO until the ACK of the SYN/ACK was
sent and it has transitioned out of SYN-RCVD state.

If the Server is in AccECN mode and in SYN-RCVD state, and if it receives a value of
zero on a pure ACK with SYN=0 and no SACK blocks, for the rest of the connection the
Server set ECT on outgoing packets and respond to AccECN
feedback. Nonetheless, as a Data Receiver, it disable AccECN feedback.

Any of the circumstances below could cause a value of zero but, whatever the cause,
the actions above would be the appropriate response:

The TCP Client has somehow entered No ECN feedback mode (most likely if the
Server received a SYN or sent a SYN/ACK with (AE,CWR,ECE) = (0,0,0) after entering
AccECN mode, but possible even if it didn't).
The TCP Client genuinely might be in AccECN mode, but its count of received CE
marks might have caused the ACE field to wrap to zero. This is highly unlikely, but
not impossible because the Server might have already sent multiple packets while
still in SYN-RCVD state, e.g., using TFO (see Section 5.2), and some might have been
CE-marked. Then ACE on the first ACK seen by the Server might be zero, due to
previous ACKs experiencing an unfortunate pattern of loss or delay.

MUST
MUST

ACE on ACK of
SYN/ACK

IP ECN Codepoint on SYN/ACK
Inferred by Server

s.cep of TCP Server in
AccECN Mode

0b000 {Notes 1, 3} Disable s.cep

0b001 {Notes 2, 3} 5

0b010 Not-ECT 5

0b011 ECT(1) 5

0b100 ECT(0) 5

0b101 Currently Unused {Note 2} 5

0b110 CE 6

0b111 Currently Unused {Note 2} 5

Table 4: Meaning of the ACE Field on the ACK of the SYN/ACK

MUST NOT MUST NOT
MUST NOT

•

•

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 23

Note 2:

Note 3:

There is some form of non-compliance at the TCP Client or on the path (see Section
3.2.2.4).

If the Server is in AccECN mode, these values are Currently Unused but the AccECN
Server's behaviour is still defined for forward compatibility. Then the designer of a
future protocol can know for certain what AccECN Servers will do with these
codepoints.

In the case where a Server that implements AccECN is also using a stateless handshake
(termed a SYN cookie), it will not remember whether it entered AccECN mode. The
values 0b000 or 0b001 will remind it that it did not enter AccECN mode, because
AccECN does not use them (see Section 5.1 for details). If a Server that uses a stateless
handshake and implements AccECN receives either of these two values in the ACK, its
action is implementation-dependent and outside the scope of this document. It will
certainly not take the action in the third column because, after it receives either of
these values, it is not in AccECN mode. For example, it will not disable ECN (at least not
just because ACE is 0b000) and it will not set s.cep.

•

3.2.2.2. Encoding and Decoding Feedback in the ACE Field
Whenever the Data Receiver sends an ACK with SYN=0 (with or without data), unless the
handshake encoding in Section 3.2.2.1 applies, the Data Receiver encode the least
significant 3 bits of its r.cep counter into the ACE field (see Appendix A.2).

Whenever the Data Sender receives an ACK with SYN=0 (with or without data), it first checks
whether it has already been superseded (defined in Appendix A.1) by another ACK in which case
it ignores the ECN feedback. If the ACK has not been superseded, and if the special handshake
encoding in Section 3.2.2.1 does not apply, the Data Sender decodes the ACE field as follows (see
Appendix A.2 for examples).

It takes the least significant 3 bits of its local s.cep counter and subtracts them from the
incoming ACE counter to work out the minimum positive increment it could apply to s.cep
(assuming the ACE field only wrapped once at most).
It then follows the safety procedures in Section 3.2.2.5.2 to calculate or estimate how many
packets the ACK could have acknowledged under the prevailing conditions to determine
whether the ACE field might have wrapped more than once.

The encode/decode procedures during the three-way handshake are exceptions to the general
rules given so far, so they are spelled out step by step below for clarity:

If a TCP Server in AccECN mode receives a CE mark in the IP ECN field of a SYN (SYN=1,
ACK=0), it increment r.cep (it remains at its initial value of 5).

Reason: It would be redundant for the Server to include CE-marked SYNs in its r.cep
counter, because it already reliably delivers feedback of any CE marking using the encoding
in the top block of Table 2 in the SYN/ACK. This also ensures that, when the Server starts
using the ACE field, it has not unnecessarily consumed more than one initial value, given
they can be used to negotiate variants of the AccECN protocol (see Appendix B.3).

MUST

•

•

•
MUST NOT

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 24

If a TCP Client in AccECN mode receives CE feedback in the TCP flags of a SYN/ACK, it
 increment s.cep (it remains at its initial value of 5) so that it stays in step with r.cep on

the Server. Nonetheless, the TCP Client still triggers the congestion control actions necessary
to respond to the CE feedback.
If a TCP Client in AccECN mode receives a CE mark in the IP ECN field of a SYN/ACK, it
increment r.cep, but no more than once no matter how many CE-marked SYN/ACKs it
receives (i.e., incremented from 5 to 6, but no further).

Reason: Incrementing r.cep ensures the Client will eventually deliver any CE marking to the
Server reliably when it starts using the ACE field. Even though the Client also feeds back any
CE marking on the ACK of the SYN/ACK using the encoding in Table 3, this ACK is not
delivered reliably, so it can be considered as a timely notification that is redundant but
unreliable. The Client does not increment r.cep more than once, because the Server can only
increment s.cep once (see next bullet). Also, this limits the unnecessarily consumed initial
values of the ACE field to two.

If a TCP Server in AccECN mode and in SYN-RCVD state receives CE feedback in the TCP flags
of a pure ACK with no SACK blocks, it increment s.cep (from 5 to 6). The TCP Server
then triggers the congestion control actions necessary to respond to the CE feedback.

Reasoning: The TCP Server can only increment s.cep once, because the first ACK it receives
will cause it to transition out of SYN-RCVD state. The Server's congestion response would be
no different, even if it could receive feedback of more than one CE-marked SYN/ACK.

Once the TCP Server transitions to ESTABLISHED state, it might later receive other pure
ACK(s) with the handshake encoding in the ACE field. A Server implement a test for
such a case, but it is not required. Therefore, once in the ESTABLISHED state, it will be
sufficient for the Server to consider the ACE field to be encoded as the normal ACE counter
on all packets with SYN=0.

Reasoning: Such ACKs will be quite unusual, e.g., a SYN/ACK (or ACK of the SYN/ACK) that is
delayed for longer than the Server's retransmission timeout; or packet duplication by the
network. And the impact of any error in the feedback on such ACKs will only be temporary.

• MUST
NOT

• MUST

•
MUST

MAY

3.2.2.3. Testing for Mangling of the IP/ECN Field
TCP Client side:

The value of the TCP-ECN flags on the SYN/ACK indicates the value of the IP ECN field when
the SYN arrived at the Server. The TCP Client can compare this with how it originally set the
IP ECN field on the SYN. If this comparison implies an invalid transition (defined below) of
the IP ECN field, for the remainder of the half-connection the Client is advised to send non-
ECN-capable packets, but it still ought to respond to any feedback of CE markings (explained
below). However, the TCP Client remain in the AccECN feedback mode and it
continue to feed back any ECN markings on arriving packets (in its role as Data Receiver).

TCP Server side:

The value of the ACE field on the last ACK of the three-way handshake indicates the value of
the IP ECN field when the SYN/ACK arrived at the TCP Client. The Server can compare this
with how it originally set the IP ECN field on the SYN/ACK. If this comparison implies an

•

MUST MUST

•

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 25

invalid transition of the IP ECN field, for the remainder of the half-connection the Server is
advised to send non-ECN-capable packets, but it still ought to respond to any feedback of CE
markings (explained below). However, the Server remain in the AccECN feedback
mode and it continue to feed back any ECN markings on arriving packets (in its role as
Data Receiver).

If a Data Sender in AccECN mode starts sending non-ECN-capable packets because it has
detected mangling, it is still advised to respond to CE feedback. Reason: Any CE marking arriving
at the Data Receiver could be due to something early in the path mangling the non-ECN-capable
IP ECN field into an ECN-capable codepoint and then, later in the path, a network bottleneck
might be applying CE markings to indicate genuine congestion. This argument applies whether
the handshake packet originally sent by the TCP Client or Server was non-ECN-capable or ECN-
capable because, in either case, an unsafe transition could imply that non-ECN-capable packets
later in the connection might get mangled.

Once a Data Sender has entered AccECN mode it is advised to check whether it is receiving
continuous feedback of CE. Specifying exactly how to do this is beyond the scope of the present
specification, but the sender might check whether the feedback for every packet it sends for the
first three or four rounds indicates CE marking. If continuous CE marking is detected, for the
remainder of the half-connection, the Data Sender ought to send non-ECN-capable packets, and
it is advised not to respond to any feedback of CE markings. The Data Sender might occasionally
test whether it can resume sending ECN-capable packets.

The above advice on switching to sending non-ECN-capable packets but still responding to CE
markings unless they become continuous is not stated normatively (in capitals), because the best
strategy might depend on experience of the most likely types of mangling, which can only be
known at the time of deployment. The same is true for other forms of mangling (or resumption
of expected marking) during later stages of a connection.

As always, once a host has entered AccECN mode, it follows the general mandatory
requirements (Section 3.1.5) to remain in the same feedback mode and to continue feeding back
any ECN markings on arriving packets using AccECN feedback. This follows the general approach
where an AccECN Data Receiver mechanistically reflects whatever it receives (Section 2.5).

The ACK of the SYN/ACK is not reliably delivered (nonetheless, the count of CE marks is still
eventually delivered reliably). If this ACK does not arrive, the Server is advised to continue to
send ECN-capable packets without having tested for mangling of the IP ECN field on the SYN/ACK.

All the fall-back behaviours in this section are necessary in case mangling of the IP ECN field is
asymmetric, which is currently common over some mobile networks . In this case,
one end might see no unsafe transition and continue sending ECN-capable packets, while the
other end sees an unsafe transition and stops sending ECN-capable packets.

Invalid transitions of the IP ECN field are defined in Section 18 of the Classic ECN specification
 and repeated here for convenience:

the Not-ECT codepoint changes;

MUST
MUST

[Mandalari18]

[RFC3168]

•

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 26

https://www.rfc-editor.org/rfc/rfc3168#section-18

either ECT codepoint transitions to Not-ECT;
the CE codepoint changes.

RFC 3168 says that a router that changes ECT to Not-ECT is invalid but safe. However, from a
host's viewpoint, this transition is unsafe because it could be the result of two transitions at
different routers on the path: ECT to CE (safe) then CE to Not-ECT (unsafe). This scenario could
well happen where an ECN-enabled home router congests its upstream mobile broadband
bottleneck link, then the ingress to the mobile network clears the ECN field .

•
•

[Mandalari18]

3.2.2.4. Testing for Zeroing of the ACE Field
Section 3.2.2 required the Data Receiver to initialize the r.cep counter to a non-zero value.
Therefore, in either direction the initial value of the ACE counter ought to be non-zero.

This section does not concern the case where the ACE field is zero when the handshake encoding
has been used on the ACK of the SYN/ACK under the carefully worded conditions in Section
3.2.2.1.

If AccECN has been successfully negotiated, the Data Sender check the value of the ACE
counter in the first feedback packet (with or without data) that arrives after the three-way
handshake. If the value of this ACE field is found to be zero (0b000), for the remainder of the half-
connection the Data Sender ought to send non-ECN-capable packets and it is advised not to
respond to any feedback of CE markings.

Reason: the symptoms imply any or all of the following:

the remote peer has somehow entered Not ECN feedback mode;
a broken remote TCP implementation;
potential mangling of the ECN fields in the TCP headers (although unlikely given they clearly
survived during the handshake).

This advice is not stated normatively (in capitals), because the best strategy might depend on the
likelihood to experience these scenarios, which can only be known at the time of deployment.

Note that a host in AccECN mode continue to provide Accurate ECN feedback to its peer,
even if it is no longer sending ECT itself over the other half-connection.

If reordering occurs, the first feedback packet that arrives will not necessarily be the same as the
first packet in sequence order. The test has been specified loosely like this to simplify
implementation, and because it would not have been any more precise to have specified the first
packet in sequence order, which would not necessarily be the first ACE counter that the Data
Receiver fed back anyway, given it might have been a retransmission.

The possibility of reordering means that there is a small chance that the ACE field on the first
packet to arrive is genuinely zero (without middlebox interference). This would cause a host to
unnecessarily disable ECN for a half-connection. Therefore, in environments where there is no
evidence of the ACE field being zeroed, implementations skip this test.

MAY

•
•
•

MUST

MAY

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 27

Note that the Data Sender test whether the arriving counter in the initial ACE field has
been initialized to a specific valid value -- the above check solely tests whether the ACE fields
have been incorrectly zeroed. This allows hosts to use different initial values as an additional
signalling channel in the future.

MUST NOT

3.2.2.5. Safety Against Ambiguity of the ACE Field
If too many CE-marked segments are acknowledged at once, or if a long run of ACKs is lost or
thinned out, the 3-bit counter in the ACE field might have cycled between two ACKs arriving at
the Data Sender. The following safety procedures minimize this ambiguity.

Change-Triggered ACKs:

Increment-Triggered ACKs:

3.2.2.5.1. Packet Receiver Safety Procedures
The following rules define when the receiver of a packet in AccECN mode emits an ACK:

An AccECN Data Receiver emit an ACK whenever a data
packet marked CE arrives after the previous packet was not CE.

Even though this rule is stated as a " ", it is important for a transition to trigger an
ACK if at all possible. The only valid exception to this rule is due to Large Receive Offload
(LRO) or Generic Receive Offload (GRO) as further described below.

For the avoidance of doubt, this rule is deliberately worded to apply solely when data packets
arrive, but the comparison with the previous packet includes any packet, not just data
packets.

An AccECN receiver of a packet emit an ACK if 'n' CE marks
have arrived since the previous ACK. If there is unacknowledged data at the receiver, 'n'

 be 2. If there is no unacknowledged data at the receiver, 'n' be 3 and
be no less than 3. In either case, 'n' be no greater than 7.

The above rules for when to send an ACK are designed to be complemented by those in Section
3.2.3.3, which concern whether an AccECN TCP Option ought to be included on ACKs.

If the arrivals of a number of data packets are all processed as one event, e.g., using large receive
offload (LRO) or generic receive offload (GRO), both the above rules be interpreted as
requiring multiple ACKs to be emitted back to back (for each transition and for each sequence of
'n' CE marks). If this is problematic for high performance, either rule can be interpreted as
requiring just a single ACK at the end of the whole receive event.

Even if a number of data packets do not arrive as one event, the 'Change-Triggered ACKs' rule
could sometimes cause the ACK rate to be problematic for high performance (although high
performance protocols such as DCTCP already successfully use change-triggered ACKs). The
rationale for change-triggered ACKs is so that the Data Sender can rely on them to detect queue
growth as soon as possible, particularly at the start of a flow. The approach can lead to some
additional ACKs but it feeds back the timing and the order in which ECN marks are received
with minimal additional complexity. If CE marks are infrequent, as is the case for most Active
Queue Management (AQM) packet schedulers at the time of writing, or there are multiple marks

SHOULD

SHOULD

MUST

SHOULD SHOULD MUST
MUST

SHOULD

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 28

in a row, the additional load will be low. However, marking patterns with numerous non-
contiguous CE marks could increase the load significantly. One possible compromise would be
for the receiver to heuristically detect whether the sender is in slow-start, then to implement
change-triggered ACKs while the sender is in slow-start, and offload otherwise.

In a scenario where both endpoints support AccECN, if host B has chosen to use ECN-capable
pure ACKs (as allowed in experiments) and enough of these ACKs become CE marked,
then the 'Increment-Triggered ACKs' rule ensures that its peer (host A) gives B sufficient
feedback about this congestion on the ACKs from B to A. Normally, for instance in a
unidirectional data scenario from host A to B, the Data Sender (A) can piggyback that feedback
on its data. But if A stops sending data, the second part of the 'Increment-Triggered ACKs' rule
requires A to emit a pure ACK for at least every third CE-marked incoming ACK over the
subsequent round trip.

Although TCP normally only ACKs data segments, in this case the increment-triggered ACK rule
makes it mandatory for A to emit ACKs of ACKs. This is justifiable because the ACKs in this case
are ECN-capable and so, even though the ACKs of these ACKs do not acknowledge new data, they
feed back new congestion state (useful in case B starts sending). The minimum of 3 for 'n' in this
case ensures that, even if A also uses ECN-capable pure ACKs, and even if there is pathological
congestion in both directions, any resulting ping-pong of ACKs will be rapidly damped.

In the above bidirectional scenario, incoming ACKs of ACKs could be mistaken for duplicate
ACKs. But ACKs of ACKs can be distinguished from duplicate ACKs because they do not contain
any SACK blocks even when SACK has been negotiated. It is outside the scope of this AccECN
specification to normatively specify this additional test for DupACKs, because ACKs of ACKs can
only arise if the original ACKs are ECN-capable. Instead, any specification that allows ECN-
capable pure ACKs make sending ACKs of ACKs conditional on measures to distinguish
ACKs of ACKs from DupACKs (see for example). All that is necessary here is to require
that these ACKs of ACKs contain any SACK blocks (which would normally not happen
anyway).

[RFC8311]

MUST
[ECN++]

MUST NOT

3.2.2.5.2. Data Sender Safety Procedures
If the Data Sender has not received AccECN TCP Options to give it more dependable information,
and it detects that the ACE field could have cycled, it deem whether it cycled by taking
the safest likely case under the prevailing conditions. It can detect if the counter could have
cycled by using the jump in the acknowledgement number since the last ACK to calculate or
estimate how many segments could have been acknowledged. An example algorithm to
implement this policy is given in Appendix A.2. An implementation use an alternative
algorithm as long as it satisfies the requirements in this subsection.

If missing acknowledgement numbers arrive later (reordering) and prove that the counter did
not cycle, the Data Sender attempt to neutralize the effect of any action it took based on a
conservative assumption that it later found to be incorrect.

SHOULD

MAY

MAY

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 29

The Data Sender can estimate how many packets (of any marking) an ACK acknowledges. If the
ACE counter on an ACK seems to imply that the minimum number of newly CE-marked packets
is greater than the number of newly acknowledged packets, the Data Sender consider
the ACE counter to be correct (and its count of control packets to be incomplete), unless it can be
sure that it is counting all control packets correctly.

SHOULD

3.2.3. The AccECN Option

Two alternative AccECN Options are defined as shown in Figure 4. The initial 'E' of each field
name stands for 'Echo'.

Figure 4 shows two option field orders; order 0 and order 1. They both consist of three 24-bit
fields. Order 0 provides the 24 least significant bits of the r.e0b, r.ceb, and r.e1b counters,
respectively. Order 1 provides the same fields, but in the opposite order. On each packet, the
Data Receiver can use whichever order is more efficient. In either case, the bytes within the
fields are in network byte order (big-endian).

The choice to use three bytes (24 bits) fields in the options was made to strike a balance between
TCP Option space usage, and the required fidelity of the counters to accommodate typical
scenarios such as hardware TCP Segmentation Offloading (TSO), and periods during which no
option may be transmitted (e.g., SACK loss recovery). Providing only 2 bytes (16 bits) for these
counters could easily roll over within a single TSO transmission or large/generic receive offload
(LRO/GRO) event. Having two distinct orderings further allows the transmission of the most
pertinent changes in an abbreviated option (see below).

When a Data Receiver sends an AccECN Option, it set the Kind field to 172 if using Order 0,
or to 174 if using Order 1. These two new TCP Option Kinds are registered in Section 7 and are
called AccECN0 and AccECN1, respectively.

Figure 4: The Two Alternative AccECN TCP Options

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Kind = 172 | Length = 11 | EE0B field |
+-+
| EE0B (cont'd) | ECEB field |
+-+
| EE1B field | Order 0
+-+

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Kind = 174 | Length = 11 | EE1B field |
+-+
| EE1B (cont'd) | ECEB field |
+-+
| EE0B field | Order 1
+-+

MUST

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 30

Note that there is no field to feed back Not-ECT bytes. Nonetheless, an algorithm for the Data
Sender to calculate the number of payload bytes received as Not-ECT is given in Appendix A.4.

Whenever a Data Receiver sends an AccECN Option, the rules in Section 3.2.3.3 allow it to omit
unchanged fields from the tail of the option, to help cope with option space limitations, as long
as it preserves the order of the remaining fields and includes any field that has changed. The
length field indicate which fields are present as follows:

The empty option of Length=2 is provided to allow for a case where an AccECN Option has to be
sent (e.g., on the SYN/ACK to test the path), but there is very limited space for the option.

All implementations of a Data Sender that read any AccECN Option be able to read AccECN
Options of any of the above lengths. For forward compatibility, if the AccECN Option is of any
other length, implementations use those whole 3-octet fields that fit within the length and
ignore the remainder of the option, treating it as padding.

AccECN Options have to be optional to implement, because both sender and receiver have to be
able to cope without options anyway -- in cases where they do not traverse a network path. It is

 to implement both sending and receiving of AccECN Options. Support for
AccECN Options is particularly valuable over paths that introduce a high degree of ACK filtering,
where the 3-bit ACE counter alone might sometimes be insufficient, when it is ambiguous
whether it has wrapped. If sending of AccECN Options is implemented, the fall-backs described
in this document will need to be implemented as well (unless solely for a controlled
environment where path traversal is not considered a problem). Even if a developer does not
implement logic to understand received AccECN Options, it is that they
implement logic to send AccECN Options. Otherwise, those remote peers that implement the
receiving logic will still be excluded from congestion feedback that is robust against the
increasingly aggressive ACK filtering in the Internet. The logic to send AccECN Options is the
simpler to implement of the two sides.

If a Data Receiver intends to send an AccECN Option at any time during the rest of the
connection, it is to also test path traversal of the AccECN Option as specified in
Section 3.2.3.2.

MUST

Length Order 0 Order 1

11 EE0B, ECEB, EE1B EE1B, ECEB, EE0B

8 EE0B, ECEB EE1B, ECEB

5 EE0B EE1B

2 (empty) (empty)

Table 5: Fields included in AccECN TCP Options of
each length and order

MUST

MUST

RECOMMENDED

RECOMMENDED

RECOMMENDED

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 31

3.2.3.1. Encoding and Decoding Feedback in the AccECN Option Fields
Whenever the Data Receiver includes any of the counter fields (ECEB, EE0B, EE1B) in an AccECN
Option, it encode the 24 least significant bits of the current value of the associated counter
into the field (respectively r.ceb, r.e0b, r.e1b).

Whenever the Data Sender receives an ACK carrying an AccECN Option, it first checks whether
the ACK has already been superseded by another ACK in which case it ignores the ECN feedback.
If the ACK has not been superseded, the Data Sender normally decodes the fields in the AccECN
Option as follows. For each field, it takes the least significant 24 bits of its associated local
counter (s.ceb, s.e0b, or s.e1b) and subtracts them from the counter in the associated field of the
incoming AccECN Option (respectively ECEB, EE0B, EE1B), to work out the minimum positive
increment it could apply to s.ceb, s.e0b, or s.e1b (assuming the field in the option only wrapped
once at most).

Appendix A.1 gives an example algorithm for the Data Receiver to encode its byte counters into
an AccECN Option, and for the Data Sender to decode the AccECN Option fields into its byte
counters.

Note that, as specified in Section 3.2, any data on the SYN (SYN=1, ACK=0) is not included in any
of the byte counters held locally for each ECN marking nor in an AccECN Option on the wire.

MUST

3.2.3.2. Path Traversal of the AccECN Option

3.2.3.2.1. Testing the AccECN Option During the Handshake
The TCP Client include an AccECN TCP Option on the SYN. If there is somehow an
AccECN Option on a SYN, it be ignored when forwarded or received.

A TCP Server that confirms its support for AccECN (in response to an AccECN SYN from the
Client as described in Section 3.1) include an AccECN TCP Option on the SYN/ACK.

A TCP Client that has successfully negotiated AccECN include an AccECN Option in the
first ACK at the end of the three-way handshake. However, this first ACK is not delivered reliably,
so the TCP Client also include an AccECN Option on the first data segment it sends (if it
ever sends one).

A host omit an AccECN Option in any of the above three cases because of insufficient option
space or because it has cached knowledge that the packet would be likely to be blocked on the
path to the other host if it included an AccECN Option.

MUST NOT
MUST

SHOULD

SHOULD

SHOULD

MAY

3.2.3.2.2. Testing for Loss of Packets Carrying the AccECN Option
If the TCP Server has not received an ACK to acknowledge its SYN/ACK after the normal TCP
timeout or if it receives a second SYN with a request for AccECN support, then either the SYN/
ACK might just have been lost, e.g., due to congestion, or a middlebox might be blocking AccECN
Options. To expedite connection setup in deployment scenarios where AccECN path traversal
might be problematic, the TCP Server retransmit the SYN/ACK, but with no AccECNSHOULD

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 32

Option. If this retransmission times out, to expedite connection setup, the TCP Server
retransmit the SYN/ACK with (AE,CWR,ECE) = (0,0,0) and no AccECN Option, but it remains in
AccECN feedback mode (per Section 3.1.5).

Note that a retransmitted AccECN SYN/ACK will not necessarily have the same TCP-
ECN flags as the original SYN/ACK, because it feeds back the IP ECN field of the latest
SYN to have arrived (by the rule in Section 3.1.5).

The above fall-back approach limits any interference by middleboxes that might drop packets
with unknown options, even though it is more likely that SYN/ACK loss is due to congestion. The
TCP Server try to send another packet with an AccECN Option at a later point during the
connection but it ought to monitor if that packet got lost as well, in which case it disable
the sending of AccECN Options for this half-connection.

Implementers use other fall-back strategies if they are found to be more effective (e.g.,
retrying an AccECN Option for a second time before fall-back -- most appropriate during high
levels of congestion). However, other fall-back strategies will need to follow all the rules in
Section 3.1.5, which concern behaviour when SYNs or SYN/ACKs negotiating different types of
feedback have been sent within the same connection.

Further it might make sense to also remove any other new or experimental fields or options on
the SYN/ACK, although the required behaviour will depend on the specification of the other
option(s) and on any attempt to coordinate fall-back between different modules of the stack.

If the TCP Client detects that the first data segment it sent with an AccECN Option was lost, in
deployment scenarios where AccECN path traversal might be problematic, it fall back to
no AccECN Option on the retransmission. Again, implementers use other fall-back strategies
such as attempting to retransmit a second segment with an AccECN Option before fall-back, and/
or caching whether AccECN Options are blocked for subsequent connections. further
discusses caching of TCP parameters and status information.

If a middlebox is dropping packets with options it does not recognize, a host that is sending little
or no data but mostly pure ACKs will not inherently detect such losses. Such a host detect
loss of ACKs carrying the AccECN Option by detecting whether the acknowledged data always
reappears as a retransmission. In such cases, the host disable the sending of the AccECN
Option for this half-connection.

If a host falls back to not sending AccECN Options, it will continue to process any incoming
AccECN Options as normal.

Either host include AccECN Options in one or more subsequent segments to retest whether
AccECN Options can traverse the path.

Similarly, an AccECN endpoint separately memorize which data packets carried an AccECN
Option and disable the sending of AccECN Options if the loss probability of those packets is
significantly higher than that of all other data packets in the same connection.

SHOULD

MAY
SHOULD

MAY

SHOULD
MAY

[RFC9040]

MAY

SHOULD

MAY

MAY

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 33

3.2.3.2.3. Testing for Absence of the AccECN Option
If the TCP Client has successfully negotiated AccECN but does not receive an AccECN Option on
the SYN/ACK (e.g., because is has been stripped by a middlebox or not sent by the Server), the
Client switches into a mode that assumes that the AccECN Option is not available for this half-
connection.

Similarly, if the TCP Server has successfully negotiated AccECN but does not receive an AccECN
Option on the first segment that acknowledges sequence space at least covering the ISN, it
switches into a mode that assumes that the AccECN Option is not available for this half-
connection.

While a host is in this mode that assumes incoming AccECN Options are not available, it
adopt the conservative interpretation of the ACE field discussed in Section 3.2.2.5. However, it
cannot make any assumption about support of outgoing AccECN Options on the other half-
connection, so it continue to send AccECN Options itself (unless it has established that
sending AccECN Options is causing packets to be blocked as in Section 3.2.3.2.2).

If a host is in the mode that assumes incoming AccECN Options are not available, but it receives
an AccECN Option at any later point during the connection, this clearly indicates that AccECN
Options are no longer blocked on the respective path, and the AccECN endpoint switch out
of the mode that assumes AccECN Options are not available for this half-connection.

MUST

SHOULD

MAY

3.2.3.2.4. Test for Zeroing of the AccECN Option
For a related test for invalid initialization of the ACE field, see Section 3.2.2.4.

Section 3.2.1 required the Data Receiver to initialize the r.e0b and r.e1b counters to a non-zero
value. Therefore, in either direction the initial value of the EE0B field or EE1B field in an AccECN
Option (if one exists) ought to be non-zero. If AccECN has been negotiated:

the TCP Server check that the initial value of the EE0B field or the EE1B field is non-
zero in the first segment that acknowledges sequence space that at least covers the ISN plus
1. If it runs a test and either initial value is zero, the Server will switch into a mode that
ignores AccECN Options for this half-connection.
the TCP Client check that the initial value of the EE0B field or the EE1B field is non-zero
on the SYN/ACK. If it runs a test and either initial value is zero, the Client will switch into a
mode that ignores AccECN Options for this half-connection.

While a host is in the mode that ignores AccECN Options, it adopt the conservative
interpretation of the ACE field discussed in Section 3.2.2.5.

Note that the Data Sender test whether the arriving byte counters in an initial AccECN
Option have been initialized to specific valid values -- the above checks solely test whether these
fields have been incorrectly zeroed. This allows hosts to use different initial values as an
additional signalling channel in the future. Also note that the initial value of either field might

• MAY

• MAY

MUST

MUST NOT

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 34

3.2.3.2.5. Consistency Between AccECN Feedback Fields
When AccECN Options are available, they ought to provide more unambiguous feedback.
However, they supplement but do not replace the ACE field. An endpoint using AccECN feedback

 always reconcile the information provided in the ACE field with that in any AccECN
Option, so that the state of the ACE-related packet counter can be relied on if future feedback
does not carry an AccECN Option.

If an AccECN Option is present, the s.cep counter might increase more than expected from the
increase of the s.ceb counter (e.g., due to a CE-marked control packet). The sender's response to
such a situation is out of scope, and needs to be dealt with in a specification that uses ECN-
capable control packets. Theoretically, this situation could also occur if a middlebox mangled an
AccECN Option but not the ACE field. However, the Data Sender has to assume that the integrity
of AccECN Options is sound, based on the above test of the well-known initial values and
optionally other integrity tests (Section 5.3).

If either endpoint detects that the s.ceb counter has increased but the s.cep has not (and by
testing ACK coverage it is certain how much the ACE field has wrapped), and if there is no
explanation other than an invalid protocol transition due to some form of feedback mangling,
the Data Sender disable sending ECN-capable packets for the remainder of the half-
connection by setting the IP ECN field in all subsequent packets to Not-ECT.

be greater than its expected initial value, because the counters might already have been
incremented. Nonetheless, the initial values of the counters have been chosen so that they
cannot wrap to zero on these initial segments.

MUST

MUST

Importance of Congestion Control:

Recommended Simple Scheme:

3.2.3.3. Usage of the AccECN TCP Option
If a Data Receiver in AccECN mode intends to use AccECN TCP Options to provide feedback, the
rules below determine when to include an AccECN TCP Option, and which fields to include,
given other options might be competing for limited option space:

AccECN is for congestion control, which implementations
 generally prioritize over other TCP Options when there is insufficient space for all

the options in use.

If SACK has been negotiated , and the smallest recommended AccECN Option would
leave insufficient space for two SACK blocks on a particular ACK, the Data Receiver give
precedence to the SACK option (total 18 octets), because loss feedback is more critical.

The Data Receiver include an AccECN TCP Option on
every scheduled ACK if any byte counter has incremented since the last ACK. Whenever
possible, it include a field for every byte counter that has changed at some time
during the connection (see examples later).

SHOULD

[RFC2018]
MUST

SHOULD

SHOULD

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 35

Necessary Option Length:

Change-Triggered AccECN TCP Options:

Continual Repetition:

A scheduled ACK means an ACK that the Data Receiver would send by its regular delayed ACK
rules. Recall that Section 1.3 defines an 'ACK' as either with data payload or without. But the
above rule is worded so that, in the common case when most of the data is from a Server to a
Client, the Server only includes an AccECN TCP Option while it is acknowledging data from
the Client.

When available TCP Option space is limited on particular packets, the recommended scheme
will need to include compromises. To guide the implementer, the rules below are ranked in
order of importance, but the final decision has to be implementation-dependent, because
tradeoffs will alter as new TCP Options are defined and new use-cases arise.

When TCP Option space is limited, an AccECN TCP Option be
truncated to omit one or two fields from the end of the option, as indicated by the permitted
variants listed in Table 5, provided that the counter(s) that have changed since the previous
AccECN TCP Option are not omitted.

If there is insufficient space to include an AccECN TCP Option containing the counter(s) that
have changed since the previous AccECN TCP Option, then the entire AccECN TCP Option

 be omitted. (see Section 3.2.3);

If an arriving packet increments a different byte
counter to that incremented by the previous packet, the Data Receiver feed it back in
an AccECN Option on the next scheduled ACK.

For the avoidance of doubt, this rule does not concern the arrival of control packets with no
payload, because they cannot alter any byte counters.

Otherwise, if arriving packets continue to increment the same byte
counter:

the Data Receiver include a counter that has continued to increment on the next
scheduled ACK following a change-triggered AccECN TCP Option;
while the same counter continues to increment, it include the counter every n
ACKs as consistently as possible, where n can be chosen by the implementer;
it always include an AccECN Option if the r.ceb counter is incrementing and it

 include an AccECN Option if r.ec0b or r.ec1b is incrementing;
it include each counter at least once for every 2^22 bytes incremented to
prevent overflow during continual repetition.

The above rules complement those in Section 3.2.2.5, which determine when to generate an ACK
irrespective of whether an AccECN TCP Option is to be included.

The recommended scheme is intended as a simple way to ensure that all the relevant byte
counters will be carried on any ACK that reaches the Data Sender, no matter how many pure
ACKs are filtered or coalesced along the network path, and without consuming the space
available for payload data with counter field(s) that have never changed.

MAY

MUST

SHOULD

• SHOULD

• SHOULD

• SHOULD
MAY

• SHOULD

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 36

As an example of the recommended scheme, if ECT(0) is the only codepoint that has ever arrived
in the IP ECN field, the Data Receiver will feed back an AccECN0 TCP Option with only the EE0B
field on every packet that acknowledges new data. However, as soon as even one CE-marked
packet arrives, on every packet that acknowledges new data it will start to include an option
with two fields, EE0B and ECEB. As a second example, if the first packet to arrive happens to be
CE marked, the Data Receiver will have to arbitrarily choose whether to precede the ECEB field
with an EE0B field or an EE1B field. If it chooses, say, EEB0 but it turns out never to receive
ECT(0), it can start sending EE1B and ECEB instead -- it does not have to include the EE0B field if
the r.e0b counter never changed during the connection.

With the recommended scheme, if the data sending direction switches during a connection,
there can be cases where the AccECN TCP Option that is meant to feed back the counter values at
the end of a volley in one direction never reaches the other peer due to packet loss. ACE
feedback ought to be sufficient to fill this gap, given accurate feedback becomes moot after data
transmission has paused.

Appendix A.3 gives an example algorithm to estimate the number of marked bytes from the ACE
field alone, if AccECN Options are not available.

If a host has determined that segments with AccECN Options always seem to be discarded
somewhere along the path, it is no longer obliged to follow any of the rules in this section.

3.3. AccECN Compliance Requirements for TCP Proxies, Offload Engines,
and Other Middleboxes
Given AccECN alters the TCP protocol on the wire, this section specifies new requirements on
certain networking equipment that forwards TCP and inspects TCP header information.

3.3.1. Requirements for TCP Proxies

A large class of middleboxes split TCP connections. Such a middlebox would be compliant with
the AccECN protocol if the TCP implementation on each side complied with the present AccECN
specification and each side negotiated AccECN independently of the other side.

3.3.2. Requirements for Transparent Middleboxes and TCP Normalizers

Another large class of middleboxes intervenes to some degree at the transport layer, but
attempts to be transparent (invisible) to the end-to-end connection. A subset of this class of
middleboxes attempts to 'normalize' the TCP wire protocol by checking that all values in header
fields comply with a rather narrow interpretation of the TCP specifications that is not always up
to date.

A middlebox that is not normalizing the TCP protocol and does not itself act as a back-to-back
pair of TCP endpoints (i.e., a middlebox that intends to be transparent or invisible at the
transport layer) ought to forward AccECN TCP Options unaltered, whether or not the length
value matches one of those specified in Section 3.2.3, and whether or not the initial values of the

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 37

3.3.3. Requirements for TCP ACK Filtering

Section 5.2.1 of RFC 3449 gives best current practice on filtering (aka thinning or
coalescing) of pure TCP ACKs. It advises that filtering ACKs carrying ECN feedback ought to
preserve the correct operation of ECN feedback. As the present specification updates the
operation of ECN feedback, this section discusses how an ACK filter might preserve correct
operation of AccECN feedback as well.

The problem divides into two parts: determining if an ACK is part of a connection that is using
AccECN and then preserving the correct operation of AccECN feedback:

To determine whether a pure TCP ACK is part of an AccECN connection without resorting to
connection tracking and per-flow state, a useful heuristic would be to check for a non-zero
ECN field at the IP layer (because the ECN++ experiment only allows TCP pure ACKs to be
ECN-capable if AccECN has been negotiated). This heuristic is simple and stateless.
However, it might omit some AccECN ACKs because AccECN can be used without ECN++.
Even if ECN++ is used, pure ACKs do not necessarily have to be marked as ECN-capable --
only deployment experience will tell. Also, TCP ACKs might be ECN-capable owing to some
scheme other than AccECN, e.g., or some future standards action. Again, only
deployment experience will tell.
The main concern with preserving correct AccECN operation involves leaving enough ACKs
for the Data Sender to work out whether the 3-bit ACE field has wrapped. In the worst case,
in feedback about a run of received packets that were all ECN-marked, the ACE field will
wrap every 8 acknowledged packets. ACE field wrap might be of less concern if packets also
carry AccECN TCP Options. However, note that logic to read an AccECN TCP Option is
optional to implement (albeit recommended -- see Section 3.2.3). So one end writing an
AccECN TCP Option into a packet does not necessarily imply that the other end will read it.

Note that the present specification of AccECN in TCP does not presume to rely on any of the
above ACK filtering behaviour in the network, because it has to be robust against pre-existing
network nodes that do not distinguish AccECN ACKs, and robust against ACK loss during
overload more generally.

3.3.4. Requirements for TCP Segmentation Offload and Large Receive Offload

Hardware to offload certain TCP processing represents another large class of middleboxes (even
though it is often a function of a host's network interface and rarely in its own 'box').

byte-counter fields match those in Section 3.2.1. This is because blocking apparently invalid
values prevents the standardized set of values from being extended in the future (such outdated
normalizers would block updated hosts from using the extended AccECN standard).

A TCP normalizer is likely to block or alter an AccECN TCP Option if the length value or the
initial values of its byte-counter fields do not match one of those specified in Sections 3.2.3 or
3.2.1. However, to comply with the present AccECN specification, a middlebox change
the ACE field; or those fields of an AccECN Option that are currently specified in Section 3.2.3; or
any AccECN field covered by integrity protection (e.g.,).

MUST NOT

[RFC5925]

[BCP69]

•

[ECN++]

[RFC5690]

•

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 38

https://www.rfc-editor.org/rfc/rfc3449#section-5.2.1

Offloading can happen in the transmit path, usually referred to as TCP Segmentation Offload
(TSO), and the receive path where it is called Large Receive Offload (LRO).

In the transmit direction, with AccECN, all segments created from the same super-segment
should retain the same ACE field, which should make TSO straighforward.

However, with TSO hardware that supports , the CWR bit is usually masked out on the
middle and last segments. If applied to an AccECN segment, this would change the ACE field, and
would be interpreted as having received numerous CE marks in the receive direction. Therefore,
currently available TSO hardware with support may need some minor driver
changes, to adjust the bitmask for the first, middle, and last segments processed with TSO.

Initially, when Classic ECN and Accurate ECN flows coexist on the same offloading
engine, the host software may need to work around incompatibilities (e.g., when only global
configurable TSO TCP Flag bitmasks are available), otherwise this would cause some issues.

One way around this could be to only negotiate for Accurate ECN, but not offer a fall back to
Classic ECN . Another way could be to allow TSO only as long as the CWR flag in the
TCP header is not set -- at the cost of more processing overhead while the ACE field has this bit
set.

For LRO in the receive direction, a different issue may get exposed with Classic ECN
supporting hardware.

The ACE field changes with every received CE marking, so today's receive offloading could lead
to many interrupts in high congestion situations. Although that would be useful (because
congestion information is received sooner), it could also significantly increase processor load,
particularly in scenarios such as DCTCP or L4S where the marking rate is generally higher.

Current offload hardware ejects a segment from the coalescing process whenever the TCP ECN
flags change. In data centres, it has been fortunate for this offload hardware that DCTCP-style
feedback changes less often when there are long sequences of CE marks, which is more common
with a step marking threshold (but less likely the more short flows are in the mix). The ACE
counter approach has been designed so that coalescing can continue over arbitrary patterns of
marking and only needs to stop when the counter wraps. Nonetheless, until the particular
offload hardware in use implements this more efficient approach, it is likely to be more efficient
for AccECN connections to implement this counter-style logic using software segmentation
offload.

ECN encodes a varying signal in the ACK stream, so it is inevitable that offload hardware will
ultimately need to handle any form of ECN feedback exceptionally. The ACE field has been
designed as a counter so that it is straightforward for offload hardware to pass on the highest
counter, and to push a segment from its cache before the counter wraps. The purpose of
working towards standardized TCP ECN feedback is to reduce the risk for hardware developers,
who would otherwise have to guess which scheme is likely to become dominant.

[RFC3168]

[RFC3168]

[RFC3168]

[RFC3168]

[RFC3168]

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 39

The above process has been designed to enable a continuing incremental deployment path -- to
more highly dynamic congestion control. Once offload hardware supports AccECN, it will be able
to coalesce efficiently for any sequence of marks, instead of relying on the long marking
sequences from step marking for efficiency. In the next stage, marking can evolve from a step to
a ramp function. That in turn will allow host congestion control algorithms to respond faster to
dynamics, while being backwards compatible with existing host algorithms.

4. Updates to RFC 3168
This section clarifies which parts of RFC 3168 are updated and maps them to the relevant
updated sections of the present AccECN specification.

The whole of is updated by Section 3.1 of the present specification.
In , all mentions of a congestion response to an ECN-Echo (ECE)
ACK packet are updated by Section 3.2 of the present specification to mean an increment to
the sender's count of CE-marked packets, s.cep. And the requirements to set the CWR flag no
longer apply, as specified in Section 3.1.5 of the present specification. Otherwise, the
remaining requirements in still stand.

It will be noted that already updates a number of the requirements in
. Section 6.1.2 of RFC 3168 extended standard TCP congestion control

 to cover ECN marking as well as packet drop. Whereas, enables
experimentation with alternative responses to ECN marking, if specified for instance by an
Experimental RFC produced by the IETF Stream. also strengthened the statement
that "ECT(0) be used" to a " " (see for the details).

The whole of is updated by Section 3.2 of the present specification,
with the exception of the last paragraph (about congestion response to drop and ECN in the
same round trip), which still stands. Incidentally, this last paragraph is in the wrong section,
because it relates to "TCP Sender" behaviour.
The following text within :

the TCP data receiver ignore the ECN field on arriving data packets that are
outside of the receiver's current window.

is updated by more stringent acceptability tests for any packet (not just data packets) in the
present specification. Specifically, in the normative specification of AccECN (Section 3), only
'Acceptable' packets contribute to the ECN counters at the AccECN receiver and Section 1.3
defines an Acceptable packet as one that passes acceptability tests equivalent in strength to
those in both and .

Sections 5.2, 6.1.1, 6.1.4, 6.1.5, and 6.1.6 of prohibit use of ECN on TCP control
packets and retransmissions. The present specification does not update that aspect of

, but it does say what feedback an AccECN Data Receiver ought to provide if it

• Section 6.1.1 of [RFC3168]
• Section 6.1.2 of [RFC3168]

Section 6.1.2 of [RFC3168]

[RFC8311] Section
6.1.2 of [RFC3168]
[RFC5681] [RFC8311]

[RFC8311]
SHOULD MUST [RFC8311]

• Section 6.1.3 of [RFC3168]

• Section 6.1.5 of [RFC3168]

SHOULD

[RFC9293] [RFC5961]

• [RFC3168]

[RFC3168]

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 40

https://www.rfc-editor.org/rfc/rfc3168#section-6.1.1
https://www.rfc-editor.org/rfc/rfc3168#section-6.1.2
https://www.rfc-editor.org/rfc/rfc3168#section-6.1.2
https://www.rfc-editor.org/rfc/rfc3168#section-6.1.2
https://www.rfc-editor.org/rfc/rfc3168#section-6.1.2
https://www.rfc-editor.org/rfc/rfc3168#section-6.1.3
https://www.rfc-editor.org/rfc/rfc3168#section-6.1.5
https://www.rfc-editor.org/rfc/rfc3168#section-5.2
https://www.rfc-editor.org/rfc/rfc3168#section-6.1.1
https://www.rfc-editor.org/rfc/rfc3168#section-6.1.4
https://www.rfc-editor.org/rfc/rfc3168#section-6.1.5
https://www.rfc-editor.org/rfc/rfc3168#section-6.1.6

receives an ECN-capable control packet or retransmission. This ensures AccECN is forward
compatible with any future scheme that allows ECN on these packets, as provided for in

 and as proposed in .Section 4.3 of [RFC8311] [ECN++]

5. Interaction with TCP Variants
This section is informative, not normative.

5.1. Compatibility with SYN Cookies
A TCP Server can use SYN Cookies (see) to protect itself from SYN
flooding attacks. It places minimal commonly used connection state in the SYN/ACK, and
deliberately does not hold any state while waiting for the subsequent ACK (e.g., it closes the
thread). Therefore, it cannot record the fact that it entered AccECN mode for both half-
connections. Indeed, it cannot even remember whether it negotiated the use of Classic ECN

.

Nonetheless, such a Server can determine that it negotiated AccECN as follows. If a TCP Server
using SYN Cookies supports AccECN and if it receives a pure ACK that acknowledges an ISN that
is a valid SYN cookie, and if the ACK contains an ACE field with the value 0b010 to 0b111
(decimal 2 to 7), the Server can infer the first two stages of the handshake:

the TCP Client has to have requested AccECN support on the SYN;
then, even though the Server kept no state, it has to have confirmed that it supported
AccECN.

Therefore, the Server can switch itself into AccECN mode, and continue as if it had never
forgotten that it switched itself into AccECN mode earlier.

If the pure ACK that acknowledges a SYN cookie contains an ACE field with the value 0b000 or
0b001, these values indicate that the TCP Client did not request support for AccECN; therefore,
the Server does not enter AccECN mode for this connection. Further, 0b001 on the ACK implies
that the Server sent an ECN-capable SYN/ACK, which was marked CE in the network, and the
non-AccECN TCP Client fed this back by setting ECE on the ACK of the SYN/ACK.

Appendix A of [RFC4987]

[RFC3168]

•
•

5.2. Compatibility with TCP Experiments and Common TCP Options
AccECN is compatible (at least on paper) with the most commonly used TCP Options: MSS,
timestamp, window scaling, SACK, and TCP-AO. It is also compatible with Multipath TCP (MPTCP

) and the experimental TCP Option TCP Fast Open (TFO). AccECN is friendly
to all these protocols, because space for TCP Options is particularly scarce on the SYN, where
AccECN consumes zero additional header space.

Because option space is limited, Section 3.2.3.3 provides guidance on how important it is to send
an AccECN Option relative to other options and specifies which fields are more important to
include.

[RFC8684] [RFC7413]

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 41

https://www.rfc-editor.org/rfc/rfc8311#section-4.3
https://www.rfc-editor.org/rfc/rfc4987#appendix-A

Implementers of TFO need to take careful note of the recommendation in Section 3.2.2.1. That
section recommends that, if the TCP Client has successfully negotiated AccECN, when
acknowledging the SYN/ACK, even if it has data to send, it sends a pure ACK immediately before
the data. Then it can reflect the IP ECN field of the SYN/ACK on this pure ACK, which allows the
Server to detect ECN mangling. Note that, as specified in Section 3.2, any data on the SYN (SYN=1,
ACK=0) is not included in any of the byte counters held locally for each ECN marking, nor in the
AccECN Option on the wire.

AccECN feedback is compatible with the ECN++ experiment , which allows TCP control
packets and retransmissions to be ECN-capable (was updated by to permit
such experiments). AccECN is likely to inherently support any experiment with ECN-capable
packets, because it feeds back the contents of the ECN field mechanistically, without judging
whether or not a packet ought to use the ECN capability (Section 2.5). This specification does not
discuss implementing AccECN alongside , which was an earlier experimental protocol
with narrower scope than ECN++ and a 5-way handshake.

[ECN++]
[RFC3168] [RFC8311]

[RFC5562]

5.3. Compatibility with Feedback Integrity Mechanisms
Three alternative mechanisms are available to assure the integrity of ECN and/or loss signals.
AccECN is compatible with any of these approaches:

The Data Sender can test the integrity of the receiver's ECN (or loss) feedback by
occasionally setting the IP ECN field to a value normally only set by the network (and/or
deliberately leaving a sequence number gap). Then it can test whether the Data Receiver's
feedback faithfully reports what it expects (similar to paragraph 2 of

). Unlike the ECN-nonce , this approach does not waste the ECT(1)
codepoint in the IP header, it does not require standardization, and it does not rely on
misbehaving receivers volunteering to reveal feedback information that allows them to be
detected. However, setting the CE mark by the sender might conceal actual congestion
feedback from the network and therefore ought to only be done sparingly.
Networks generate congestion signals when they are becoming congested, so networks are
more likely than Data Senders to be concerned about the integrity of the receiver's feedback
of these signals. A network can enforce a congestion response to its ECN markings (or packet
losses) using congestion exposure (ConEx) audit . Whether the receiver or a
downstream network is suppressing congestion feedback, or the sender is unresponsive to
the feedback, or both, ConEx audit can neutralize any advantage that any of these three
parties would otherwise gain.

ConEx is an experimental change to the Data Sender that would be most useful when
combined with AccECN. Without AccECN, the ConEx behaviour of a Data Sender would have
to be more conservative than would be necessary if it had the accurate feedback of AccECN.

The Standards Track TCP authentication option (TCP-AO) can be used to detect
any tampering with AccECN feedback between the Data Receiver and the Data Sender
(whether malicious or accidental). The AccECN fields are immutable end to end, so they are
amenable to TCP-AO protection, which covers TCP Options by default. However, TCP-AO is
often too brittle to use on many end-to-end paths, where middleboxes can make verification

•

Section 20.2 of
[RFC3168] [RFC3540]

•

[RFC7713]

• [RFC5925]

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 42

https://www.rfc-editor.org/rfc/rfc3168#section-20.2

fail in their attempts to improve performance or security, e.g., Network Address Translation
(NAT) and Network Address Port Translation (NAPT), resegmentation, or shifting the
sequence space.

Accuracy:

Overhead:

Ordering:

Timeliness:

Timeliness vs Overhead:

Resilience:

Resilience against Bias:

Resilience vs Overhead:

6. Summary: Protocol Properties
This section is informative, not normative. It describes how well the protocol satisfies the agreed
requirements for a more Accurate ECN feedback protocol .

From each ACK, the Data Sender can infer the number of new CE-marked segments
since the previous ACK. This provides better accuracy on CE feedback than Classic ECN. In
addition, if an AccECN Option is present (not blocked by the network path), the number of
bytes marked with CE, ECT(1), and ECT(0) are provided.

The AccECN scheme is divided into two parts. The essential feedback part reuses the
three flags already assigned to ECN in the TCP header. The supplementary feedback part adds
an additional TCP Option consuming up to 11 bytes. However, no TCP Option space is
consumed in the SYN.

The order in which marks arrive at the Data Receiver is preserved in AccECN
feedback, because the Data Receiver is expected to send an ACK immediately whenever a
different mark arrives.

While the same ECN markings are arriving continually at the Data Receiver, it can
defer ACKs as TCP does normally, but it will immediately send an ACK as soon as a different
ECN marking arrives.

Change-Triggered ACKs are intended to enable latency-sensitive uses
of ECN feedback by capturing the timing of transitions but not wasting resources while the
state of the signalling system is stable. Within the constraints of the change-triggered ACK
rules, the receiver can control how frequently it sends AccECN TCP Options and therefore to
some extent it can control the overhead induced by AccECN.

All information is provided based on counters. Therefore if ACKs are lost, the
counters on the first ACK following the losses allow the Data Sender to immediately recover
the number of the ECN markings that it missed. If data or ACKs are reordered, stale
congestion information can be identified and ignored.

Because feedback is based on repetition of counters, random losses do
not remove any information, they only delay it. Therefore, even though some ACKs are
change-triggered, random losses will not alter the proportions of the different ECN markings
in the feedback.

If space is limited in some segments (e.g., because more options are
needed on some segments, such as the SACK option after loss), the Data Receiver can send
AccECN Options less frequently or truncate fields that have not changed, usually down to as
little as 5 bytes.

[RFC7560]

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 43

Resilience vs Timeliness and Ordering:

Complexity:

Integrity:

Backward Compatibility:

Forward Compatibility:

Ordering information and the timing of transitions
cannot be communicated in three cases: i) during ACK loss; ii) if something on the path strips
AccECN Options; or iii) if the Data Receiver is unable to support Change-Triggered ACKs.
Following ACK reordering, the Data Sender can reconstruct the order in which feedback was
sent, but not until all the missing feedback has arrived.

An AccECN implementation solely involves simple counter increments, some
modulo arithmetic to communicate the least significant bits and allow for wrap, and some
heuristics for safety against fields cycling due to prolonged periods of ACK loss. Each host
needs to maintain eight additional counters. The hosts have to apply some additional tests to
detect tampering by middleboxes, but in general the protocol is simple to understand and
implement and requires few cycles per packet to execute.

AccECN is compatible with at least three approaches that can assure the integrity of
ECN feedback. If AccECN Options are stripped, the resolution of the feedback is degraded, but
the integrity of this degraded feedback can still be assured.

If only one endpoint supports the AccECN scheme, it will fall back to
the most advanced ECN feedback scheme supported by the other end.

If AccECN Options are stripped by a middlebox, AccECN still provides basic congestion
feedback in the ACE field. Further, AccECN can be used to detect mangling of the IP ECN field;
mangling of the TCP ECN flags; blocking of ECT-marked segments; and blocking of segments
carrying an AccECN Option. It can detect these conditions during TCP's three-way handshake
so that it can fall back to operation without ECN and/or operation without AccECN Options.

The behaviour of endpoints and middleboxes is carefully defined for
all reserved or currently unused codepoints in the scheme. Then, the designers of security
devices can understand which currently unused values might appear in the future. So, even
if they choose to treat such values as anomalous while they are not widely used, any blocking
will at least be under policy control and not hard-coded. Then, if previously unused values
start to appear on the Internet (or in standards), such policies could be quickly reversed.

7. IANA Considerations
This document reassigns the TCP header flag at bit offset 7 to the AccECN protocol. This bit was
previously called the Nonce Sum (NS) flag , but RFC 3540 has been reclassified as
Historic . The flag is now defined as the following in the "TCP Header Flags" registry in
the "Transmission Control Protocol (TCP) Parameters" registry group:

Bit Name Reference Assignment Notes

7 AE (Accurate
ECN)

RFC 9768 Previously used as NS (Nonce Sum) by ,
which is now Historic

Table 6: TCP Header Flag Reassignment

[RFC3540]
[RFC8311]

[RFC3540]
[RFC8311]

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 44

This document also defines two new TCP Options for AccECN from the TCP Option space. These
values are defined as the following in the "TCP Option Kind Numbers" registry in the
"Transmission Control Protocol (TCP) Parameters" registry group:

Kind Length Meaning Reference

172 N Accurate ECN Order 0 (AccECN0) RFC 9768

174 N Accurate ECN Order 1 (AccECN1) RFC 9768

Table 7: New TCP Option Assignments

Early experimental implementations of the two AccECN Options used experimental option 254
per with the 16-bit magic numbers 0xACC0 and 0xACC1, respectively, for Order 0 and
1, as allocated in the IANA "TCP/UDP Experimental Option Experiment Identifiers (TCP/UDP
ExIDs)" registry. Even earlier experimental implementations used the single magic number
0xACCE (16 bits). Uses of these experimental options migrate to use the new option
kinds (172 and 174).

[RFC6994]

SHOULD

8. Security and Privacy Considerations
If ever the supplementary feedback part of AccECN that is based on one of the new AccECN TCP
Options is unusable (due for example to middlebox interference), the essential feedback part of
AccECN's congestion feedback offers only limited resilience to long runs of ACK loss (see Section
3.2.2.5). These problems are unlikely to be due to malicious intervention (because if an attacker
could strip a TCP Option or discard a long run of ACKs, it could wreak other arbitrary havoc).
However, it would be of concern if AccECN's resilience could be indirectly compromised during
a flooding attack. AccECN is still considered safe though, because if AccECN Options are not
present, the AccECN Data Sender is then required to switch to more conservative assumptions
about wrap of congestion indication counters (see Section 3.2.2.5 and Appendix A.2).

Section 5.1 describes how a TCP Server can negotiate AccECN and use the SYN cookie method for
mitigating SYN flooding attacks.

There is concern that ECN feedback could be altered or suppressed, particularly because a
misbehaving Data Receiver could increase its own throughput at the expense of others. AccECN
is compatible with the three schemes known to assure the integrity of ECN feedback (see Section
5.3 for details). If AccECN Options are stripped by an incorrectly implemented middlebox, the
resolution of the feedback will be degraded, but the integrity of this degraded information can
still be assured. Assuring that Data Senders respond appropriately to ECN feedback is possible,
but the scope of the present document is confined to the feedback protocol and excludes the
response to this feedback.

In Section 3.2.3, a Data Sender is allowed to ignore an unrecognized TCP AccECN Option length
and read as many whole 3-octet fields from it as possible up to a maximum of 3, treating the
remainder as padding. This opens up a potential covert channel of up to 29B (40 - (2+3*3)).
However, it is really an overt channel (not hidden) and it is no different than the use of

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 45

[RFC2018]

[RFC2119]

9. References

9.1. Normative References

, , , and ,
, , , October 1996,

.

, , ,
, , March 1997,
.

unknown TCP Options with unknown option lengths in general. Therefore, where this is of
concern, it can already be adequately mitigated by regular TCP normalizer technology (see
Section 3.3.2).

The AccECN protocol is not believed to introduce any new privacy concerns, because it merely
counts and feeds back signals at the transport layer that had already been visible at the IP layer.
A covert channel can be used to compromise privacy. However, as explained above, undefined
TCP Options in general open up such channels, and common techniques are available to close
them off.

There is a potential concern that a Data Receiver could deliberately omit AccECN Options
pretending that they had been stripped by a middlebox. Currently, there is no known way for a
receiver to take advantage of this behaviour, which seems to always degrade its own
performance. However, the concern is mentioned here for completeness.

A generic privacy concern of any new protocol is that for a while it will be used by a small
population of hosts, and thus those hosts could be more easily identified. However, it is expected
that AccECN will become available in operating systems over time and that it will eventually be
turned on by default. Thus, an individual identification of a particular user is less of a concern
than the fingerprinting of specific versions of operation systems. However, the latter can be
done using different means independent of Accurate ECN.

As Accurate ECN exposes more bits in the TCP header that could be tampered with without
interfering with the transport excessively, it may allow an additional way to identify specific
data streams across a virtual private network (VPN) to an attacker that has access to the
datastream before and after the VPN tunnel endpoints. This may be achieved by injecting or
modifying the ACE field in specific patterns that can be recognized.

Overall, Accurate ECN does not change the risk profile on privacy to a user dramatically beyond
what is already possible using classic ECN. However, in order to prevent such attacks and means
of easier identification of flows, it is advisable for privacy-conscious users behind VPNs to not
enable the Accurate ECN, or Classic ECN for that matter.

Mathis, M. Mahdavi, J. Floyd, S. A. Romanow "TCP Selective
Acknowledgment Options" RFC 2018 DOI 10.17487/RFC2018
<https://www.rfc-editor.org/info/rfc2018>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 46

https://www.rfc-editor.org/info/rfc2018
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC2883]

[RFC3168]

[RFC5961]

[RFC8174]

[RFC9293]

[BCP69]

[ECN++]

[Mandalari18]

[RFC3540]

[RFC4987]

[RFC5562]

, , , and ,
, ,

, July 2000, .

, , and ,
, , , September 2001,

.

, , and ,
, , , August 2010,

.

, ,
, , , May 2017,

.

, , , ,
, August 2022, .

9.2. Informative References

 and ,
, ,

, 21 April 2025,
.

, , , , and ,
,

, March 2018,
.

, , and ,
, , , June 2003,

.

, , ,
, August 2007, .

, , , and ,
, ,

, June 2009, .

Floyd, S. Mahdavi, J. Mathis, M. M. Podolsky "An Extension to the
Selective Acknowledgement (SACK) Option for TCP" RFC 2883 DOI 10.17487/
RFC2883 <https://www.rfc-editor.org/info/rfc2883>

Ramakrishnan, K. Floyd, S. D. Black "The Addition of Explicit Congestion
Notification (ECN) to IP" RFC 3168 DOI 10.17487/RFC3168
<https://www.rfc-editor.org/info/rfc3168>

Ramaiah, A. Stewart, R. M. Dalal "Improving TCP's Robustness to Blind In-
Window Attacks" RFC 5961 DOI 10.17487/RFC5961 <https://
www.rfc-editor.org/info/rfc5961>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Eddy, W., Ed. "Transmission Control Protocol (TCP)" STD 7 RFC 9293 DOI
10.17487/RFC9293 <https://www.rfc-editor.org/info/rfc9293>

Best Current Practice 69, .<https://www.rfc-editor.org/info/bcp69>
At the time of writing, this BCP comprises the following:

, , , and ,
, , ,

, December 2002, .

Balakrishnan, H. Padmanabhan, V. Fairhurst, G. M. Sooriyabandara "TCP
Performance Implications of Network Path Asymmetry" BCP 69 RFC 3449 DOI
10.17487/RFC3449 <https://www.rfc-editor.org/info/rfc3449>

Bagnulo, M. B. Briscoe "ECN++: Adding Explicit Congestion Notification
(ECN) to TCP Control Packets" Work in Progress Internet-Draft, draft-ietf-tcpm-
generalized-ecn-17 <https://datatracker.ietf.org/doc/html/draft-
ietf-tcpm-generalized-ecn-17>

Mandalari, A. Lutu, A. Briscoe, B. Bagnulo, M. Ö. Alay "Measuring ECN++:
Good News for ++, Bad News for ECN over Mobile" IEEE Communications
Magazine <http://www.it.uc3m.es/amandala/ecn++/
ecn_commag_2018.html>

Spring, N. Wetherall, D. D. Ely "Robust Explicit Congestion Notification
(ECN) Signaling with Nonces" RFC 3540 DOI 10.17487/RFC3540
<https://www.rfc-editor.org/info/rfc3540>

Eddy, W. "TCP SYN Flooding Attacks and Common Mitigations" RFC 4987 DOI
10.17487/RFC4987 <https://www.rfc-editor.org/info/rfc4987>

Kuzmanovic, A. Mondal, A. Floyd, S. K. Ramakrishnan "Adding Explicit
Congestion Notification (ECN) Capability to TCP's SYN/ACK Packets" RFC 5562
DOI 10.17487/RFC5562 <https://www.rfc-editor.org/info/rfc5562>

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 47

https://www.rfc-editor.org/info/rfc2883
https://www.rfc-editor.org/info/rfc3168
https://www.rfc-editor.org/info/rfc5961
https://www.rfc-editor.org/info/rfc5961
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc9293
https://www.rfc-editor.org/info/bcp69
https://www.rfc-editor.org/info/rfc3449
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-generalized-ecn-17
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-generalized-ecn-17
http://www.it.uc3m.es/amandala/ecn++/ecn_commag_2018.html
http://www.it.uc3m.es/amandala/ecn++/ecn_commag_2018.html
https://www.rfc-editor.org/info/rfc3540
https://www.rfc-editor.org/info/rfc4987
https://www.rfc-editor.org/info/rfc5562

[RFC5681]

[RFC5690]

[RFC5925]

[RFC6582]

[RFC6679]

[RFC6994]

[RFC7141]

[RFC7323]

[RFC7413]

[RFC7560]

[RFC7713]

[RFC8257]

[RFC8311]

, , and , , ,
, September 2009, .

, , , and ,
, , , February 2010,

.

, , and , , ,
, June 2010, .

, , , and ,
, , , April 2012,

.

, , , , and ,
, ,

, August 2012, .

, , ,
, August 2013, .

 and , , ,
, , February 2014,

.

, , , and ,
, , , September 2014,

.

, , , and , , ,
, December 2014, .

, , and ,

, , , August 2015,
.

 and ,
, , , December

2015, .

, , , , and ,
, ,

, October 2017, .

,
, , , January 2018,

.

Allman, M. Paxson, V. E. Blanton "TCP Congestion Control" RFC 5681 DOI
10.17487/RFC5681 <https://www.rfc-editor.org/info/rfc5681>

Floyd, S. Arcia, A. Ros, D. J. Iyengar "Adding Acknowledgement
Congestion Control to TCP" RFC 5690 DOI 10.17487/RFC5690
<https://www.rfc-editor.org/info/rfc5690>

Touch, J. Mankin, A. R. Bonica "The TCP Authentication Option" RFC 5925
DOI 10.17487/RFC5925 <https://www.rfc-editor.org/info/rfc5925>

Henderson, T. Floyd, S. Gurtov, A. Y. Nishida "The NewReno Modification
to TCP's Fast Recovery Algorithm" RFC 6582 DOI 10.17487/RFC6582
<https://www.rfc-editor.org/info/rfc6582>

Westerlund, M. Johansson, I. Perkins, C. O'Hanlon, P. K. Carlberg "Explicit
Congestion Notification (ECN) for RTP over UDP" RFC 6679 DOI 10.17487/
RFC6679 <https://www.rfc-editor.org/info/rfc6679>

Touch, J. "Shared Use of Experimental TCP Options" RFC 6994 DOI 10.17487/
RFC6994 <https://www.rfc-editor.org/info/rfc6994>

Briscoe, B. J. Manner "Byte and Packet Congestion Notification" BCP 41 RFC
7141 DOI 10.17487/RFC7141 <https://www.rfc-editor.org/info/
rfc7141>

Borman, D. Braden, B. Jacobson, V. R. Scheffenegger, Ed. "TCP Extensions
for High Performance" RFC 7323 DOI 10.17487/RFC7323
<https://www.rfc-editor.org/info/rfc7323>

Cheng, Y. Chu, J. Radhakrishnan, S. A. Jain "TCP Fast Open" RFC 7413 DOI
10.17487/RFC7413 <https://www.rfc-editor.org/info/rfc7413>

Kuehlewind, M., Ed. Scheffenegger, R. B. Briscoe "Problem Statement and
Requirements for Increased Accuracy in Explicit Congestion Notification (ECN)
Feedback" RFC 7560 DOI 10.17487/RFC7560 <https://www.rfc-
editor.org/info/rfc7560>

Mathis, M. B. Briscoe "Congestion Exposure (ConEx) Concepts, Abstract
Mechanism, and Requirements" RFC 7713 DOI 10.17487/RFC7713

<https://www.rfc-editor.org/info/rfc7713>

Bensley, S. Thaler, D. Balasubramanian, P. Eggert, L. G. Judd "Data Center
TCP (DCTCP): TCP Congestion Control for Data Centers" RFC 8257 DOI 10.17487/
RFC8257 <https://www.rfc-editor.org/info/rfc8257>

Black, D. "Relaxing Restrictions on Explicit Congestion Notification (ECN)
Experimentation" RFC 8311 DOI 10.17487/RFC8311 <https://
www.rfc-editor.org/info/rfc8311>

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 48

https://www.rfc-editor.org/info/rfc5681
https://www.rfc-editor.org/info/rfc5690
https://www.rfc-editor.org/info/rfc5925
https://www.rfc-editor.org/info/rfc6582
https://www.rfc-editor.org/info/rfc6679
https://www.rfc-editor.org/info/rfc6994
https://www.rfc-editor.org/info/rfc7141
https://www.rfc-editor.org/info/rfc7141
https://www.rfc-editor.org/info/rfc7323
https://www.rfc-editor.org/info/rfc7413
https://www.rfc-editor.org/info/rfc7560
https://www.rfc-editor.org/info/rfc7560
https://www.rfc-editor.org/info/rfc7713
https://www.rfc-editor.org/info/rfc8257
https://www.rfc-editor.org/info/rfc8311
https://www.rfc-editor.org/info/rfc8311

[RFC8511]

[RFC8684]

[RFC9000]

[RFC9040]

[RFC9260]

[RFC9330]

[RFC9438]

[RoCEv2]

, , , and ,
, , , December 2018,

.

, , , , and ,
, ,

, March 2020, .

 and ,
, , , May 2021,

.

, , and , ,
, , July 2021,

.

, , and , ,
, , June 2022,
.

, , , and ,
, ,

, January 2023, .

, , , , and ,
, , , August 2023,

.

, ,
.

Khademi, N. Welzl, M. Armitage, G. G. Fairhurst "TCP Alternative Backoff
with ECN (ABE)" RFC 8511 DOI 10.17487/RFC8511 <https://
www.rfc-editor.org/info/rfc8511>

Ford, A. Raiciu, C. Handley, M. Bonaventure, O. C. Paasch "TCP Extensions
for Multipath Operation with Multiple Addresses" RFC 8684 DOI 10.17487/
RFC8684 <https://www.rfc-editor.org/info/rfc8684>

Iyengar, J., Ed. M. Thomson, Ed. "QUIC: A UDP-Based Multiplexed and
Secure Transport" RFC 9000 DOI 10.17487/RFC9000 <https://
www.rfc-editor.org/info/rfc9000>

Touch, J. Welzl, M. S. Islam "TCP Control Block Interdependence" RFC
9040 DOI 10.17487/RFC9040 <https://www.rfc-editor.org/info/
rfc9040>

Stewart, R. Tüxen, M. K. Nielsen "Stream Control Transmission Protocol"
RFC 9260 DOI 10.17487/RFC9260 <https://www.rfc-editor.org/info/
rfc9260>

Briscoe, B., Ed. De Schepper, K. Bagnulo, M. G. White "Low Latency, Low
Loss, and Scalable Throughput (L4S) Internet Service: Architecture" RFC 9330
DOI 10.17487/RFC9330 <https://www.rfc-editor.org/info/rfc9330>

Xu, L. Ha, S. Rhee, I. Goel, V. L. Eggert, Ed. "CUBIC for Fast and Long-
Distance Networks" RFC 9438 DOI 10.17487/RFC9438 <https://
www.rfc-editor.org/info/rfc9438>

InfiniBand Trade Association "InfiniBand Architecture Specification" <https://
www.infinibandta.org/ibta-specification/>

Appendix A. Example Algorithms
This appendix is informative, not normative. It gives example algorithms that would satisfy the
normative requirements of the AccECN protocol. However, implementers are free to choose
other ways to satisfy the requirements.

A.1. Example Algorithm to Encode/Decode the AccECN Option
The example algorithms below show how a Data Receiver in AccECN mode could encode its CE
byte counter r.ceb into the ECEB field within an AccECN TCP Option, and how a Data Sender in
AccECN mode could decode the ECEB field into its byte counter s.ceb. The other counters for
bytes marked ECT(0) and ECT(1) in an AccECN Option would be similarly encoded and decoded.

It is assumed that each local byte counter is an unsigned integer greater than 24b (probably
32b), and that the following constant has been assigned:

 DIVOPT = 2^24

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 49

https://www.rfc-editor.org/info/rfc8511
https://www.rfc-editor.org/info/rfc8511
https://www.rfc-editor.org/info/rfc8684
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9040
https://www.rfc-editor.org/info/rfc9040
https://www.rfc-editor.org/info/rfc9260
https://www.rfc-editor.org/info/rfc9260
https://www.rfc-editor.org/info/rfc9330
https://www.rfc-editor.org/info/rfc9438
https://www.rfc-editor.org/info/rfc9438
https://www.infinibandta.org/ibta-specification/
https://www.infinibandta.org/ibta-specification/

Every time a CE-marked data segment arrives, the Data Receiver increments its local value of
r.ceb by the size of the TCP Data. Whenever it sends an ACK with an AccECN Option, the value it
writes into the ECEB field is

where '%' is the remainder operator.

On the arrival of an AccECN Option, the Data Sender first makes sure the ACK has not been
superseded in order to avoid winding the s.ceb counter backwards. It uses the TCP
acknowledgement number and any SACK options to calculate newlyAckedB, the
amount of new data that the ACK acknowledges in bytes (newlyAckedB can be zero but not
negative). If newlyAckedB is zero, either the ACK has been superseded or CE-marked packet(s)
without data could have arrived. To break the tie for the latter case, the Data Sender could use
timestamps (if present) to work out newlyAckedT, the amount of new time that the
ACK acknowledges. If the Data Sender determines that the ACK has been superseded, it ignores
the AccECN Option. Otherwise, the Data Sender calculates the minimum non-negative difference
d.ceb between the ECEB field and its local s.ceb counter, using modulo arithmetic as follows:

For example, if s.ceb is 33,554,433 and ECEB is 1461 (both decimal), then

In practice, an implementation might use heuristics to guess the feedback in missing ACKs. Then
when it subsequently receives feedback, it might find that it needs to correct its earlier
heuristics as part of the decoding process. The above decoding process does not include any such
heuristics.

 ECEB = r.ceb % DIVOPT

[RFC2018]

[RFC7323]

 if ((newlyAckedB > 0) || (newlyAckedT > 0)) {
 d.ceb = (ECEB + DIVOPT - (s.ceb % DIVOPT)) % DIVOPT
 s.ceb += d.ceb
 }

 s.ceb % DIVOPT = 1
 d.ceb = (1461 + 2^24 - 1) % 2^24
 = 1460
 s.ceb = 33,554,433 + 1460
 = 33,555,893

A.2. Example Algorithm for Safety Against Long Sequences of ACK Loss
The example algorithms below show how a Data Receiver in AccECN mode could encode its CE
packet counter r.cep into the ACE field, and how the Data Sender in AccECN mode could decode
the ACE field into its s.cep counter. The Data Sender's algorithm includes code to heuristically
detect a long enough unbroken string of ACK losses that could have concealed a cycle of the
congestion counter in the ACE field of the next ACK to arrive.

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 50

Two variants of the algorithm are given: i) a more conservative variant for a Data Sender to use
if it detects that AccECN Options are not available (see Section 3.2.2.5 and Section 3.2.3.2); and ii)
a less conservative variant that is feasible when complementary information is available from
AccECN Options.

A.2.1. Safety Algorithm Without the AccECN Option

It is assumed that each local packet counter is a sufficiently sized unsigned integer (probably
32b) and that the following constant has been assigned:

Every time an Acceptable CE marked packet arrives (Section 3.2.2.2), the Data Receiver
increments its local value of r.cep by 1. It repeats the same value of ACE in every subsequent
ACK until the next CE marking arrives, where

If the Data Sender received an earlier value of the counter that had been delayed due to ACK
reordering, it might incorrectly calculate that the ACE field had wrapped. Therefore, on the
arrival of every ACK, the Data Sender ensures the ACK has not been superseded using the TCP
acknowledgement number, any SACK options, and timestamps (if available) to calculate
newlyAckedB, as in Appendix A.1. If the ACK has not been superseded, the Data Sender
calculates the minimum difference d.cep between the ACE field and its local s.cep counter, using
modulo arithmetic as follows:

Section 3.2.2.5 expects the Data Sender to assume that the ACE field cycled if it is the safest likely
case under prevailing conditions. The 3-bit ACE field in an arriving ACK could have cycled and
become ambiguous to the Data Sender if a sequence of ACKs goes missing that covers a stream of
data long enough to contain 8 or more CE marks. We use the word 'missing' rather than 'lost',
because some or all the missing ACKs might arrive eventually, but out of order. Even if some of
the missing ACKs were piggy-backed on data (i.e., not pure ACKs) retransmissions will not repair
the lost AccECN information, because AccECN requires retransmissions to carry the latest
AccECN counters, not the original ones.

The phrase 'under prevailing conditions' allows for implementation-dependent interpretation. A
Data Sender might take account of the prevailing size of data segments and the prevailing CE
marking rate just before the sequence of missing ACKs. However, we shall start with the
simplest algorithm, which assumes segments are all full-sized, and ultra-conservatively it
assumes that ECN marking was 100% on the forward path when ACKs on the reverse path
started to all be dropped. Specifically, if newlyAckedB is the amount of data that an ACK

 DIVACE = 2^3

 ACE = r.cep % DIVACE.

 if ((newlyAckedB > 0) || (newlyAckedT > 0))
 d.cep = (ACE + DIVACE - (s.cep % DIVACE)) % DIVACE

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 51

acknowledges since the previous ACK, then the Data Sender could assume that this
acknowledges newlyAckedPkt full-sized segments, where newlyAckedPkt = newlyAckedB/MSS.
Then it could assume that the ACE field incremented by

For example, imagine an ACK acknowledges newlyAckedPkt=9 more full-size segments than any
previous ACK, and that ACE increments by a minimum of 2 CE marks (d.cep=2). The above
formula indicates that it would still be safe to assume 2 CE marks (because 9 - ((9-2) % 8) = 2).
However, if ACE increases by a minimum of 2 but acknowledges 10 full-sized segments, then it
would be necessary to assume that there could have been 10 CE marks (because 10 - ((10-2) % 8)
= 10).

Note that checks would need to be added to the above pseudocode for (d.cep > newlyAckedPkt),
which could occur if newlyAckedPkt had been wrongly estimated using an inappropriate packet
size.

ACKs that acknowledge a large stretch of packets might be common in data centres to achieve a
high packet rate or might be due to ACK thinning by a middlebox. In these cases, cycling of the
ACE field would often appear to have been possible, so the above algorithm would be overly
conservative, leading to a false high marking rate and poor performance. Therefore, it would be
reasonable to only use dSafer.cep rather than d.cep if the moving average of newlyAckedPkt was
well below 8.

Implementers could build in more heuristics to estimate a prevailing average segment size and
prevailing ECN marking. For instance, newlyAckedPkt in the above formula could be replaced
with newlyAckedPktHeur = newlyAckedPkt*p*MSS/s, where s is the prevailing segment size and
p is the prevailing ECN marking probability. However, ultimately, if TCP's ECN feedback becomes
inaccurate, it still has loss detection to fall back on. Therefore, it would seem safe to implement a
simple algorithm, rather than a perfect one.

The simple algorithm for dSafer.cep above requires no monitoring of prevailing conditions and
it would still be safe if, for example, segments were on average at least 5% of a full-sized packet
as long as ECN marking was 5% or less. Assuming it was used, the Data Sender would increment
its packet counter as follows:

If missing acknowledgement numbers arrive later (due to reordering), Section 3.2.2.5.2 says "the
Data Sender attempt to neutralize the effect of any action it took based on a conservative
assumption that it later found to be incorrect". To do this, the Data Sender would have to store
the values of all the relevant variables whenever it made assumptions, so that it could re-
evaluate them later. Given this could become complex and it is not required, we do not attempt
to provide an example of how to do this.

 dSafer.cep = newlyAckedPkt - ((newlyAckedPkt - d.cep) % DIVACE)

 s.cep += dSafer.cep

MAY

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 52

A.2.2. Safety Algorithm with the AccECN Option

When AccECN Options are available on the ACKs before and after the possible sequence of ACK
losses, if the Data Sender only needs CE-marked bytes, it will have sufficient information in
AccECN Options without needing to process the ACE field. If for some reason it needs CE-marked
packets, if dSafer.cep is different from d.cep, it can determine whether d.cep is likely to be a safe
enough estimate by checking whether the average marked segment size (s = d.ceb/d.cep) is less
than the MSS (where d.ceb is the amount of newly CE-marked bytes -- see Appendix A.1).
Specifically, it could use the following algorithm:

The chart below shows when the above algorithm will replace dSafer.cep with d.cep as a safe
enough estimate of the number of CE marked packets:

The following examples give the reasoning behind the algorithm, assuming MSS=1460 :

if d.cep=0, dSafer.cep=8, and d.ceb=1460, then s=infinity and sSafer=182.5.

Therefore, even though the average size of 8 data segments is unlikely to have been as small
as MSS/8, d.cep cannot have been correct, because it would imply an average segment size
greater than the MSS.

if d.cep=2, dSafer.cep=10, and d.ceb=1460, then s=730 and sSafer=146.

Therefore d.cep is safe enough, because the average size of 10 data segments is unlikely to
have been as small as MSS/10.

 SAFETY_FACTOR = 2
 if (dSafer.cep > d.cep) {
 if (d.ceb <= MSS * d.cep) { % Same as (s <= MSS), but no DBZ
 sSafer = d.ceb/dSafer.cep
 if (sSafer < MSS/SAFETY_FACTOR)
 dSafer.cep = d.cep % d.cep is a safe enough estimate
 } % else
 % No need for else; dSafer.cep is already correct,
 % because d.cep must have been too small
 }

 ^
 sSafer|
 |
 MSS+
 |
 | dSafer.cep
 | is
MSS/SAFETY_FACTOR+--------------+ safest
 | |
 | d.cep is safe|
 | enough |
 +-------------------->
 MSS s

•

•

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 53

if d.cep=7, dSafer.cep=15, and d.ceb=10200, then s=1457 and sSafer=680.

Therefore d.cep is safe enough, because the average data segment size is more likely to have
been just less than one MSS, rather than below MSS/2.

If pure ACKs were allowed to be ECN-capable, missing ACKs would be far less likely. However,
because currently precludes this, the above algorithm assumes that pure ACKs are not
ECN-capable.

•

[RFC3168]

A.3. Example Algorithm to Estimate Marked Bytes from Marked Packets
If AccECN Options are not available, the Data Sender can only decode a CE marking from the
ACE field in packets. Every time an ACK arrives, to convert the number of CE markings into an
estimate of CE-marked bytes, it needs an average of the segment size, s_ave. Then it can add or
subtract s_ave from the value of d.ceb as the value of d.cep increments or decrements. Some
possible ways to calculate s_ave are outlined below. The precise details will depend on why an
estimate of marked bytes is needed.

The implementation could keep a record of the byte numbers of all the boundaries between
packets in flight (including control packets), and recalculate s_ave on every ACK. However, it
would be simpler to merely maintain a counter packets_in_flight for the number of packets in
flight (including control packets), which is reset once per RTT. Either way, it would estimate
s_ave as:

where flightsize is the variable that TCP already maintains for the number of bytes in flight and
'~=' means 'approximately equal to'. To avoid floating point arithmetic, it could right-bit-shift by
lg(packets_in_flight), where lg() means log base 2.

An alternative would be to maintain an exponentially weighted moving average (EWMA) of the
segment size:

where a is the decay constant for the EWMA. However, then it is necessary to choose a good
value for this constant, which ought to depend on the number of packets in flight. Also the decay
constant needs to be power of two to avoid floating point arithmetic.

 s_ave ~= flightsize / packets_in_flight,

 s_ave = a * s + (1-a) * s_ave,

A.4. Example Algorithm to Count Not-ECT Bytes
A Data Sender in AccECN mode can infer the amount of TCP payload data arriving at the
receiver marked Not-ECT from the difference between the amount of newly ACKed data and the
sum of the bytes with the other three markings, d.ceb, d.e0b, and d.e1b.

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 54

For this approach to be precise, it has to be assumed that spurious (unnecessary)
retransmissions do not lead to double counting. This assumption is currently correct, given that
RFC 3168 requires that the Data Sender mark retransmitted segments as Not-ECT. However, the
converse is not true; necessary retransmissions will result in undercounting.

However, such precision is unlikely to be necessary. The only known use of a count of Not-ECT
marked bytes is to test whether equipment on the path is clearing the ECN field (perhaps due to
an out-dated attempt to clear, or bleach, what used to be the IPv4 ToS byte or the IPv6 Traffic
Class field). To detect bleaching, it will be sufficient to detect whether nearly all bytes arrive
marked as Not-ECT. Therefore, there ought to be no need to keep track of the details of
retransmissions.

Appendix B. Rationale for Usage of TCP Header Flags

B.1. Three TCP Header Flags in the SYN-SYN/ACK Handshake
AccECN uses a rather unorthodox approach to negotiate the highest version TCP ECN feedback
scheme that both ends support, as justified below. It follows from the original TCP ECN capability
negotiation , in which the Client set the 2 least significant of the original reserved flags
in the TCP header, and fell back to No ECN support if the Server responded with the 2 flags
cleared, which had previously been the default.

Classic ECN used header flags rather than a TCP Option because it was considered more efficient
to use a header flag for 1 bit of feedback per ACK, and this bit could be overloaded to indicate
support for Classic ECN during the handshake. During the development of ECN, 1 bit crept up to
2, in order to deliver the feedback reliably and to work round some broken hosts that reflected
the reserved flags during the handshake.

In order to be backward compatible with RFC 3168, AccECN continues this approach, using the
3rd least significant TCP header flag that had previously been allocated for the ECN-nonce (now
historic). Then, whatever form of Server an AccECN Client encounters, the connection can fall
back to the highest version of feedback protocol that both ends support, as explained in Section
3.1.

If AccECN capability negotiation had used the more orthodox approach of a TCP Option, it would
still have had to set the two ECN flags in the main TCP header, in order to be able to fall back to
Classic ECN , or to disable ECN support, without another round of negotiation. Then
AccECN would also have had to handle all the different ways that Servers currently respond to
settings of the ECN flags in the main TCP header, including all of the conflicting cases where a
Server might have said it supported one approach in the flags and another approach in a new
TCP Option. And AccECN would have had to deal with all of the additional possibilities where a
middlebox might have mangled the ECN flags, or removed TCP Options. Thus, usage of the 3rd
reserved TCP header flag simplified the protocol.

[RFC3168]

[RFC3168]

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 55

The third flag was used in a way that could be distinguished from the ECN-nonce, in case any
nonce deployment was encountered. Previous usage of this flag for the ECN-nonce was
integrated into the original ECN negotiation. This further justified the third flag's use for AccECN,
because a non-ECN usage of this flag would have had to use it as a separate single bit, rather
than in combination with the other 2 ECN flags.

Indeed, having overloaded the original uses of these three flags for its handshake, AccECN
overloads all three bits again as a 3-bit counter.

B.2. Four Codepoints in the SYN/ACK
Of the eight possible codepoints that the three TCP header flags can indicate on the SYN/ACK,
four already indicated earlier (or broken) versions of ECN support, one now being Historic. In
the early design of AccECN, an AccECN Server could use only 2 of the 4 remaining codepoints.
They both indicated AccECN support, but one fed back that the SYN had arrived marked as CE.
Even though ECN support on a SYN is not yet on the Standards Track, the idea is for either end to
act as a mechanistic reflector, so that future capabilities can be unilaterally deployed without
requiring 2-ended deployment (justified in Section 2.5).

During traversal testing, it was discovered that the IP ECN field in the SYN was mangled on a
non-negligible proportion of paths. Therefore, it was necessary to allow the SYN/ACK to feed all
four IP ECN codepoints that the SYN could arrive with back to the Client. Without this, the Client
could not know whether to disable ECN for the connection due to mangling of the IP ECN field
(also explained in Section 2.5). This development consumed the remaining two codepoints on
the SYN/ACK that had been reserved for future use by AccECN in earlier draft versions of this
document.

Future AccECN variants:

B.3. Space for Future Evolution
Despite availability of usable TCP header space being extremely scarce, the AccECN protocol has
taken all possible steps to ensure that there is space to negotiate possible future variants of the
protocol, either if a variant of AccECN is required, or if a completely different ECN feedback
approach is needed.

When the AccECN capability is negotiated during TCP's three-way
handshake, the rows in Table 2 tagged as 'Nonce' and 'Broken' in the column for the
capability of node B are unused by any current protocol defined in the RFC series. These could
be used by TCP Servers in the future to indicate a variant of the AccECN protocol. In recent
measurement studies in which the response of large numbers of Servers to an AccECN SYN
has been tested, e.g., , a very small number of SYN/ACKs arrive with the pattern
tagged as 'Nonce', and a small but more significant number arrive with the pattern tagged as
'Broken'. The 'Nonce' pattern could be a sign that a few Servers have implemented the ECN-
nonce , which has now been reclassified as Historic , or it could be the
random result of some unknown middlebox behaviour. The greater prevalence of the
'Broken' pattern suggests that some instances still exist of the broken code that reflects the
reserved flags on the SYN.

[Mandalari18]

[RFC3540] [RFC8311]

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 56

Future non-AccECN variants:

The requirement not to reject unexpected initial values of the ACE counter (in the main TCP
header) in the last paragraph of Section 3.2.2.4 ensures that three unused codepoints on the
ACK of the SYN/ACK, six unused values on the first SYN=0 data packet from the Client, and
seven unused values on the first SYN=0 data packet from the Server could be used to declare
future variants of the AccECN protocol. The word 'declare' is used rather than 'negotiate'
because, at this late stage in the three-way handshake, it would be too late for a negotiation
between the endpoints to be completed. A similar requirement not to reject unexpected
initial values in AccECN TCP Options (Section 3.2.3.2.4) is for the same purpose. If traversal of
AccECN TCP Options were reliable, this would have enabled a far wider range of future
variation of the whole AccECN protocol. Nonetheless, it could be used to reliably negotiate a
wide range of variation in the semantics of the AccECN Option.

Five codepoints out of the eight possible in the three TCP header
flags used by AccECN are unused on the initial SYN (in the order (AE,CWR,ECE)): (0,0,1),
(0,1,0), (1,0,0), (1,0,1), (1,1,0). Section 3.1.3 ensures that the installed base of AccECN Servers
will all assume these are equivalent to AccECN negotiation with (1,1,1) on the SYN. These
codepoints would not allow fall-back to Classic ECN support for a Server that did not
understand them, but this approach ensures they are available in the future, perhaps for uses
other than ECN alongside the AccECN scheme. All possible combinations of SYN/ACK could be
used in response except either (0,0,0) or reflection of the same values sent on the SYN.

In order to extend AccECN or ECN in the future, other ways could be resorted to, although
their traversal properties are likely to be inferior. They include a new TCP Option; using the
remaining reserved flags in the main TCP header (preferably extending the 3-bit
combinations used by AccECN to 4-bit combinations, rather than burning one bit for just one
state); a non-zero urgent pointer in combination with the URG flag cleared; or some other
unexpected combination of fields yet to be invented.

Linux:

FreeBSD:

Apple OSs:

Acknowledgements
We want to thank , , , ,

, , , , , ,
, , , , , ,

, , , and for their input and
discussion. The idea of using the three ECN-related TCP flags as one field for more accurate TCP-
ECN feedback was first introduced in the re-ECN protocol that was the ancestor of ConEx.

The following contributed implementations of AccECN that validated and helped to improve this
specification:

, , , and

Koen De Schepper Praveen Balasubramanian Michael Welzl Gorry Fairhurst
David Black Spencer Dawkins Michael Scharf Michael Tüxen Yuchung Cheng Kenjiro Cho
Olivier Tilmans Ilpo Järvinen Neal Cardwell Yoshifumi Nishida Martin Duke Jonathan Morton
Vidhi Goel Alex Burr Markku Kojo Grenville Armitage Wes Eddy

Mirja Kühlewind Ilpo Järvinen Neal Cardwell Chia-Yu Chang

Richard Scheffenegger

Vidhi Goel

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 57

 was part-funded by Apple Inc, the Comcast Innovation Fund, the European
Community under its Seventh Framework Programme through the Reducing Internet Transport
Latency (RITE) project (ICT-317700) and through the Trilogy 2 project (ICT-317756), and the
Research Council of Norway through the TimeIn project. The views expressed here are solely
those of the authors.

 was partly supported by the European Commission under Horizon 2020 grant
agreement no. 688421 Measurement and Architecture for a Middleboxed Internet (MAMI), and
by the Swiss State Secretariat for Education, Research, and Innovation under contract no.
15.0268. This support does not imply endorsement.

Bob Briscoe

Mirja Kühlewind

Authors' Addresses
Bob Briscoe
Independent
United Kingdom

ietf@bobbriscoe.netEmail:
http://bobbriscoe.net/URI:

Mirja Kühlewind
Ericsson
Germany

ietf@kuehlewind.netEmail:

Richard Scheffenegger
NetApp
Vienna
Austria

Richard.Scheffenegger@netapp.comEmail:

RFC 9768 Accurate TCP-ECN Feedback October 2025

Briscoe, et al. Standards Track Page 58

mailto:ietf@bobbriscoe.net
http://bobbriscoe.net/
mailto:ietf@kuehlewind.net
mailto:Richard.Scheffenegger@netapp.com

	RFC 9768
	More Accurate Explicit Congestion Notification (AccECN) Feedback in TCP
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Document Roadmap
	1.2. Goals
	1.3. Terminology
	1.4. Recap of Existing ECN Feedback in IP/TCP

	2. AccECN Protocol Overview and Rationale
	2.1. Capability Negotiation
	2.2. Feedback Mechanism
	2.3. Delayed ACKs and Resilience Against ACK Loss
	2.4. Feedback Metrics
	2.5. Generic (Mechanistic) Reflector

	3. AccECN Protocol Specification
	3.1. Negotiating to Use AccECN
	3.1.1. Negotiation During the TCP Three-Way Handshake
	3.1.2. Backward Compatibility
	3.1.3. Forward Compatibility
	3.1.4. Multiple SYNs or SYN/ACKs
	3.1.4.1. Retransmitted SYNs
	3.1.4.2. Retransmitted SYN/ACKs

	3.1.5. Implications of AccECN Mode

	3.2. AccECN Feedback
	3.2.1. Initialization of Feedback Counters
	3.2.2. The ACE Field
	3.2.2.1. ACE Field on the ACK of the SYN/ACK
	3.2.2.2. Encoding and Decoding Feedback in the ACE Field
	3.2.2.3. Testing for Mangling of the IP/ECN Field
	3.2.2.4. Testing for Zeroing of the ACE Field
	3.2.2.5. Safety Against Ambiguity of the ACE Field
	3.2.2.5.1. Packet Receiver Safety Procedures
	3.2.2.5.2. Data Sender Safety Procedures

	3.2.3. The AccECN Option
	3.2.3.1. Encoding and Decoding Feedback in the AccECN Option Fields
	3.2.3.2. Path Traversal of the AccECN Option
	3.2.3.2.1. Testing the AccECN Option During the Handshake
	3.2.3.2.2. Testing for Loss of Packets Carrying the AccECN Option
	3.2.3.2.3. Testing for Absence of the AccECN Option
	3.2.3.2.4. Test for Zeroing of the AccECN Option
	3.2.3.2.5. Consistency Between AccECN Feedback Fields

	3.2.3.3. Usage of the AccECN TCP Option

	3.3. AccECN Compliance Requirements for TCP Proxies, Offload Engines, and Other Middleboxes
	3.3.1. Requirements for TCP Proxies
	3.3.2. Requirements for Transparent Middleboxes and TCP Normalizers
	3.3.3. Requirements for TCP ACK Filtering
	3.3.4. Requirements for TCP Segmentation Offload and Large Receive Offload

	4. Updates to RFC 3168
	5. Interaction with TCP Variants
	5.1. Compatibility with SYN Cookies
	5.2. Compatibility with TCP Experiments and Common TCP Options
	5.3. Compatibility with Feedback Integrity Mechanisms

	6. Summary: Protocol Properties
	7. IANA Considerations
	8. Security and Privacy Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Example Algorithms
	A.1. Example Algorithm to Encode/Decode the AccECN Option
	A.2. Example Algorithm for Safety Against Long Sequences of ACK Loss
	A.2.1. Safety Algorithm Without the AccECN Option
	A.2.2. Safety Algorithm with the AccECN Option

	A.3. Example Algorithm to Estimate Marked Bytes from Marked Packets
	A.4. Example Algorithm to Count Not-ECT Bytes

	Appendix B. Rationale for Usage of TCP Header Flags
	B.1. Three TCP Header Flags in the SYN-SYN/ACK Handshake
	B.2. Four Codepoints in the SYN/ACK
	B.3. Space for Future Evolution

	Acknowledgements
	Authors' Addresses

