
RFC 9649
WebP Image Format

Abstract
This document defines the WebP image format and registers a media type supporting its use.

Stream:
RFC:
Category:
Published:
ISSN:
Authors:

Internet Engineering Task Force (IETF)
9649
Informational
September 2024
2070-1721
J. Zern
Google LLC

P. Massimino
Google LLC

J. Alakuijala
Google LLC

Status of This Memo
This document is not an Internet Standards Track specification; it is published for informational
purposes.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Not all documents approved by
the IESG are candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9649

Copyright Notice
Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Zern, et al. Informational Page 1

https://www.rfc-editor.org/rfc/rfc9649
https://www.rfc-editor.org/info/rfc9649
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. WebP Container Specification

2.1. Introduction (from "WebP Container Specification")

2.2. Terminology & Basics

2.3. RIFF File Format

2.4. WebP File Header

2.5. Simple File Format (Lossy)

2.6. Simple File Format (Lossless)

2.7. Extended File Format

2.7.1. Chunks

2.7.1.1. Animation

2.7.1.2. Alpha

2.7.1.3. Bitstream (VP8/VP8L)

2.7.1.4. Color Profile

2.7.1.5. Metadata

2.7.1.6. Unknown Chunks

2.7.2. Canvas Assembly from Frames

2.7.3. Example File Layouts

3. Specification for WebP Lossless Bitstream

3.1. Abstract (from "Specification for WebP Lossless Bitstream")

3.2. Introduction (from "Specification for WebP Lossless Bitstream")

3.3. Nomenclature

3.4. RIFF Header

3.5. Transforms

3.5.1. Predictor Transform

3.5.2. Color Transform

3.5.3. Subtract Green Transform

3.5.4. Color Indexing Transform

4

4

4

5

5

6

7

8

9

11

11

14

16

16

17

18

18

19

20

20

21

21

22

23

24

27

29

30

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 2

3.6. Image Data

3.6.1. Roles of Image Data

3.6.2. Encoding of Image Data

3.6.2.1. Prefix-Coded Literals

3.6.2.2. LZ77 Backward Reference

3.6.2.3. Color Cache Coding

3.7. Entropy Code

3.7.1. Overview

3.7.2. Details

3.7.2.1. Decoding and Building the Prefix Codes

3.7.2.2. Decoding of Meta Prefix Codes

3.7.2.3. Decoding Entropy-Coded Image Data

3.8. Overall Structure of the Format

3.8.1. Basic Structure

3.8.2. Structure of Transforms

3.8.3. Structure of the Image Data

4. Security Considerations

5. Interoperability Considerations

6. IANA Considerations

6.1. The 'image/webp' Media Type

6.1.1. Registration Details

7. References

7.1. Normative References

7.2. Informative References

Authors' Addresses

31

31

32

32

32

35

36

36

36

36

38

40

41

41

41

42

42

43

43

43

43

44

44

45

46

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 3

1. Introduction
WebP is an image file format based on the
(Section 2) that supports lossless and lossy compression as well as alpha (transparency) and
animation. It covers use cases similar to , , and the

.

WebP consists of two compression algorithms used to reduce the size of image pixel data,
including alpha (transparency) information. Lossy compression is achieved using VP8 intra-
frame encoding . The stores and restores the pixel values
exactly, including the color values for fully transparent pixels. A universal algorithm for
sequential data compression , , and a color cache are used for
compression of the bulk data.

Resource Interchange File Format (RIFF) [RIFF-spec]

JPEG [JPEG-spec] PNG [RFC2083] Graphics
Interchange Format (GIF) [GIF-spec]

[RFC6386] lossless algorithm (Section 3)

[LZ77] prefix coding [Huffman]

2. WebP Container Specification

Note that this section is based on the documentation in the
.

2.1. Introduction (from "WebP Container Specification")
WebP is an image format that uses either (i) the VP8 intra-frame encoding to compress
image data in a lossy way or (ii) the . These encoding schemes
should make it more efficient than older formats, such as JPEG, GIF, and PNG. It is optimized for
fast image transfer over the network (for example, for websites). The WebP format has feature
parity (color profile, metadata, animation, etc.) with other formats as well. This section describes
the structure of a WebP file.

The WebP container (that is, the RIFF container for WebP) allows feature support over and above
the basic use case of WebP (that is, a file containing a single image encoded as a VP8 key frame).
The WebP container provides additional support for the following:

Lossless Compression: An image can be losslessly compressed, using the WebP lossless
format.
Metadata: An image may have metadata stored in Exchangeable Image File Format or
Extensible Metadata Platform format.
Transparency: An image may have transparency, that is, an alpha channel.
Color Profile: An image may have an embedded .
Animation: An image may have multiple frames with pauses between them, making it an
animation.

libwebp source
repository [webp-riff-src]

[RFC6386]
WebP lossless encoding (Section 3)

•

• [Exif]
[XMP]

•
• ICC profile (ICCP) [ICC]
•

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 4

2.2. Terminology & Basics
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

A WebP file contains either a still image (that is, an encoded matrix of pixels) or an
. Optionally, it can also contain transparency information, a color profile, and

metadata. We refer to the matrix of pixels as the canvas of the image.

Bit numbering in chunk diagrams starts at 0 for the most significant bit ('MSB 0'), as described in
.

Below are additional terms used throughout this section:

Reader/Writer
Code that reads WebP files is referred to as a reader, while code that writes them is referred
to as a writer.

uint16
A 16-bit, little-endian, unsigned integer.

uint24
A 24-bit, little-endian, unsigned integer.

uint32
A 32-bit, little-endian, unsigned integer.

FourCC
A four-character code (FourCC) is a uint32 created by concatenating four ASCII characters in
little-endian order. This means 'aaaa' (0x61616161) and 'AAAA' (0x41414141) are treated as
different FourCCs.

1-based
An unsigned integer field storing values offset by -1, for example, such a field would store
value 25 as 24.

ChunkHeader('ABCD')
Used to describe the FourCC and Chunk Size header of individual chunks, where 'ABCD' is the
FourCC for the chunk. This element's size is 8 bytes.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

animation
(Section 2.7.1.1)

[RFC1166]

2.3. RIFF File Format
The WebP file format is based on the document format.

The basic element of a RIFF file is a chunk. It consists of:

RIFF [RIFF-spec]

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 5

2.4. WebP File Header

'RIFF': 32 bits
The ASCII characters 'R', 'I', 'F', 'F'.

Chunk FourCC: 32 bits
ASCII four-character code used for chunk identification.

Chunk Size: 32 bits (uint32)
The size of the chunk in bytes, not including this field, the chunk identifier, or padding.

Chunk Payload: Chunk Size bytes
The data payload. If Chunk Size is odd, a single padding byte -- which be 0 to conform
with -- is added.

Note: RIFF has a convention that all uppercase chunk FourCCs are standard chunks
that apply to any RIFF file format, while FourCCs specific to a file format are all
lowercase. WebP does not follow this convention.

Figure 1: 'RIFF' Chunk Structure

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Chunk FourCC |
+-+
| Chunk Size |
+-+
: Chunk Payload :
+-+

MUST
RIFF [RIFF-spec]

Figure 2: WebP File Header Chunk

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| 'R' | 'I' | 'F' | 'F' |
+-+
| File Size |
+-+
| 'W' | 'E' | 'B' | 'P' |
+-+

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 6

File Size: 32 bits (uint32)

The size of the file in bytes, starting at offset 8. The maximum value of this field is 232 minus
10 bytes, and thus the size of the whole file is at most 4 GiB minus 2 bytes.

'WEBP': 32 bits
The ASCII characters 'W', 'E', 'B', 'P'.

A WebP file begin with a RIFF header with the FourCC 'WEBP'. The file size in the header is
the total size of the chunks that follow plus 4 bytes for the 'WEBP' FourCC. The file
contain any data after the data specified by File Size. Readers parse such files, ignoring the
trailing data. As the size of any chunk is even, the size given by the RIFF header is also even. The
contents of individual chunks are described in the following sections.

MUST
SHOULD NOT

MAY

2.5. Simple File Format (Lossy)
This layout be used if the image requires lossy encoding and does not require
transparency or other advanced features provided by the extended format. Files with this layout
are smaller and supported by older software.

VP8 data: Chunk Size bytes
VP8 bitstream data.

Note that the fourth character in the 'VP8 ' FourCC is an ASCII space (0x20).

SHOULD

Figure 3: Simple WebP (Lossy) File Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| |
| WebP file header (12 bytes) |
| |
+-+
: 'VP8 ' Chunk :
+-+

Figure 4: 'VP8 ' Chunk

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| ChunkHeader('VP8 ') |
| |
+-+
: VP8 data :
+-+

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 7

The VP8 bitstream format specification is described in .

Note that the VP8 frame header contains the VP8 frame width and height. That is
assumed to be the width and height of the canvas.

The VP8 specification describes how to decode the image into Y'CbCr format. To convert to RGB,
 be used. Applications use another conversion

method, but visual results may differ among decoders.

[RFC6386]

Recommendation 601 [rec601] SHOULD MAY

2.6. Simple File Format (Lossless)

Note: Older readers may not support files using the lossless format.

This layout be used if the image requires lossless encoding (with an optional
transparency channel) and does not require advanced features provided by the extended format.

VP8L data: Chunk Size bytes
VP8L bitstream data.

The specification of the VP8L bitstream can be found in Section 3.

SHOULD

Figure 5: Simple WebP (Lossless) File Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| |
| WebP file header (12 bytes) |
| |
+-+
: 'VP8L' Chunk :
+-+

Figure 6: 'VP8L' Chunk

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| ChunkHeader('VP8L') |
| |
+-+
: VP8L data :
+-+

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 8

Note that the VP8L header contains the VP8L image width and height. That is
assumed to be the width and height of the canvas.

2.7. Extended File Format

Note: Older readers may not support files using the extended format.

An extended format file consists of:

A 'VP8X' Chunk with information about features used in the file.
An optional 'ICCP' Chunk with a color profile.
An optional 'ANIM' Chunk with animation control data.
Image data.
An optional 'EXIF' Chunk with Exif metadata.
An optional 'XMP ' Chunk with XMP metadata.
An optional list of .

For a still image, the image data consists of a single frame, which is made up of:

An optional .
A .

For an animated image, the image data consists of multiple frames. More details about frames can
be found in Section 2.7.1.1.

All chunks necessary for reconstruction and color correction, that is, 'VP8X', 'ICCP', 'ANIM',
'ANMF', 'ALPH', 'VP8 ', and 'VP8L', appear in the order described earlier. Readers
fail when chunks necessary for reconstruction and color correction are out of order.

 and MAY appear out of order.

Rationale: The chunks necessary for reconstruction should appear first in the file to
allow a reader to begin decoding an image before receiving all of the data. An
application may benefit from varying the order of metadata and custom chunks to
suit the implementation.

•
•
•
•
•
•
• unknown chunks (Section 2.7.1.6)

• alpha subchunk (Section 2.7.1.2)
• bitstream subchunk (Section 2.7.1.3)

MUST SHOULD

Metadata (Section 2.7.1.5) unknown chunks (Section 2.7.1.6)

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 9

Reserved (Rsv): 2 bits
 be 0. Readers ignore this field.

ICC profile (I): 1 bit
Set if the file contains an 'ICCP' Chunk.

Alpha (L): 1 bit
Set if any of the frames of the image contain transparency information ("alpha").

Exif metadata (E): 1 bit
Set if the file contains Exif metadata.

XMP metadata (X): 1 bit
Set if the file contains XMP metadata.

Animation (A): 1 bit
Set if this is an animated image. Data in 'ANIM' and 'ANMF' Chunks should be used to control
the animation.

Reserved (R): 1 bit
 be 0. Readers ignore this field.

Reserved: 24 bits
 be 0. Readers ignore this field.

Canvas Width Minus One: 24 bits
1-based width of the canvas in pixels. The actual canvas width is 1 + Canvas Width Minus
One.

Figure 7: Extended WebP File Header

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| |
| WebP file header (12 bytes) |
| |
+-+
| ChunkHeader('VP8X') |
| |
+-+
|Rsv|I|L|E|X|A|R| Reserved |
+-+
| Canvas Width Minus One | ...
+-+
... Canvas Height Minus One |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

MUST MUST

MUST MUST

MUST MUST

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 10

Canvas Height Minus One: 24 bits
1-based height of the canvas in pixels. The actual canvas height is 1 + Canvas Height
Minus One.

The product of Canvas Width and Canvas Height be at most 232 - 1.

Future specifications may add more fields. Unknown fields be ignored.

2.7.1. Chunks

MUST

MUST

2.7.1.1. Animation
An animation is controlled by 'ANIM' and 'ANMF' Chunks.

For an animated image, this chunk contains the global parameters of the animation.

Background Color: 32 bits (uint32)
The default background color of the canvas in [Blue, Green, Red, Alpha] byte order. This
color be used to fill the unused space on the canvas around the frames, as well as the
transparent pixels of the first frame. The background color is also used when the Disposal
method is 1.

Note:

The background color contain a nonopaque alpha value, even if the Alpha flag in
the is unset.
Viewer applications treat the background color value as a hint and are not
required to use it.
The canvas is cleared at the start of each loop. The background color be used to
achieve this.

Loop Count: 16 bits (uint16)
The number of times to loop the animation. If it is 0, this means infinitely.

Figure 8: 'ANIM' Chunk

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| ChunkHeader('ANIM') |
| |
+-+
| Background Color |
+-+
| Loop Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

MAY

• MAY
'VP8X' Chunk (Figure 7)

• SHOULD

• MAY

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 11

This chunk appear if the Animation flag in the 'VP8X' Chunk is set. If the Animation flag is
not set and this chunk is present, it be ignored.

For animated images, this chunk contains information about a single frame. If the Animation flag
is not set, then this chunk be present.

Frame X: 24 bits (uint24)
The X coordinate of the upper left corner of the frame is Frame X * 2.

Frame Y: 24 bits (uint24)
The Y coordinate of the upper left corner of the frame is Frame Y * 2.

Frame Width Minus One: 24 bits (uint24)
The 1-based width of the frame. The frame width is 1 + Frame Width Minus One.

Frame Height Minus One: 24 bits (uint24)
The 1-based height of the frame. The frame height is 1 + Frame Height Minus One.

Frame Duration: 24 bits (uint24)
The time to wait before displaying the next frame, in 1-millisecond units. Note that the
interpretation of the Frame Duration of 0 (and often <= 10) is defined by the implementation.
Many tools and browsers assign a minimum duration similar to GIF.

Reserved: 6 bits
 be 0. Readers ignore this field.

MUST
MUST

Figure 9: 'ANMF' Chunk

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| ChunkHeader('ANMF') |
| |
+-+
| Frame X | ...
+-+
... Frame Y | Frame Width Minus One ...
+-+
... | Frame Height Minus One |
+-+
| Frame Duration | Reserved |B|D|
+-+
: Frame Data :
+-+

SHOULD NOT

MUST MUST

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 12

Blending method (B): 1 bit
Indicates how transparent pixels of the current frame are to be blended with corresponding
pixels of the previous canvas:

0: Use alpha-blending. After disposing of the previous frame, render the current frame
on the canvas using . If the
current frame does not have an alpha channel, assume the alpha value is 255, effectively
replacing the rectangle.
1: Do not blend. After disposing of the previous frame, render the current frame on the
canvas by overwriting the rectangle covered by the current frame.

Disposal method (D): 1 bit
Indicates how the current frame is to be treated after it has been displayed (before rendering
the next frame) on the canvas:

0: Do not dispose. Leave the canvas as is.
1: Dispose to the background color. Fill the rectangle on the canvas covered by the
current frame with the background color specified in the .

Notes:

The frame disposal only applies to the frame rectangle, that is, the rectangle defined by
Frame X, Frame Y, frame width, and frame height. It may or may not cover the whole
canvas.

Alpha-blending be done in linear color space by taking into account the
 of the image. If the color profile is not present, standard RGB

(sRGB) is to be assumed. (Note that sRGB also needs to be linearized due to a gamma of
~2.2.)

Frame Data: Chunk Size bytes - 16
Consists of:

An optional for the frame.
A for the frame.

•
alpha-blending (Section 2.7.1.1, Paragraph 8, Item 16.4.2)

•

•
•

'ANIM' Chunk (Figure 8)

•

• Alpha-blending:

Given that each of the R, G, B, and A channels is 8 bits and the RGB channels are not
premultiplied by alpha, the formula for blending 'dst' onto 'src' is:

blend.A = src.A + dst.A * (1 - src.A / 255)
if blend.A = 0 then
 blend.RGB = 0
else
 blend.RGB =
 (src.RGB * src.A +
 dst.RGB * dst.A * (1 - src.A / 255)) / blend.A

• SHOULD color
profile (Section 2.7.1.4)

• alpha subchunk (Section 2.7.1.2)
• bitstream subchunk (Section 2.7.1.3)

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 13

An optional list of .

Note: The 'ANMF' payload, Frame Data, consists of individual padded chunks, as
described by the .

• unknown chunks (Section 2.7.1.6)

RIFF file format (Section 2.3)

2.7.1.2. Alpha

Reserved (Rsv): 2 bits
 be 0. Readers ignore this field.

Preprocessing (P): 2 bits
These informative bits are used to signal the preprocessing that has been performed during
compression. The decoder can use this information to, for example, dither the values or
smooth the gradients prior to display.

0: No preprocessing.
1: Level reduction.

Decoders are not required to use this information in any specified way.

Filtering method (F): 2 bits
The filtering methods used are described as follows:

0: None.
1: Horizontal filter.
2: Vertical filter.
3: Gradient filter.

For each pixel, filtering is performed using the following calculations. Assume the alpha
values surrounding the current X position are labeled as:

Figure 10: 'ALPH' Chunk

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| ChunkHeader('ALPH') |
| |
+-+
|Rsv| P | F | C | Alpha Bitstream... |
+-+

MUST MUST

•
•

•
•
•
•

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 14

We seek to compute the alpha value at position X. First, a prediction is made depending on
the filtering method:

Method 0: predictor = 0
Method 1: predictor = A
Method 2: predictor = B
Method 3: predictor = clip(A + B - C)

where clip(v) is equal to:

0 if v < 0,
255 if v > 255, or
v otherwise.

The final value is derived by adding the decompressed value X to the predictor and using
modulo-256 arithmetic to wrap the [256..511] range into the [0..255] one:

There are special cases for the left-most and top-most pixel positions.

For example, the top-left value at location (0, 0) uses 0 as the predictor value. Otherwise:

For horizontal or gradient filtering methods, the left-most pixels at location (0, y) are
predicted using the location (0, y-1) just above.
For vertical or gradient filtering methods, the top-most pixels at location (x, 0) are
predicted using the location (x-1, 0) on the left.

Compression method (C): 2 bits
The compression method used:

0: No compression.
1: Compressed using the WebP lossless format.

Alpha bitstream: Chunk Size bytes - 1
Encoded alpha bitstream.

This optional chunk contains encoded alpha data for this frame. A frame containing a 'VP8L'
Chunk contain this chunk.

Figure 11: Pixels Used in Alpha Filtering

 C | B |
---+---+
 A | X |

•
•
•
•

•
•
•

alpha = (predictor + X) % 256

•

•

•
•

SHOULD NOT

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 15

Rationale: The transparency information is already part of the 'VP8L' Chunk.

The alpha channel data is stored as uncompressed raw data (when the compression method is
'0') or compressed using the lossless format (when the compression method is '1').

Raw data: This consists of a byte sequence of length = width * height, containing all the 8-bit
transparency values in scan order.
Lossless format compression: The byte sequence is a compressed image-stream (as described
in Section 3) of implicit dimensions width x height. That is, this image-stream does NOT
contain any headers describing the image dimensions.

Rationale: The dimensions are already known from other sources, so storing them again
would be redundant and prone to errors.

Once the image-stream is decoded into Alpha, Red, Green, Blue (ARGB) color values,
following the process described in the lossless format specification, the transparency
information must be extracted from the green channel of the ARGB quadruplet.

Rationale: The green channel is allowed extra transformation steps in the specification --
unlike the other channels -- that can improve compression.

•

•

2.7.1.3. Bitstream (VP8/VP8L)
This chunk contains compressed bitstream data for a single frame.

A bitstream chunk may be either (i) a 'VP8 ' Chunk, using 'VP8 ' (note the significant fourth-
character space) as its FourCC, or (ii) a 'VP8L' Chunk, using 'VP8L' as its FourCC.

The formats of' VP8 ' and 'VP8L' Chunks are as described in Sections 2.5 and 2.6, respectively.

2.7.1.4. Color Profile

Color Profile: Chunk Size bytes
ICC profile.

This chunk appear before the image data.

Figure 12: 'ICCP' Chunk

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| ChunkHeader('ICCP') |
| |
+-+
: Color Profile :
+-+

MUST

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 16

There be at most one such chunk. If there are more such chunks, readers ignore all
except the first one. See the for details.

If this chunk is not present, sRGB be assumed.

SHOULD MAY
ICC specification [ICC]

SHOULD

2.7.1.5. Metadata
Metadata can be stored in 'EXIF' or 'XMP ' Chunks.

There be at most one chunk of each type ('EXIF' and 'XMP '). If there are more such
chunks, readers ignore all except the first one.

The chunks are defined as follows:

Exif Metadata: Chunk Size bytes
Image metadata in format.

XMP Metadata: Chunk Size bytes
Image metadata in format.

Note that the fourth character in the 'XMP ' FourCC is an ASCII space (0x20).

Additional guidance about handling metadata can be found in the Metadata Working Group's
.

SHOULD
MAY

Figure 13: 'EXIF' Chunk

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| ChunkHeader('EXIF') |
| |
+-+
: Exif Metadata :
+-+

[Exif]

Figure 14: 'XMP ' Chunk

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| ChunkHeader('XMP ') |
| |
+-+
: XMP Metadata :
+-+

[XMP]

"Guidelines For Handling Image Metadata" [MWG]

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 17

2.7.2. Canvas Assembly from Frames

Here, we provide an overview of how a reader assemble a canvas in the case of an
animated image.

The process begins with creating a canvas using the dimensions given in the 'VP8X' Chunk,
Canvas Width Minus One + 1 pixels wide by Canvas Height Minus One + 1 pixels high. The
Loop Count field from the 'ANIM' Chunk controls how many times the animation process is
repeated. This is Loop Count - 1 for nonzero Loop Count values or infinite if the Loop Count is
zero.

At the beginning of each loop iteration, the canvas is filled using the background color from the
'ANIM' Chunk or an application-defined color.

'ANMF' Chunks contain individual frames given in display order. Before rendering each frame,
the previous frame's Disposal method is applied.

The rendering of the decoded frame begins at the Cartesian coordinates (2 * Frame X, 2 *
Frame Y), using the top-left corner of the canvas as the origin. Frame Width Minus One + 1
pixels wide by Frame Height Minus One + 1 pixels high are rendered onto the canvas using the
Blending method.

The canvas is displayed for Frame Duration milliseconds. This continues until all frames given
by 'ANMF' Chunks have been displayed. A new loop iteration is then begun, or the canvas is left
in its final state if all iterations have been completed.

The following pseudocode illustrates the rendering process. The notation VP8X.field means the
field in the 'VP8X' Chunk with the same description.

2.7.1.6. Unknown Chunks
A RIFF chunk (described in Section 2.3) whose FourCC is different from any of the chunks
described in this section is considered an unknown chunk.

Rationale: Allowing unknown chunks gives a provision for future extension of the
format and also allows storage of any application-specific data.

A file contain unknown chunks:

at the end of the file, as described in Section 2.7, or
at the end of 'ANMF' Chunks, as described in Section 2.7.1.1.

Readers ignore these chunks. Writers preserve them in their original order
(unless they specifically intend to modify these chunks).

MAY

•
•

SHOULD SHOULD

MUST

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 18

2.7.3. Example File Layouts

A lossy-encoded image with alpha may look as follows:

A lossless-encoded image may look as follows:

VP8X.flags.hasAnimation MUST be TRUE
canvas <- new image of size VP8X.canvasWidth x VP8X.canvasHeight with
 background color ANIM.background_color or
 application-defined color.
loop_count <- ANIM.loopCount
dispose_method <- Dispose to background color
if loop_count == 0:
 loop_count = inf
frame_params <- nil
next chunk in image_data is ANMF MUST be TRUE
for loop = 0..loop_count - 1
 clear canvas to ANIM.background_color or application-defined color
 until eof or non-ANMF chunk
 frame_params.frameX = Frame X
 frame_params.frameY = Frame Y
 frame_params.frameWidth = Frame Width Minus One + 1
 frame_params.frameHeight = Frame Height Minus One + 1
 frame_params.frameDuration = Frame Duration
 frame_right = frame_params.frameX + frame_params.frameWidth
 frame_bottom = frame_params.frameY + frame_params.frameHeight
 VP8X.canvasWidth >= frame_right MUST be TRUE
 VP8X.canvasHeight >= frame_bottom MUST be TRUE
 for subchunk in 'Frame Data':
 if subchunk.tag == "ALPH":
 alpha subchunks not found in 'Frame Data' earlier MUST be
 TRUE
 frame_params.alpha = alpha_data
 else if subchunk.tag == "VP8 " OR subchunk.tag == "VP8L":
 bitstream subchunks not found in 'Frame Data' earlier MUST
 be TRUE
 frame_params.bitstream = bitstream_data
 apply dispose_method.
 render frame with frame_params.alpha and frame_params.bitstream
 on canvas with top-left corner at (frame_params.frameX,
 frame_params.frameY), using Blending method
 frame_params.blendingMethod.
 canvas contains the decoded image.
 Show the contents of the canvas for
 frame_params.frameDuration * 1 ms.
 dispose_method = frame_params.disposeMethod

Figure 15: A Lossy-Encoded Image with Alpha

RIFF/WEBP
+- VP8X (descriptions of features used)
+- ALPH (alpha bitstream)
+- VP8 (bitstream)

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 19

A lossless image with an ICC profile and XMP metadata may look as follows:

An animated image with Exif metadata may look as follows:

Figure 16: A Lossless-Encoded Image

RIFF/WEBP
+- VP8X (descriptions of features used)
+- VP8L (lossless bitstream)
+- XYZW (unknown chunk)

Figure 17: A Lossless Image with an ICC Profile and XMP Metadata

RIFF/WEBP
+- VP8X (descriptions of features used)
+- ICCP (color profile)
+- VP8L (lossless bitstream)
+- XMP (metadata)

Figure 18: An Animated Image with Exif Metadata

RIFF/WEBP
+- VP8X (descriptions of features used)
+- ANIM (global animation parameters)
+- ANMF (frame1 parameters + data)
+- ANMF (frame2 parameters + data)
+- ANMF (frame3 parameters + data)
+- ANMF (frame4 parameters + data)
+- EXIF (metadata)

3. Specification for WebP Lossless Bitstream

Note that this section is based on the documentation in the
.

3.1. Abstract (from "Specification for WebP Lossless Bitstream")
WebP lossless is an image format for lossless compression of ARGB images. The lossless format
stores and restores the pixel values exactly, including the color values for pixels whose alpha
value is 0. The format uses subresolution images, recursively embedded into the format itself, for
storing statistical data about the images, such as the used entropy codes, spatial predictors, color
space conversion, and color table. A universal algorithm for sequential data compression ,

libwebp source
repository [webp-lossless-src]

[LZ77]

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 20

prefix coding, and a color cache are used for compression of the bulk data. Decoding speeds
faster than PNG have been demonstrated, as well as 25% denser compression than can be
achieved using today's PNG format .

3.2. Introduction (from "Specification for WebP Lossless Bitstream")
This section describes the compressed data representation of a WebP lossless image.

In this section, we extensively use C programming language syntax to describe
the bitstream and assume the existence of a function for reading bits, ReadBits(n). The bytes
are read in the natural order of the stream containing them, and bits of each byte are read in
least-significant-bit-first order. When multiple bits are read at the same time, the integer is
constructed from the original data in the original order. The most significant bits of the returned
integer are also the most significant bits of the original data. Thus, the statement

is equivalent with the two statements below:

We assume that each color component (that is, alpha, red, blue, and green) is represented using
an 8-bit byte. We define the corresponding type as uint8. A whole ARGB pixel is represented by a
type called uint32, which is an unsigned integer consisting of 32 bits. In the code showing the
behavior of the transforms, these values are codified in the following bits: alpha in bits 31..24,
red in bits 23..16, green in bits 15..8, and blue in bits 7..0; however, implementations of the
format are free to use another representation internally.

Broadly, a WebP lossless image contains header data, transform information, and actual image
data. Headers contain the width and height of the image. A WebP lossless image can go through
four different types of transforms before being entropy encoded. The transform information in
the bitstream contains the data required to apply the respective inverse transforms.

3.3. Nomenclature

ARGB
A pixel value consisting of alpha, red, green, and blue values.

ARGB image
A two-dimensional array containing ARGB pixels.

color cache
A small hash-addressed array to store recently used colors to be able to recall them with
shorter codes.

[webp-lossless-study]

[ISO.9899.2018]

b = ReadBits(2);

b = ReadBits(1);
b |= ReadBits(1) << 1;

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 21

color indexing image
A one-dimensional image of colors that can be indexed using a small integer (up to 256
within WebP lossless).

color transform image
A two-dimensional subresolution image containing data about correlations of color
components.

distance mapping
Changes LZ77 distances to have the smallest values for pixels in two-dimensional proximity.

entropy image
A two-dimensional subresolution image indicating which entropy coding should be used in a
respective square in the image, that is, each pixel is a meta prefix code.

A dictionary-based sliding window compression algorithm that either emits symbols or
describes them as sequences of past symbols.

meta prefix code
A small integer (up to 16 bits) that indexes an element in the meta prefix table.

predictor image
A two-dimensional subresolution image indicating which spatial predictor is used for a
particular square in the image.

prefix code
A classic way to do entropy coding where a smaller number of bits are used for more
frequent codes.

prefix coding
A way to entropy code larger integers, which codes a few bits of the integer using an entropy
code and codifies the remaining bits raw. This allows for the descriptions of the entropy
codes to remain relatively small even when the range of symbols is large.

scan-line order
A processing order of pixels (left to right and top to bottom), starting from the left-hand-top
pixel. Once a row is completed, continue from the left-hand column of the next row.

3.4. RIFF Header
The beginning of the header has the RIFF container. This consists of the following 21 bytes:

String 'RIFF'.
A little-endian, 32-bit value of the chunk length, which is the whole size of the chunk
controlled by the RIFF header. Normally, this equals the payload size (file size minus 8 bytes:
4 bytes for the 'RIFF' identifier and 4 bytes for storing the value itself).
String 'WEBP' (RIFF container name).
String 'VP8L' (FourCC for lossless-encoded image data).

[LZ77]

1.
2.

3.
4.

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 22

A little-endian, 32-bit value of the number of bytes in the lossless stream.
1-byte signature 0x2f.

The first 28 bits of the bitstream specify the width and height of the image. Width and height are
decoded as 14-bit integers as follows:

The 14-bit precision for image width and height limits the maximum size of a WebP lossless
image to 16384x16384 pixels.

The alpha_is_used bit is a hint only and impact decoding. It be set to 0
when all alpha values are 255 in the picture and 1 otherwise.

The version_number is a 3-bit code that be set to 0. Any other value be treated as an
error.

3.5. Transforms
The transforms are reversible manipulations of the image data that can reduce the remaining
symbolic entropy by modeling spatial and color correlations. They can make the final
compression more dense.

An image can go through four types of transforms. A 1 bit indicates the presence of a transform.
Each transform is allowed to be used only once. The transforms are used only for the main-level
ARGB image; the subresolution images (color transform image, entropy image, and predictor
image) have no transforms, not even the 0 bit indicating the end of transforms.

Typically, an encoder would use these transforms to reduce the Shannon entropy in
the residual image. Also, the transform data can be decided based on entropy
minimization.

5.
6.

int image_width = ReadBits(14) + 1;
int image_height = ReadBits(14) + 1;

SHOULD NOT SHOULD

int alpha_is_used = ReadBits(1);

MUST MUST

int version_number = ReadBits(3);

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 23

If a transform is present, then the next two bits specify the transform type. There are four types
of transforms.

Transform Bit

PREDICTOR_TRANSFORM 0

COLOR_TRANSFORM 1

SUBTRACT_GREEN_TRANSFORM 2

COLOR_INDEXING_TRANSFORM 3

Table 1: Transform Types

The transform type is followed by the transform data. Transform data contains the information
required to apply the inverse transform and depends on the transform type. The inverse
transforms are applied in the reverse order that they are read from the bitstream, that is, last
one first.

Next, we describe the transform data for different types.

while (ReadBits(1)) { // Transform present.
 // Decode transform type.
 enum TransformType transform_type = ReadBits(2);
 // Decode transform data.
 ...
}

// Decode actual image data.

3.5.1. Predictor Transform

The predictor transform can be used to reduce entropy by exploiting the fact that neighboring
pixels are often correlated. In the predictor transform, the current pixel value is predicted from
the pixels already decoded (in scan-line order) and only the residual value (actual - predicted) is
encoded. The green component of a pixel defines which of the 14 predictors is used within a
particular block of the ARGB image. The prediction mode determines the type of prediction to use.
We divide the image into squares, and all the pixels in a square use the same prediction mode.

The first 3 bits of prediction data define the block width and height in number of bits.

int size_bits = ReadBits(3) + 2;
int block_width = (1 << size_bits);
int block_height = (1 << size_bits);
#define DIV_ROUND_UP(num, den) (((num) + (den) - 1) / (den))
int transform_width = DIV_ROUND_UP(image_width, 1 << size_bits);

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 24

The transform data contains the prediction mode for each block of the image. It is a
subresolution image where the green component of a pixel defines which of the 14 predictors is
used for all the block_width * block_height pixels within a particular block of the ARGB
image. This subresolution image is encoded using the same techniques described in Section 3.6.

The number of block columns, transform_width, is used in two-dimensional indexing. For a
pixel (x, y), one can compute the respective filter block address by:

There are 14 different prediction modes. In each prediction mode, the current pixel value is
predicted from one or more neighboring pixels whose values are already known.

We chose the neighboring pixels (TL, T, TR, and L) of the current pixel (P) as follows:

where TL means top-left, T means top, TR means top-right, and L means left. At the time of
predicting a value for P, all O, TL, T, TR, and L pixels have already been processed, and the P pixel
and all X pixels are unknown.

Given the preceding neighboring pixels, the different prediction modes are defined as follows.

Mode Predicted Value of Each Channel of the Current Pixel

0 0xff000000 (represents solid black color in ARGB)

1 L

2 T

3 TR

4 TL

5 Average2(Average2(L, TR), T)

6 Average2(L, TL)

int block_index = (y >> size_bits) * transform_width +
 (x >> size_bits);

Figure 19: Neighboring Pixels of the Current Pixel (P)

O O O O O O O O O O O
O O O O O O O O O O O
O O O O TL T TR O O O O
O O O O L P X X X X X
X X X X X X X X X X X
X X X X X X X X X X X

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 25

Mode Predicted Value of Each Channel of the Current Pixel

7 Average2(L, T)

8 Average2(TL, T)

9 Average2(T, TR)

10 Average2(Average2(L, TL), Average2(T, TR))

11 Select(L, T, TL)

12 ClampAddSubtractFull(L, T, TL)

13 ClampAddSubtractHalf(Average2(L, T), TL)

Table 2: Prediction Modes

Average2 is defined as follows for each ARGB component:

The Select predictor is defined as follows:

The functions ClampAddSubtractFull and ClampAddSubtractHalf are performed for each ARGB
component as follows:

uint8 Average2(uint8 a, uint8 b) {
 return (a + b) / 2;
}

uint32 Select(uint32 L, uint32 T, uint32 TL) {
 // L = left pixel, T = top pixel, TL = top-left pixel.

 // ARGB component estimates for prediction.
 int pAlpha = ALPHA(L) + ALPHA(T) - ALPHA(TL);
 int pRed = RED(L) + RED(T) - RED(TL);
 int pGreen = GREEN(L) + GREEN(T) - GREEN(TL);
 int pBlue = BLUE(L) + BLUE(T) - BLUE(TL);

 // Manhattan distances to estimates for left and top pixels.
 int pL = abs(pAlpha - ALPHA(L)) + abs(pRed - RED(L)) +
 abs(pGreen - GREEN(L)) + abs(pBlue - BLUE(L));
 int pT = abs(pAlpha - ALPHA(T)) + abs(pRed - RED(T)) +
 abs(pGreen - GREEN(T)) + abs(pBlue - BLUE(T));

 // Return either left or top, the one closer to the prediction.
 if (pL < pT) {
 return L;
 } else {
 return T;
 }
}

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 26

There are special handling rules for some border pixels. If there is a predictor transform,
regardless of the mode [0..13] for these pixels, the predicted value for the left-topmost pixel of the
image is 0xff000000, all pixels on the top row are L-pixel, and all pixels on the leftmost column
are T-pixel.

Addressing the TR-pixel for pixels on the rightmost column is exceptional. The pixels on the
rightmost column are predicted by using the modes [0..13], just like pixels not on the border, but
the leftmost pixel on the same row as the current pixel is instead used as the TR-pixel.

The final pixel value is obtained by adding each channel of the predicted value to the encoded
residual value.

// Clamp the input value between 0 and 255.
int Clamp(int a) {
 return (a < 0) ? 0 : (a > 255) ? 255 : a;
}

int ClampAddSubtractFull(int a, int b, int c) {
 return Clamp(a + b - c);
}

int ClampAddSubtractHalf(int a, int b) {
 return Clamp(a + (a - b) / 2);
}

void PredictorTransformOutput(uint32 residual, uint32 pred,
 uint8* alpha, uint8* red,
 uint8* green, uint8* blue) {
 *alpha = ALPHA(residual) + ALPHA(pred);
 *red = RED(residual) + RED(pred);
 *green = GREEN(residual) + GREEN(pred);
 *blue = BLUE(residual) + BLUE(pred);
}

3.5.2. Color Transform

The goal of the color transform is to decorrelate the R, G, and B values of each pixel. The color
transform keeps the green (G) value as it is, transforms the red (R) value based on the green
value, and transforms the blue (B) value based on the green value and then on the red value.

As is the case for the predictor transform, first the image is divided into blocks, and the same
transform mode is used for all the pixels in a block. For each block, there are three types of color
transform elements.

typedef struct {
 uint8 green_to_red;
 uint8 green_to_blue;
 uint8 red_to_blue;
} ColorTransformElement;

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 27

The actual color transform is done by defining a color transform delta. The color transform delta
depends on the ColorTransformElement, which is the same for all the pixels in a particular
block. The delta is subtracted during the color transform. The inverse color transform then is just
adding those deltas.

The color transform function is defined as follows:

ColorTransformDelta is computed using a signed 8-bit integer representing a 3.5-fixed-point
number and a signed 8-bit RGB color channel (c) [-128..127] and is defined as follows:

A conversion from the 8-bit unsigned representation (uint8) to the 8-bit signed one (int8) is
required before calling ColorTransformDelta(). The signed value should be interpreted as an 8-
bit two's complement number (that is: uint8 range [128..255] is mapped to the [-128..-1] range of
its converted int8 value).

The multiplication is to be done using more precision (with at least 16-bit precision). The sign
extension property of the shift operation does not matter here; only the lowest 8 bits are used
from the result, and in these bits, the sign extension shifting and unsigned shifting are consistent
with each other.

Now, we describe the contents of color transform data so that decoding can apply the inverse
color transform and recover the original red and blue values. The first 3 bits of the color
transform data contain the width and height of the image block in number of bits, just like the
predictor transform:

void ColorTransform(uint8 red, uint8 blue, uint8 green,
 ColorTransformElement *trans,
 uint8 *new_red, uint8 *new_blue) {
 // Transformed values of red and blue components
 int tmp_red = red;
 int tmp_blue = blue;

 // Applying the transform is just subtracting the transform deltas
 tmp_red -= ColorTransformDelta(trans->green_to_red, green);
 tmp_blue -= ColorTransformDelta(trans->green_to_blue, green);
 tmp_blue -= ColorTransformDelta(trans->red_to_blue, red);

 *new_red = tmp_red & 0xff;
 *new_blue = tmp_blue & 0xff;
}

int8 ColorTransformDelta(int8 t, int8 c) {
 return (t * c) >> 5;
}

int size_bits = ReadBits(3) + 2;
int block_width = 1 << size_bits;
int block_height = 1 << size_bits;

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 28

3.5.3. Subtract Green Transform

The subtract green transform subtracts green values from red and blue values of each pixel.
When this transform is present, the decoder needs to add the green value to both the red and
blue values. There is no data associated with this transform. The decoder applies the inverse
transform as follows:

This transform is redundant, as it can be modeled using the color transform, but since there is no
additional data here, the subtract green transform can be coded using fewer bits than a full-
blown color transform.

The remaining part of the color transform data contains ColorTransformElement instances,
corresponding to each block of the image. Each ColorTransformElement 'cte' is treated as a
pixel in a subresolution image whose alpha component is 255, red component is
cte.red_to_blue, green component is cte.green_to_blue, and blue component is
cte.green_to_red.

During decoding, ColorTransformElement instances of the blocks are decoded and the inverse
color transform is applied on the ARGB values of the pixels. As mentioned earlier, that inverse
color transform is just adding ColorTransformElement values to the red and blue channels. The
alpha and green channels are left as is.

void InverseTransform(uint8 red, uint8 green, uint8 blue,
 ColorTransformElement *trans,
 uint8 *new_red, uint8 *new_blue) {
 // Transformed values of red and blue components
 int tmp_red = red;
 int tmp_blue = blue;

 // Applying the inverse transform is just adding the
 // color transform deltas
 tmp_red += ColorTransformDelta(trans->green_to_red, green);
 tmp_blue += ColorTransformDelta(trans->green_to_blue, green);
 tmp_blue +=
 ColorTransformDelta(trans->red_to_blue, tmp_red & 0xff);

 *new_red = tmp_red & 0xff;
 *new_blue = tmp_blue & 0xff;
}

void AddGreenToBlueAndRed(uint8 green, uint8 *red, uint8 *blue) {
 *red = (*red + green) & 0xff;
 *blue = (*blue + green) & 0xff;
}

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 29

3.5.4. Color Indexing Transform

If there are not many unique pixel values, it may be more efficient to create a color index array
and replace the pixel values by the array's indices. The color indexing transform achieves this.
(In the context of WebP lossless, we specifically do not call this a palette transform because a
similar but more dynamic concept exists in WebP lossless encoding: color cache.)

The color indexing transform checks for the number of unique ARGB values in the image. If that
number is below a threshold (256), it creates an array of those ARGB values, which is then used
to replace the pixel values with the corresponding index: the green channel of the pixels are
replaced with the index, all alpha values are set to 255, and all red and blue values are set to 0.

The transform data contains the color table size and the entries in the color table. The decoder
reads the color indexing transform data as follows:

The color table is stored using the image storage format itself. The color table can be obtained by
reading an image, without the RIFF header, image size, and transforms, assuming the height of 1
pixel and the width of color_table_size. The color table is always subtraction-coded to reduce
image entropy. The deltas of palette colors contain typically much less entropy than the colors
themselves, leading to significant savings for smaller images. In decoding, every final color in the
color table can be obtained by adding the previous color component values by each ARGB
component separately and storing the least significant 8 bits of the result.

The inverse transform for the image is simply replacing the pixel values (which are indices to the
color table) with the actual color table values. The indexing is done based on the green
component of the ARGB color.

If the index is equal to or larger than color_table_size, the argb color value should be set to
0x00000000 (transparent black).

When the color table is small (equal to or less than 16 colors), several pixels are bundled into a
single pixel. The pixel bundling packs several (2, 4, or 8) pixels into a single pixel, reducing the
image width respectively.

Pixel bundling allows for a more efficient joint distribution entropy coding of
neighboring pixels and gives some arithmetic coding-like benefits to the entropy
code, but it can only be used when there are 16 or fewer unique values.

color_table_size specifies how many pixels are combined:

// 8-bit value for the color table size
int color_table_size = ReadBits(8) + 1;

// Inverse transform
argb = color_table[GREEN(argb)];

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 30

color_table_size width_bits value

1..2 3

3..4 2

5..16 1

17..256 0

Table 3: Color Table Size to Bundled Pixel
Bit Width Mapping

width_bits has a value of 0, 1, 2, or 3. A value of 0 indicates no pixel bundling is to be done for
the image. A value of 1 indicates that two pixels are combined, and each pixel has a range of
[0..15]. A value of 2 indicates that four pixels are combined, and each pixel has a range of [0..3]. A
value of 3 indicates that eight pixels are combined, and each pixel has a range of [0..1], that is, a
binary value.

The values are packed into the green component as follows:

width_bits = 1: For every x value, where x = 2k + 0, a green value at x is positioned into the
4 least significant bits of the green value at x / 2, and a green value at x + 1 is positioned into
the 4 most significant bits of the green value at x / 2.
width_bits = 2: For every x value, where x = 4k + 0, a green value at x is positioned into the
2 least significant bits of the green value at x / 4, and green values at x + 1 to x + 3 are
positioned in order to the more significant bits of the green value at x / 4.
width_bits = 3: For every x value, where x = 8k + 0, a green value at x is positioned into the
least significant bit of the green value at x / 8, and green values at x + 1 to x + 7 are positioned
in order to the more significant bits of the green value at x / 8.

After reading this transform, image_width is subsampled by width_bits. This affects the size of
subsequent transforms. The new size can be calculated using DIV_ROUND_UP, as defined in
Section 3.5.1.

•

•

•

image_width = DIV_ROUND_UP(image_width, 1 << width_bits);

3.6. Image Data
Image data is an array of pixel values in scan-line order.

3.6.1. Roles of Image Data

We use image data in five different roles:

ARGB image: Stores the actual pixels of the image. 1.

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 31

3.6.2. Encoding of Image Data

The encoding of image data is independent of its role.

The image is first divided into a set of fixed-size blocks (typically 16x16 blocks). Each of these
blocks are modeled using their own entropy codes. Also, several blocks may share the same
entropy codes.

Rationale: Storing an entropy code incurs a cost. This cost can be minimized if
statistically similar blocks share an entropy code, thereby storing that code only
once. For example, an encoder can find similar blocks by clustering them using their
statistical properties or by repeatedly joining a pair of randomly selected clusters
when it reduces the overall amount of bits needed to encode the image.

Each pixel is encoded using one of the three possible methods:

Prefix-coded literals: Each channel (green, red, blue, and alpha) is entropy-coded
independently.
LZ77 backward reference: A sequence of pixels are copied from elsewhere in the image.
Color cache code: Using a short multiplicative hash code (color cache index) of a recently
seen color.

The following subsections describe each of these in detail.

Entropy image: Stores the meta prefix codes (see
).

Predictor image: Stores the metadata for the predictor transform (see
).

Color transform image: Created by ColorTransformElement values (defined in
) for different blocks of the image.

Color indexing image: An array of the size of color_table_size (up to 256 ARGB values)
that stores the metadata for the color indexing transform (see

).

2. "Decoding of Meta Prefix Codes" (Section
3.7.2.2)

3. "Predictor Transform"
(Section 3.5.1)

4. "Color
Transform" (Section 3.5.2)

5.
"Color Indexing Transform"

(Section 3.5.4)

1.

2.
3.

3.6.2.1. Prefix-Coded Literals
The pixel is stored as prefix-coded values of green, red, blue, and alpha (in that order). See
Section 3.7.2.3 for details.

3.6.2.2. LZ77 Backward Reference
Backward references are tuples of length and distance code:

Length indicates how many pixels in scan-line order are to be copied.
Distance code is a number indicating the position of a previously seen pixel, from which the
pixels are to be copied. The exact mapping is described .

The length and distance values are stored using LZ77 prefix coding.

•
•

below (Section 3.6.2.2.1)

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 32

LZ77 prefix coding divides large integer values into two parts: the prefix code and the extra bits.
The prefix code is stored using an entropy code, while the extra bits are stored as they are
(without an entropy code).

Rationale: This approach reduces the storage requirement for the entropy code.
Also, large values are usually rare, so extra bits would be used for very few values in
the image. Thus, this approach results in better compression overall.

The following table denotes the prefix codes and extra bits used for storing different ranges of
values.

Note: The maximum backward reference length is limited to 4096. Hence, only the
first 24 prefix codes (with the respective extra bits) are meaningful for length
values. For distance values, however, all the 40 prefix codes are valid.

Value Range Prefix Code Extra Bits

1 0 0

2 1 0

3 2 0

4 3 0

5..6 4 1

7..8 5 1

9..12 6 2

13..16 7 2

...

3072..4096 23 10

...

524289..786432 38 18

786433..1048576 39 18

Table 4: Value to Prefix Code and Extra Bits
Mapping

The pseudocode to obtain a (length or distance) value from the prefix code is as follows:

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 33

if (prefix_code < 4) {
 return prefix_code + 1;
}
int extra_bits = (prefix_code - 2) >> 1;
int offset = (2 + (prefix_code & 1)) << extra_bits;
return offset + ReadBits(extra_bits) + 1;

3.6.2.2.1. Distance Mapping
As noted previously, a distance code is a number indicating the position of a previously seen
pixel, from which the pixels are to be copied. This subsection defines the mapping between a
distance code and the position of a previous pixel.

Distance codes larger than 120 denote the pixel distance in scan-line order, offset by 120.

The smallest distance codes [1..120] are special and are reserved for a close neighborhood of the
current pixel. This neighborhood consists of 120 pixels:

Pixels that are 1 to 7 rows above the current pixel and are up to 8 columns to the left or up to
7 columns to the right of the current pixel [Total such pixels = 7 * (8 + 1 + 7) = 112].
Pixels that are in the same row as the current pixel and are up to 8 columns to the left of the
current pixel [8 such pixels].

The mapping between distance code distance_code and the neighboring pixel offset (xi, yi) is
as follows:

•

•

Figure 20: Distance Code to Neighboring Pixel Offset Mapping

(0, 1), (1, 0), (1, 1), (-1, 1), (0, 2), (2, 0), (1, 2),
(-1, 2), (2, 1), (-2, 1), (2, 2), (-2, 2), (0, 3), (3, 0),
(1, 3), (-1, 3), (3, 1), (-3, 1), (2, 3), (-2, 3), (3, 2),
(-3, 2), (0, 4), (4, 0), (1, 4), (-1, 4), (4, 1), (-4, 1),
(3, 3), (-3, 3), (2, 4), (-2, 4), (4, 2), (-4, 2), (0, 5),
(3, 4), (-3, 4), (4, 3), (-4, 3), (5, 0), (1, 5), (-1, 5),
(5, 1), (-5, 1), (2, 5), (-2, 5), (5, 2), (-5, 2), (4, 4),
(-4, 4), (3, 5), (-3, 5), (5, 3), (-5, 3), (0, 6), (6, 0),
(1, 6), (-1, 6), (6, 1), (-6, 1), (2, 6), (-2, 6), (6, 2),
(-6, 2), (4, 5), (-4, 5), (5, 4), (-5, 4), (3, 6), (-3, 6),
(6, 3), (-6, 3), (0, 7), (7, 0), (1, 7), (-1, 7), (5, 5),
(-5, 5), (7, 1), (-7, 1), (4, 6), (-4, 6), (6, 4), (-6, 4),
(2, 7), (-2, 7), (7, 2), (-7, 2), (3, 7), (-3, 7), (7, 3),
(-7, 3), (5, 6), (-5, 6), (6, 5), (-6, 5), (8, 0), (4, 7),
(-4, 7), (7, 4), (-7, 4), (8, 1), (8, 2), (6, 6), (-6, 6),
(8, 3), (5, 7), (-5, 7), (7, 5), (-7, 5), (8, 4), (6, 7),
(-6, 7), (7, 6), (-7, 6), (8, 5), (7, 7), (-7, 7), (8, 6),
(8, 7)

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 34

For example, the distance code 1 indicates an offset of (0, 1) for the neighboring pixel, that is,
the pixel above the current pixel (0 pixel difference in the X direction and 1 pixel difference in
the Y direction). Similarly, the distance code 3 indicates the top-left pixel.

The decoder can convert a distance code distance_code to a scan-line order distance dist as
follows:

where distance_map is the mapping noted above, and image_width is the width of the image in
pixels.

(xi, yi) = distance_map[distance_code - 1]
dist = xi + yi * image_width
if (dist < 1) {
 dist = 1
}

3.6.2.3. Color Cache Coding
Color cache stores a set of colors that have been recently used in the image.

Rationale: This way, the recently used colors can sometimes be referred to more
efficiently than emitting them using the other two methods (described in Sections
3.6.2.1 and 3.6.2.2).

Color cache codes are stored as follows. First, there is a 1-bit value that indicates if the color
cache is used. If this bit is 0, no color cache codes exist, and they are not transmitted in the prefix
code that decodes the green symbols and the length prefix codes. However, if this bit is 1, the
color cache size is read next:

color_cache_code_bits defines the size of the color cache (1 << color_cache_code_bits). The
range of allowed values for color_cache_code_bits is [1..11]. Compliant decoders
indicate a corrupted bitstream for other values.

A color cache is an array of size color_cache_size. Each entry stores one ARGB color. Colors are
looked up by indexing them by (0x1e35a7bd * color) >> (32 - color_cache_code_bits).
Only one lookup is done in a color cache; there is no conflict resolution.

In the beginning of decoding or encoding of an image, all entries in all color cache values are set
to zero. The color cache code is converted to this color at decoding time. The state of the color
cache is maintained by inserting every pixel, be it produced by backward referencing or as
literals, into the cache in the order they appear in the stream.

int color_cache_code_bits = ReadBits(4);
int color_cache_size = 1 << color_cache_code_bits;

MUST

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 35

3.7. Entropy Code

3.7.1. Overview

Most of the data is coded using a . Hence, the codes are
transmitted by sending the prefix code lengths, as opposed to the actual prefix codes.

In particular, the format uses spatially variant prefix coding. In other words, different blocks
of the image can potentially use different entropy codes.

Rationale: Different areas of the image may have different characteristics. So,
allowing them to use different entropy codes provides more flexibility and
potentially better compression.

3.7.2. Details

The encoded image data consists of several parts:

Decoding and building the prefix codes.
Meta prefix codes.
Entropy-coded image data.

For any given pixel (x, y), there is a set of five prefix codes associated with it. These codes are (in
bitstream order):

Prefix code #1: Used for green channel, backward-reference length, and color cache.
Prefix code #2, #3, and #4: Used for red, blue, and alpha channels, respectively.
Prefix code #5: Used for backward-reference distance.

From here on, we refer to this set as a prefix code group.

canonical prefix code [Huffman]

1.
2.
3.

•
•
•

3.7.2.1. Decoding and Building the Prefix Codes
This section describes how to read the prefix code lengths from the bitstream.

The prefix code lengths can be coded in two ways. The method used is specified by a 1-bit value.

If this bit is 1, it is a simple code length code.
If this bit is 0, it is a normal code length code.

In both cases, there can be unused code lengths that are still part of the stream. This may be
inefficient, but it is allowed by the format. The described tree must be a complete binary tree. A
single leaf node is considered a complete binary tree and can be encoded using either the simple
code length code or the normal code length code. When coding a single leaf node using the
normal code length code, all but one code length are zeros, and the single leaf node value is
marked with the length of 1 -- even when no bits are consumed when that single leaf node tree is
used.

•
•

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 36

3.7.2.1.1. Simple Code Length Code
This variant is used in the special case when only 1 or 2 prefix symbols are in the range [0..255]
with code length 1. All other prefix code lengths are implicitly zeros.

The first bit indicates the number of symbols:

The following are the symbol values. This first symbol is coded using 1 or 8 bits, depending on
the value of is_first_8bits. The range is [0..1] or [0..255], respectively. The second symbol, if
present, is always assumed to be in the range [0..255] and coded using 8 bits.

The two symbols should be different. Duplicate symbols are allowed, but inefficient.

Note: Another special case is when all prefix code lengths are zeros (an empty prefix
code). For example, a prefix code for distance can be empty if there are no
backward references. Similarly, prefix codes for alpha, red, and blue can be empty if
all pixels within the same meta prefix code are produced using the color cache.
However, this case doesn't need special handling, as empty prefix codes can be
coded as those containing a single symbol 0.

int num_symbols = ReadBits(1) + 1;

int is_first_8bits = ReadBits(1);
symbol0 = ReadBits(1 + 7 * is_first_8bits);
code_lengths[symbol0] = 1;
if (num_symbols == 2) {
 symbol1 = ReadBits(8);
 code_lengths[symbol1] = 1;
}

3.7.2.1.2. Normal Code Length Code
The code lengths of the prefix code fit in 8 bits and are read as follows. First, num_code_lengths
specifies the number of code lengths.

The code lengths are themselves encoded using prefix codes; lower-level code lengths,
code_length_code_lengths, first have to be read. The rest of those code_length_code_lengths
(according to the order in kCodeLengthCodeOrder) are zeros.

int num_code_lengths = 4 + ReadBits(4);

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 37

Next, if ReadBits(1) == 0, the maximum number of different read symbols (max_symbol) for
each symbol type (A, R, G, B, and distance) is set to its alphabet size:

G channel: 256 + 24 + color_cache_size
Other literals (A, R, and B): 256
Distance code: 40

Otherwise, it is defined as:

If max_symbol is larger than the size of the alphabet for the symbol type, the bitstream is invalid.

A prefix table is then built from code_length_code_lengths and used to read up to max_symbol
code lengths.

Code [0..15] indicates literal code lengths.

Value 0 means no symbols have been coded.
Values [1..15] indicate the bit length of the respective code.

Code 16 repeats the previous nonzero value [3..6] times, that is, 3 + ReadBits(2) times. If
code 16 is used before a nonzero value has been emitted, a value of 8 is repeated.
Code 17 emits a streak of zeros of length [3..10], that is, 3 + ReadBits(3) times.
Code 18 emits a streak of zeros of length [11..138], that is, 11 + ReadBits(7) times.

Once code lengths are read, a prefix code for each symbol type (A, R, G, B, and distance) is formed
using their respective alphabet sizes.

int kCodeLengthCodes = 19;
int kCodeLengthCodeOrder[kCodeLengthCodes] = {
 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
};
int code_length_code_lengths[kCodeLengthCodes] = { 0 }; // All zeros
for (i = 0; i < num_code_lengths; ++i) {
 code_length_code_lengths[kCodeLengthCodeOrder[i]] = ReadBits(3);
}

•
•
•

int length_nbits = 2 + 2 * ReadBits(3);
int max_symbol = 2 + ReadBits(length_nbits);

•

◦
◦

•

•
•

3.7.2.2. Decoding of Meta Prefix Codes
As noted earlier, the format allows the use of different prefix codes for different blocks of the
image. Meta prefix codes are indexes identifying which prefix codes to use in different parts of
the image.

Meta prefix codes may be used only when the image is being used in the of an
ARGB image.

role (Section 3.6.1)

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 38

There are two possibilities for the meta prefix codes, indicated by a 1-bit value:

If this bit is zero, there is only one meta prefix code used everywhere in the image. No more
data is stored.
If this bit is one, the image uses multiple meta prefix codes. These meta prefix codes are
stored as an entropy image (described below).

The red and green components of a pixel define a 16-bit meta prefix code used in a particular
block of the ARGB image.

•

•

3.7.2.2.1. Entropy Image
The entropy image defines which prefix codes are used in different parts of the image.

The first 3 bits contain the prefix_bits value. The dimensions of the entropy image are derived
from prefix_bits:

where DIV_ROUND_UP is as defined in Section 3.5.1.

The next bits contain an entropy image of width prefix_image_width and height
prefix_image_height.

int prefix_bits = ReadBits(3) + 2;
int prefix_image_width =
 DIV_ROUND_UP(image_width, 1 << prefix_bits);
int prefix_image_height =
 DIV_ROUND_UP(image_height, 1 << prefix_bits);

3.7.2.2.2. Interpretation of Meta Prefix Codes
The number of prefix code groups in the ARGB image can be obtained by finding the largest meta
prefix code from the entropy image:

where max(entropy image) indicates the largest prefix code stored in the entropy image.

As each prefix code group contains five prefix codes, the total number of prefix codes is:

Given a pixel (x, y) in the ARGB image, we can obtain the corresponding prefix codes to be used
as follows:

int num_prefix_groups = max(entropy image) + 1;

int num_prefix_codes = 5 * num_prefix_groups;

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 39

where we have assumed the existence of PrefixCodeGroup structure, which represents a set of
five prefix codes. Also, prefix_code_groups is an array of PrefixCodeGroup (of size
num_prefix_groups).

The decoder then uses prefix code group prefix_group to decode the pixel (x, y), as explained in
Section 3.7.2.3.

int position =
 (y >> prefix_bits) * prefix_image_width + (x >> prefix_bits);
int meta_prefix_code = (entropy_image[position] >> 8) & 0xffff;
PrefixCodeGroup prefix_group = prefix_code_groups[meta_prefix_code];

3.7.2.3. Decoding Entropy-Coded Image Data
For the current position (x, y) in the image, the decoder first identifies the corresponding prefix
code group (as explained in the last section). Given the prefix code group, the pixel is read and
decoded as follows.

Next, read symbol S from the bitstream using prefix code #1.

Note that S is any integer in the range 0 to (256 + 24 + color_cache_size - 1).
See Section 3.6.2.3 for details about color_cache_size.

The interpretation of S depends on its value:

If S < 256

Use S as the green component.
Read red from the bitstream using prefix code #2.
Read blue from the bitstream using prefix code #3.
Read alpha from the bitstream using prefix code #4.

If S >= 256 & S < 256 + 24

Use S - 256 as a length prefix code.
Read extra bits for the length from the bitstream.
Determine backward-reference length L from length prefix code and the extra bits read.
Read the distance prefix code from the bitstream using prefix code #5.
Read extra bits for the distance from the bitstream.
Determine backward-reference distance D from the distance prefix code and the extra bits
read.
Copy L pixels (in scan-line order) from the sequence of pixels starting at the current
position minus D pixels.

If S >= 256 + 24

Use S - (256 + 24) as the index into the color cache.

1.

i.
ii.

iii.
iv.

2.

i.
ii.

iii.
iv.
v.

vi.

vii.

3.

i.

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 40

3.8. Overall Structure of the Format
Below is a view into the format in Augmented Backus-Naur Form . It does
not cover all details. The end-of-image (EOI) is only implicitly coded into the number of pixels
(image_width * image_height).

Note that *element means element can be repeated 0 or more times. 5element
means element is repeated exactly 5 times. %b represents a binary value.

3.8.1. Basic Structure

3.8.2. Structure of Transforms

Get ARGB color from the color cache at that index. ii.

[RFC5234] [RFC7405]

format = RIFF-header image-header image-stream
RIFF-header = %s"RIFF" 4OCTET %s"WEBPVP8L" 4OCTET
image-header = %x2F image-size alpha-is-used version
image-size = 14BIT 14BIT ; width - 1, height - 1
alpha-is-used = 1BIT
version = 3BIT ; 0
image-stream = optional-transform spatially-coded-image

optional-transform = (%b1 transform optional-transform) / %b0
transform = predictor-tx / color-tx / subtract-green-tx
transform =/ color-indexing-tx

predictor-tx = %b00 predictor-image
predictor-image = 3BIT ; sub-pixel code
 entropy-coded-image

color-tx = %b01 color-image
color-image = 3BIT ; sub-pixel code
 entropy-coded-image

subtract-green-tx = %b10

color-indexing-tx = %b11 color-indexing-image
color-indexing-image = 8BIT ; color count
 entropy-coded-image

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 41

3.8.3. Structure of the Image Data

The following is a possible example sequence:

spatially-coded-image = color-cache-info meta-prefix data
entropy-coded-image = color-cache-info data

color-cache-info = %b0
color-cache-info =/ (%b1 4BIT) ; 1 followed by color cache size

meta-prefix = %b0 / (%b1 entropy-image)

data = prefix-codes lz77-coded-image
entropy-image = 3BIT ; subsample value
 entropy-coded-image

prefix-codes = prefix-code-group *prefix-codes
prefix-code-group =
 5prefix-code ; See "Interpretation of Meta Prefix Codes" to
 ; understand what each of these five prefix
 ; codes are for.

prefix-code = simple-prefix-code / normal-prefix-code
simple-prefix-code = ; see "Simple Code Length Code" for details
normal-prefix-code = ; see "Normal Code Length Code" for details

lz77-coded-image =
 *((argb-pixel / lz77-copy / color-cache-code) lz77-coded-image)

RIFF-header image-size %b1 subtract-green-tx
%b1 predictor-tx %b0 color-cache-info
%b0 prefix-codes lz77-coded-image

4. Security Considerations
Implementations of this format face security risks, such as integer overflows, out-of-bounds
reads and writes to both heap and stack, uninitialized data usage, null pointer dereferences,
resource (disk or memory) exhaustion, and extended resource usage (long running time) as part
of the demuxing and decoding process. In particular, implementations reading this format are
likely to take input from unknown and possibly unsafe sources -- both clients (for example, web
browsers or email clients) and servers (for example, applications that accept uploaded images).
These may result in arbitrary code execution, information leakage (memory layout and
contents), or crashes and thereby allow a device to be compromised or cause a denial of service
to an application using the format .

The format does not employ "active content" but does allow metadata (for example, and
) and custom chunks to be embedded in a file. Applications that interpret these chunks may

be subject to security considerations for those formats.

[cve.mitre.org-libwebp] [issues-security]

[XMP]
[Exif]

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 42

5. Interoperability Considerations
The format is defined using little-endian byte ordering (see), but
demuxing and decoding are possible on platforms using a different ordering with the
appropriate conversion. The container is based on RIFF and allows extension via user-defined
chunks, but nothing beyond the chunks defined by the container format (Section 2) are required
for decoding of the image. These have been finalized but were extended in the format's early
stages, so some older readers may not support lossless or animated image decoding.

Section 3.1 of [RFC2781]

6. IANA Considerations
IANA has registered the 'image/webp' media type .[RFC2046]

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Deprecated alias names for this type:
Magic number(s):

File extension(s):
Apple Uniform Type Identifier:

6.1. The 'image/webp' Media Type
This section contains the media type registration details per .

6.1.1. Registration Details

image

webp

N/A

N/A

Binary. The should be used on transports
that cannot accommodate binary data directly.

See RFC 9649, Section 4.

See RFC 9649, Section 5.

RFC 9649

Applications that are used to display and process images,
especially when smaller image file sizes are important.

N/A

N/A
The first 4 bytes are 0x52, 0x49, 0x46, 0x46 ('RIFF'), followed by 4 bytes for

the 'RIFF' Chunk size. The next 7 bytes are 0x57, 0x45, 0x42, 0x50, 0x56, 0x50, 0x38
('WEBPVP8').

webp
org.webmproject.webp conforms to public.image

[RFC6838]

Base64 encoding [RFC4648]

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 43

https://www.rfc-editor.org/rfc/rfc2781#section-3.1

[Exif]

[ICC]

[ISO.9899.2018]

[rec601]

[RFC1166]

[RFC2046]

[RFC2119]

7. References

7.1. Normative References

 and
,

, ,
, December 2012,

.

,
,

, , December 2010,
.

,
, , , June 2018,

.

,
, , March 2011,

.

, , and , , ,
, July 1990, .

 and ,
, , , November 1996,

.

, , ,
, , March 1997,
.

Object Identifiers:

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Provisional registration?:

N/A

James Zern <jzern@google.com>

COMMON

N/A

James Zern <jzern@google.com>

IETF

No

Camera & Imaging Products Association (CIPA) Japan Electronics and
Information Technology Industries Association (JEITA) "Exchangeable image
file format for digital still cameras: Exif Version 2.3" CIPA DC-008-2012 JEITA
CP-3451C <https://www.cipa.jp/std/documents/e/
DC-008-2012_E.pdf>

International Color Consortium "Image technology colour management --
Architecture, profile format, and data structure" Profile version 4.3.0.0,
REVISION of ICC.1:2004-10 Specification ICC.1:2010 <https://
www.color.org/specification/ICC1v43_2010-12.pdf>

International Organization for Standardization "Information technology --
Programming languages -- C" Fourth Edition ISO/IEC 9899:2018
<https://www.iso.org/standard/74528.html>

ITU "Studio encoding parameters of digital television for standard 4:3 and wide
screen 16:9 aspect ratios" ITU-R Recommendation BT.601 <https://
www.itu.int/rec/R-REC-BT.601/>

Kirkpatrick, S. Stahl, M. M. Recker "Internet numbers" RFC 1166 DOI
10.17487/RFC1166 <https://www.rfc-editor.org/info/rfc1166>

Freed, N. N. Borenstein "Multipurpose Internet Mail Extensions (MIME)
Part Two: Media Types" RFC 2046 DOI 10.17487/RFC2046
<https://www.rfc-editor.org/info/rfc2046>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 44

https://www.cipa.jp/std/documents/e/DC-008-2012_E.pdf
https://www.cipa.jp/std/documents/e/DC-008-2012_E.pdf
https://www.color.org/specification/ICC1v43_2010-12.pdf
https://www.color.org/specification/ICC1v43_2010-12.pdf
https://www.iso.org/standard/74528.html
https://www.itu.int/rec/R-REC-BT.601/
https://www.itu.int/rec/R-REC-BT.601/
https://www.rfc-editor.org/info/rfc1166
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC2781]

[RFC4648]

[RFC5234]

[RFC6386]

[RFC6838]

[RFC7405]

[RFC8174]

[XMP]

[cve.mitre.org-libwebp]

[GIF-spec]

[Huffman]

[issues-security]

[JPEG-spec]

 and , , ,
, February 2000, .

, , ,
, October 2006, .

 and ,
, , , , January 2008,

.

, , , , , and ,
, , , November 2011,

.

, , and ,
, , , , January 2013,

.

, , ,
, December 2014, .

, ,
, , , May 2017,

.

, , .

7.2. Informative References

,
.

, , ,
July 1990, .

, ,
,

, September 1952,
.

,

.

, ,
, September 1992, .

Hoffman, P. F. Yergeau "UTF-16, an encoding of ISO 10646" RFC 2781 DOI
10.17487/RFC2781 <https://www.rfc-editor.org/info/rfc2781>

Josefsson, S. "The Base16, Base32, and Base64 Data Encodings" RFC 4648 DOI
10.17487/RFC4648 <https://www.rfc-editor.org/info/rfc4648>

Crocker, D., Ed. P. Overell "Augmented BNF for Syntax Specifications:
ABNF" STD 68 RFC 5234 DOI 10.17487/RFC5234 <https://
www.rfc-editor.org/info/rfc5234>

Bankoski, J. Koleszar, J. Quillio, L. Salonen, J. Wilkins, P. Y. Xu "VP8 Data
Format and Decoding Guide" RFC 6386 DOI 10.17487/RFC6386
<https://www.rfc-editor.org/info/rfc6386>

Freed, N. Klensin, J. T. Hansen "Media Type Specifications and Registration
Procedures" BCP 13 RFC 6838 DOI 10.17487/RFC6838 <https://
www.rfc-editor.org/info/rfc6838>

Kyzivat, P. "Case-Sensitive String Support in ABNF" RFC 7405 DOI 10.17487/
RFC7405 <https://www.rfc-editor.org/info/rfc7405>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Adobe Inc. "XMP Specification" <https://www.adobe.com/devnet/xmp.html>

"libwebp CVE List" <https://cve.mitre.org/cgi-bin/cvekey.cgi?
keyword=libwebp>

CompuServe Incorporated "Graphics Interchange Format(sm)" Version 89a
<https://www.w3.org/Graphics/GIF/spec-gif89a.txt>

Huffman, D. "A Method for the Construction of Minimum-Redundancy Codes"
Proceedings of the Institute of Radio Engineers, Vol. 40, Issue 9, pp. 1098-1101
DOI 10.1109/JRPROC.1952.273898 <https://doi.org/10.1109/
JRPROC.1952.273898>

"libwebp Security Issues" <https://issues.webmproject.org/issues?
q=componentid:1618983%2B%20(%22Restrict-View-
Security%22%20OR%20type:vulnerability)>

"Information Technology - Digital Compression and Coding of Continuous-Tone
Still Images - Requirements and Guidelines" ITU-T Recommendation T.81 ISO/
IEC 10918-1 <https://www.w3.org/Graphics/JPEG/itu-t81.pdf>

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 45

https://www.rfc-editor.org/info/rfc2781
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc6386
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc7405
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.adobe.com/devnet/xmp.html
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=libwebp
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=libwebp
https://www.w3.org/Graphics/GIF/spec-gif89a.txt
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1109/JRPROC.1952.273898
https://issues.webmproject.org/issues?q=componentid:1618983%2B%20(%22Restrict-View-Security%22%20OR%20type:vulnerability)
https://issues.webmproject.org/issues?q=componentid:1618983%2B%20(%22Restrict-View-Security%22%20OR%20type:vulnerability)
https://issues.webmproject.org/issues?q=componentid:1618983%2B%20(%22Restrict-View-Security%22%20OR%20type:vulnerability)
https://www.w3.org/Graphics/JPEG/itu-t81.pdf

[LZ77]

[MWG]

[RFC2083]

[RIFF-spec]

[webp-lossless-src]

[webp-lossless-study]

[webp-riff-src]

 and , ,
,

, May 1977, .

, ,
, November 2010,

.

, ,
, , March 1997,

.

,
.

, , July 2024,

.

 and ,
, August 2017,

.

, , July 2024,

.

Ziv, J. A. Lempel "A Universal Algorithm for Sequential Data Compression"
IEEE Transactions on Information Theory, Vol. 23, Issue 3, pp. 337-343 DOI
10.1109/TIT.1977.1055714 <https://doi.org/10.1109/TIT.1977.1055714>

Metadata Working Group "Guidelines For Handling Image Metadata" Version
2.0 <https://web.archive.org/web/20180919181934/http://
www.metadataworkinggroup.org/pdf/mwg_guidance.pdf>

Boutell, T. "PNG (Portable Network Graphics) Specification Version 1.0" RFC
2083 DOI 10.17487/RFC2083 <https://www.rfc-editor.org/info/
rfc2083>

"RIFF (Resource Interchange File Format)" <https://www.loc.gov/preservation/
digital/formats/fdd/fdd000025.shtml>

Alakuijala, J. "WebP Lossless Bitstream Specification" <https://
chromium.googlesource.com/webm/libwebp/+/refs/tags/webp-rfc9649/doc/webp-
lossless-bitstream-spec.txt>

Alakuijala, J. V. Rabaud "Lossless and Transparency Encoding in
WebP" <https://developers.google.com/speed/webp/docs/
webp_lossless_alpha_study>

Google LLC "WebP RIFF Container" <https://
chromium.googlesource.com/webm/libwebp/+/refs/tags/webp-rfc9649/doc/webp-
container-spec.txt>

Authors' Addresses
James Zern
Google LLC
1600 Amphitheatre Parkway

, Mountain View CA 94043
United States of America

+1 650 253-0000Phone:
jzern@google.comEmail:

Pascal Massimino
Google LLC

pascal.massimino@gmail.comEmail:

Jyrki Alakuijala
Google LLC

jyrki.alakuijala@gmail.comEmail:

RFC 9649 WebP Image Format September 2024

Zern, et al. Informational Page 46

https://doi.org/10.1109/TIT.1977.1055714
https://web.archive.org/web/20180919181934/http://www.metadataworkinggroup.org/pdf/mwg_guidance.pdf
https://web.archive.org/web/20180919181934/http://www.metadataworkinggroup.org/pdf/mwg_guidance.pdf
https://www.rfc-editor.org/info/rfc2083
https://www.rfc-editor.org/info/rfc2083
https://www.loc.gov/preservation/digital/formats/fdd/fdd000025.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000025.shtml
https://chromium.googlesource.com/webm/libwebp/+/refs/tags/webp-rfc9649/doc/webp-lossless-bitstream-spec.txt
https://chromium.googlesource.com/webm/libwebp/+/refs/tags/webp-rfc9649/doc/webp-lossless-bitstream-spec.txt
https://chromium.googlesource.com/webm/libwebp/+/refs/tags/webp-rfc9649/doc/webp-lossless-bitstream-spec.txt
https://developers.google.com/speed/webp/docs/webp_lossless_alpha_study
https://developers.google.com/speed/webp/docs/webp_lossless_alpha_study
https://chromium.googlesource.com/webm/libwebp/+/refs/tags/webp-rfc9649/doc/webp-container-spec.txt
https://chromium.googlesource.com/webm/libwebp/+/refs/tags/webp-rfc9649/doc/webp-container-spec.txt
https://chromium.googlesource.com/webm/libwebp/+/refs/tags/webp-rfc9649/doc/webp-container-spec.txt
tel:+1%20650%20253-0000
mailto:jzern@google.com
mailto:pascal.massimino@gmail.com
mailto:jyrki.alakuijala@gmail.com

	RFC 9649
	WebP Image Format
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. WebP Container Specification
	2.1. Introduction (from "WebP Container Specification")
	2.2. Terminology & Basics
	2.3. RIFF File Format
	2.4. WebP File Header
	2.5. Simple File Format (Lossy)
	2.6. Simple File Format (Lossless)
	2.7. Extended File Format
	2.7.1. Chunks
	2.7.1.1. Animation
	2.7.1.2. Alpha
	2.7.1.3. Bitstream (VP8/VP8L)
	2.7.1.4. Color Profile
	2.7.1.5. Metadata
	2.7.1.6. Unknown Chunks

	2.7.2. Canvas Assembly from Frames
	2.7.3. Example File Layouts

	3. Specification for WebP Lossless Bitstream
	3.1. Abstract (from "Specification for WebP Lossless Bitstream")
	3.2. Introduction (from "Specification for WebP Lossless Bitstream")
	3.3. Nomenclature
	3.4. RIFF Header
	3.5. Transforms
	3.5.1. Predictor Transform
	3.5.2. Color Transform
	3.5.3. Subtract Green Transform
	3.5.4. Color Indexing Transform

	3.6. Image Data
	3.6.1. Roles of Image Data
	3.6.2. Encoding of Image Data
	3.6.2.1. Prefix-Coded Literals
	3.6.2.2. LZ77 Backward Reference
	3.6.2.2.1. Distance Mapping

	3.6.2.3. Color Cache Coding

	3.7. Entropy Code
	3.7.1. Overview
	3.7.2. Details
	3.7.2.1. Decoding and Building the Prefix Codes
	3.7.2.1.1. Simple Code Length Code
	3.7.2.1.2. Normal Code Length Code

	3.7.2.2. Decoding of Meta Prefix Codes
	3.7.2.2.1. Entropy Image
	3.7.2.2.2. Interpretation of Meta Prefix Codes

	3.7.2.3. Decoding Entropy-Coded Image Data

	3.8. Overall Structure of the Format
	3.8.1. Basic Structure
	3.8.2. Structure of Transforms
	3.8.3. Structure of the Image Data

	4. Security Considerations
	5. Interoperability Considerations
	6. IANA Considerations
	6.1. The 'image/webp' Media Type
	6.1.1. Registration Details

	7. References
	7.1. Normative References
	7.2. Informative References

	Authors' Addresses

